Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.639
Filter
1.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(2): 174-178, 2024 Apr 29.
Article in Chinese | MEDLINE | ID: mdl-38857962

ABSTRACT

OBJECTIVE: To investigate the bacterial community diversity in human Demodex mites, so as to provide insights into unraveling the role of human Demodex mites in them caused infectious diseases. METHODS: From June to July 2023, Demodex mites were collected from the faces of college students in a university in Wuhu City using the adhesive tape method, and the V4 region of 16S ribosomal RNA (16S rRNA) gene and the internal transcribed spacer (ITS) gene of nuclear ribosomal DNA were amplified on an Illumina PE250 high-throughput sequencing platform. Sequencing data were spliced according to the overlapping relations and filtered to yield effective sequences, and operational taxonomic units (OTUs) was clustered. The diversity index of obtained OUTs was analyzed, and the structure of the bacterial community was analyzed at various taxonomic levels. RESULTS: A total of 57 483 valid sequences were obtained using 16S rRNA gene sequencing, and 159 OUTs were classified according to similarity. Then, OUTs at a 97% similarity were included for taxonomic analyses, and the bacteria in Demodex mites belonged to 14 phyla, 20 classes, 51 orders, 72 families, and 94 genera. Proteobacteria was the dominant phylum, and Vibrio, Bradyrhizobium and Variovorax were dominant genera. A total of 56 362 valid sequences were obtained using ITS gene sequencing, and 147 OTUs were obtained, which belonged to 5 phyla, 17 classes, 34 orders, 68 families, and 93 genera and were annotated to Ascomycota, Basidiomycota and Chytridiomycota, with Ascomycota as the dominant phylum, and Alternaria alternata, Epicoccum, Penicillium, and Sarocladium as dominant genera. CONCLUSIONS: There is a high diversity in the composition of bacterial communities in human Demodex mites, with multiple types of microorganisms and high species abundance.


Subject(s)
Bacteria , Mites , RNA, Ribosomal, 16S , Humans , Animals , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Mites/microbiology , Mites/genetics , Mites/physiology , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics , Biodiversity , Phylogeny
2.
Vet Parasitol ; 328: 110191, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723410

ABSTRACT

Small ruminants (sheep and goats) constantly suffer from endoparasitoses caused by gastrointestinal nematodes. Among these, the species Haemonchus contortus (Rudolphi, 1803) is considered to be the one of greatest importance within sheep farming. This nematode is difficult to control due to its resistance to most commercial anthelmintics. The aim of the present study was to assess the potential of macrochelid mites as macrobiological agents for controlling endoparasitoses of sheep caused by the nematode, H. contortus. For this, novel in vitro methodology was used, in which assessments were made not only of the predatory ability but also the population growth of mite species (Macrocheles merdarius, Macrocheles robustulus and Holostaspella bifoliata) when offered larvae of the nematode, H. contortus. The predatory ability of the mites, M. merdarius and H. bifoliata were efficient regarding their predatory ability against H. contortus nematode larvae. The mite, M. merdarius exhibited the highest predation rate with mean distribution values for the treated group of 18656 ± 10091 and for the control group of 1178 ± 712 (P < 0.0001). The species, H. bifoliata presented the highest population growth rate, with a percentage acarid recovery rate of 263% in relation to the number added initially. The data from this in vitro predation experiment suggest that, M. merdarius and H. bifoliata showed promise as macrobiological agents for controlling gastrointestinal endoparasitoses of sheep caused by the nematode, H. contortus given that both species reduced the population of this helminth by more 70% and the number of mites recovered was three times greater than the number added.


Subject(s)
Haemonchiasis , Mites , Pest Control, Biological , Sheep Diseases , Haemonchus , Haemonchiasis/prevention & control , Mites/physiology , Larva , Predatory Behavior , Pest Control, Biological/standards , Population Growth , Female , Animals , Sheep , Sheep Diseases/parasitology , Sheep Diseases/prevention & control , Feces/parasitology , Species Specificity , In Vitro Techniques
3.
Int J Parasitol ; 54(8-9): 415-427, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38575051

ABSTRACT

Mites of the family Syringophilidae (Acariformes: Prostigmata: Cheyletoidea) are permanent and obligatory parasites of birds. This study presents an analysis of mite material collected from 22 avian species belonging to the family Paradisaeidae (Passeriformes), revealing the presence of four mite species belonging to four genera: Syringophiloidus attenboroughi n. sp., Peristerophila regiusi n. comb., Picobia frankei, and Gunabopicobia garylarsoni. In the present work, the genus Neoperisterophila is synonymized with the genus Peristerophila. While the genera Syringophiloidus and Picobia were expectedly found on paradisaeid birds, given their prevalence in passerines, the presence of Peristerophila and Gunabopicobia was intriguing, suggesting potential host-switching events. The specificity of these mites varies, with some showing occurrence on hosts of closely related genera and others infesting phylogenetically distant hosts. Notably, the distribution of specific mite species on the Birds-of-Paradise appears to be influenced by both long coevolutionary histories and incidental contacts between often unrelated or intergeneric hybrid species of paradisaeid birds. Furthermore, our research of 104 specimens from 22 Birds-of-Paradise species shows generally low infestation rates across the studied species, suggesting a nuanced interaction between these mites and their avian hosts. Additionally, our network analysis provides a deeper understanding of these host-parasite interactions, revealing a high level of specialization and complexity in these ecological relationships.


Subject(s)
Bird Diseases , Host-Parasite Interactions , Mite Infestations , Mites , Passeriformes , Animals , Mite Infestations/veterinary , Mite Infestations/parasitology , Mites/classification , Mites/physiology , Bird Diseases/parasitology , Passeriformes/parasitology , Phylogeny
4.
Exp Appl Acarol ; 92(4): 567-686, 2024 May.
Article in English | MEDLINE | ID: mdl-38639851

ABSTRACT

The dentition of the chelal moveable digit in cohabiting astigmatids from UK beehives (i.e., Carpoglyphus lactis (Linnaeus), Glycyphagus domesticus (DeGeer), and Tyrophagus putrescentiae (Schrank)) is characterised for the first time using quantitative tribological measures within a 2D mechanical model. The trophic function of astigmatid chelae are reviewed in terms of macroscopic tools used by humans including hooking devices, pliers, shears, rasps and saws. Comparisons to oribatid claws and isopod dactyli are made. The overall pattern of the moveable digit form of T. putrescentiae is not just a uniformly shrunken/swollen version between the other two taxa at either the macro- or micro-scale. Mastication surface macro-roughness values are in the range of international Roughness Grade Numbers N5-N6. The moveable digit of C. lactis has low rugosity values compared to the glycyphagid and acarid (which are topographically more similar and match that roughness typical of some coral reef surfaces). C. lactis has the most plesiomorphic moveable digit form. The mastication surface of all three species as a chewing tool is distinctly ornamented despite the moveable digit of C. lactis looking like a bar-like beam. The latter has more opportunities to be a multifunctional tool behaviourally than the other two species. Little evidence of any differences in the 'spikiness' of any 'toothiness' is found. Some differences with laboratory cultured specimens are found in C. lactis and possibly T. putrescentiae suggesting where selection on the digit may be able to occur. The chelal surface of T. putrescentiae has been deformed morphologically during evolution the most, that of C. lactis the least. Repeated localised surface differentiation is a feature of the moveable digit in G. domesticus compared to the likely more concerted changes over certain nearby locations in T. putrescentiae. An impactful chelal teeth design is present in G. domesticus but this is more equivocal in T. putrescentiae. Pockets within the mastication surface of the glycyphagid (and to some extent for the acarid) may produce foodstuff crunch forces of the scale of the chelal tips of oribatids. The moveable digit dentition of G. domesticus is adapted to shred foodstuff (like a ripsaw) more than that of the grazing/shearing dentition of T. putrescentiae. The collecting 'picker' design of C. lactis posterior teeth matches the size of Bettsia alvei hyphae which attacks hive-stored pollen. Detritus accumulated in chelal digit gullets through a sawing action matches the smallest observed ingested material. The dentition of C. lactis should produce less friction when moving through food material than G. domesticus. C. lactis is the most hypocarnivorous and may 'skim' through fluids when feeding. Astigmatid teeth do matter. The three commensal species can avoid direct competition. Future work is proposed in detail.


Subject(s)
Mites , Animals , Mites/physiology , Mites/anatomy & histology , Tooth/anatomy & histology , Mastication/physiology , United Kingdom
5.
Exp Parasitol ; 260: 108746, 2024 May.
Article in English | MEDLINE | ID: mdl-38513972

ABSTRACT

In Dermanyssus gallinae, a hematophagous mite, the initiation of vitellogenesis induced by blood feeding is essential for its reproduction. However, the precise gene structures and physiological functions of Vg in D. gallinae and its upstream gene, Target of Rapamycin (TOR), have not been fully understood. This study revealed the presence of four homologous genes within D. gallinae, named Dg-Vg1, Dg-Vg1-like, Dg-Vg2, and Dg-Vg2-like, especially, Dg-Vg2-like was firstly identified in the mites. The expression levels of all these Vg genes were significantly higher in adult females than other stages. Following blood feeding, the expression levels of these genes increased significantly, followed by a subsequent decrease, aligning with egg production. Silencing Dg-Vgs by RNA interference (RNAi) led to decreased fecundity and egg hatching rates, as well as abnormal embryonic development, suggesting a vital role for Dg-Vgs in both egg formation and embryonic development. Furthermore, the knockdown of Dg-TOR significantly reduced the expression of Dg-Vgs and negatively impacted the reproductive capabilities of PRMs, indicating that TOR influences PRM reproduction by regulating the expression of Dg-Vgs. In summary, these findings demonstrated the crucial roles of Dg-Vgs and Dg-TOR in PRM reproduction, highlighting their potential as targets for pest control.


Subject(s)
Mites , RNA Interference , Reproduction , TOR Serine-Threonine Kinases , Vitellogenins , Animals , Vitellogenins/genetics , Vitellogenins/metabolism , Female , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Mites/genetics , Mites/physiology , Male , Amino Acid Sequence , Phylogeny , Fertility/genetics , Nymph/genetics , Nymph/growth & development , Nymph/physiology , Vitellogenesis/genetics
6.
Exp Appl Acarol ; 92(3): 323-349, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38451432

ABSTRACT

The abundance and diversity of eriophyid and phytoseiid mites in south and central Florida were assessed in six citrus orchards under three different pest management systems, conventional, organic, and untreated. Tree canopy, ground cover, and leaf litter were sampled every two months in two groves for each of the three pest management systems from April 2019 to February 2021. The citrus rust mite, Phyllocoptruta oleivora (Ashmead) represented 95 to 99% of the rust mites sampled in each grove except in one untreated orchard where it accounted for 45% of the samples (n = 938 total P. oleivora mounted specimens). The pink citrus rust mite, Aculops pelekassi (Keifer) was present in organic and untreated orchards at 5% and 28%, respectively, but absent from conventional orchards (n = 134 total A. pelekassi mounted specimens). Twenty-nine species of phytoseiid mites were identified from 1778 specimens. Thirteen species were present in the canopy, fifteen in the ground cover, and eighteen in the leaf litter with some common species among these habitats. In the tree canopy, Typhlodromalus peregrinus (39%), Euseius spp. (25%), and Iphiseiodes quadripilis (19%) were the dominant species. Typhlodromalus peregrinus (43%), Typhlodromips dentilis (25%), and Proprioseiopsis mexicanus (13%) were the major species in the ground cover. Species richness was lower in organic orchards (3.0) compared to conventional and untreated orchards (5.0 and 4.7, respectively). In the leaf litter, Amblyseius curiosus (26%), Proprioseiopsis carolinianus (15%), Chelaseius floridanus (14%), and Amblyseius tamatavensis (12%) were the most common species. Shannon index was significantly higher in conventional orchards (1.45) compared to organic and untreated orchards (1.02 and 1.05, respectively). Evenness was also higher in conventional orchards (0.86) compared to organic and untreated (0.72 and 0.68, respectively). Finding of several phytoseiids in abundance across pest management programs suggest the need for identifying their role in pest suppression particularly mites.


Subject(s)
Citrus , Mites , Animals , Mites/physiology , Florida , Predatory Behavior , Biodiversity , Food Chain , Organic Agriculture
7.
Exp Appl Acarol ; 92(3): 385-401, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38478140

ABSTRACT

Spider mites Tetranychus urticae, Tetranychus macfarlanei and Oligonychus biharensis are considered to be highly polyphagous in nature and causes severe damage to a wide range of plants around the world. Amblyseius paraaerialis is an efficient phytoseiid predator of spider mites with a potential to survive on both natural and alternative diets. Evaluation of predatory potential and prey stage preference provides valuable information on the efficacy of the predatory species in controlling mite population. Feeding experiments were conducted on mulberry leaf discs under the laboratory conditions of 30 ± 2 °C and 70 ± 5% relative humidity (RH). After 24 h of feeding experiment, the adult female predator exhibited a significant preference in feeding towards the eggs of T. macfarlanei (42.6%) and the larval stages of T. urticae (46%) and O. biharensis (25.3%). The mass rearing possibilities of A. paraaerialis was tested by tracking and comparing the developmental duration of individual life stages on varied food sources like, honey, castor (Ricinus communis) pollen, honey-pollen mixture and mixed life stages of T. urticae. The predator was failed to complete its development on honey and pollen when supplied separately. However it was successfully developed on honey-pollen mixture and mixed life stages of T. urticae. The developmental studies unravelled a shortest developmental duration and an extended adult longevity and lifespan of A. paraaerialis when reared on the alternative diet, thus opened up the mass rearing possibility of the predatory species under laboratory conditions.


Subject(s)
Diet , Mites , Pest Control, Biological , Predatory Behavior , Tetranychidae , Animals , Tetranychidae/physiology , Female , Mites/physiology , Mites/growth & development , Larva/growth & development , Larva/physiology , Nymph/growth & development , Nymph/physiology , Ovum/physiology , Ovum/growth & development , Food Chain
8.
Poult Sci ; 103(5): 103612, 2024 May.
Article in English | MEDLINE | ID: mdl-38492248

ABSTRACT

Dermanyssus gallinae is a major hematophagous ectoparasite in layer hens. Although the acaricide ß-cypermethrin has been used to control mites worldwide, D. gallinae has developed resistance to this compound. Carboxylesterases (CarEs) are important detoxification enzymes that confer resistance to ß-cypermethrin in arthropods. However, CarEs associated with ß-cypermethrin resistance in D. gallinae have not yet been functionally characterized. Here, we isolated a CarE gene (Deg-CarE) from D. gallinae and assayed its activity. The results revealed significantly higher expression of Deg-CarE in the ß-cypermethrin-resistant strain (RS) than in the susceptible strain (SS) toward α-naphthyl acetate (α-NA) and ß-naphthyl acetate (ß-NA). These findings suggest that enhanced esterase activities might have contributed to ß-cypermethrin resistance in D. gallinae. Quantitative real-time PCR analysis revealed that Deg-CarE expression levels were significantly higher in adults than in other life stages. Although Deg-CarE was upregulated in the RS, significant differences in gene copy numbers were not observed. Additionally, Deg-CarE expression was significantly induced by ß-cypermethrin in both the SS and RS. Moreover, silencing Deg-CarE via RNA interference decreased the enzyme activity and increased the susceptibility of the RS to ß-cypermethrin, confirming that Deg-CarE is crucial for ß-cypermethrin detoxification. Finally, recombinant Deg-CarE (rDeg-CarE) expressed in Escherichia coli displayed high enzymatic activity toward α/ß-NA. However, metabolic analysis indicated that rDeg-CarE did not directly metabolize ß-cypermethrin. The collective findings indicate that D. gallinae resistance to ß-cypermethrin is associated with elevated CarEs protein activity and increased Deg-CarE expression levels. These findings provide insights into the metabolic resistance of D. gallinae and offer scientific guidance for the management and control of D. gallinae.


Subject(s)
Mites , Pyrethrins , Animals , Pyrethrins/pharmacology , Mites/drug effects , Mites/physiology , Mites/genetics , Acaricides/pharmacology , Carboxylesterase/genetics , Carboxylesterase/metabolism , Drug Resistance/genetics , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Female , Insecticide Resistance/genetics
9.
Exp Appl Acarol ; 92(4): 759-775, 2024 May.
Article in English | MEDLINE | ID: mdl-38512422

ABSTRACT

Citrus leprosis is the most important viral disease affecting citrus. The disease is caused predominantly by CiLV-C and is transmitted by Brevipalpus yothersi Baker mites. This study brings some insight into the colonization of B. yothersi in citrus [(Citrus × sinensis (L.) Osbeck (Rutaceae)] previously infested by viruliferous or non-viruliferous B. yothersi. It also assesses the putative role of shelters on the behavior of B. yothersi. Expression of PR1 and PR4 genes, markers of plant defense mechanisms, were evaluated by RT-qPCR to correlate the role of the plant hormonal changes during the tri-trophic virus-mite-plant interplay. A previous infestation with either non-viruliferous and viruliferous mites positively influenced oviposition and the number of adult individuals in the resulting populations. Mite populations were higher on branches that had received a previous mite infestation than branches that did not. There was an increase in the expression of PR4, a marker gene in the jasmonic acid (JA) pathway, in the treatment with non-viruliferous mites, indicating a response from the plant to their feeding. Conversely, an induced expression of PR1, a marker gene in the salicylic acid (SA) pathway, was observed mainly in the treatment with viruliferous mites, which suggests the activation of a plant response against the pathogen. The earlier mite infestation, as well as the presence of leprosis lesions and a gypsum mixture as artificial shelters, all fostered the growth of the B. yothersi populations after the second infestation, regardless of the presence or absence of CiLV-C. Furthermore, it is suggested that B. yothersi feeding actually induces the JA pathway in plants. At the same time, the CiLV-C represses the JA pathway and induces the SA pathway, which benefits the mite vector.


Subject(s)
Citrus sinensis , Mites , Animals , Mites/physiology , Plant Diseases/parasitology , Female , Mite Infestations/veterinary , Mite Infestations/parasitology , Oviposition
10.
Exp Appl Acarol ; 92(4): 739-758, 2024 May.
Article in English | MEDLINE | ID: mdl-38448755

ABSTRACT

Spider mites were considered secondary pests of walnut production in California, under the control of phytoseiid predators. Due to increased importance as walnut pests in recent decades there is renewed interest in the structure and function of the associated phytoseiid assemblage. In this study we report the results from a 3 year survey of the tetranychid and phytoseiid assemblages in walnut orchards in the Central Valley of California. The survey was conducted to determine the range and dominance of web-spinning Tetranychus species present, to investigate the species richness and dominance of the phytoseiid species present, and to explore whether patterns of variation in the relative abundance of phytoseiid species could be explained by one or more explanatory variables. Tetranychus urticae was the dominant spider mite in all growing regions and years with T. pacificus and T. turkestani also present in orchards in the southern San Joaquin Valley. Phytoseiid species richness declined with latitude among the three walnut growing regions and of the 13 species found Amblyseius similoides, Euseius stipulatus, Galendromus occidentalis and Typhlodromus caudiglans were the most abundant and widespread species present. Mean proportional abundance significantly increased from early (mid May-July) to late (August-mid October) season and from southern to northern growing regions for Type II and IV predators, but significantly decreased from early to late season and from southern to northern growing regions for Type III predators. The mean proportional abundance of Type II predators, particularly G. occidentalis, significantly increased and that of Type III predators significantly decreased with mean Tetranychus density in individual orchards. The current survey provides a more in-depth analysis of mite assemblages in walnut orchards in California and can be used to better inform adaptive management strategies for integrated mite management in the future.


Subject(s)
Juglans , Tetranychidae , Animals , California , Tetranychidae/physiology , Mites/physiology , Biodiversity , Population Dynamics , Food Chain , Seasons
11.
J Med Entomol ; 61(3): 657-666, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38518800

ABSTRACT

Water mites (Hydrachnidia) commonly parasitize mosquitoes; however, the nature of these parasitic interactions remains poorly understood. We sampled mites collected from mosquitoes taken from CDC light traps placed in a botanical garden in Northern Florida from April to November 2022. Mites were found almost exclusively parasitizing the mosquitoes, Anopheles crucians sensu lato (Wiedemann, 1828), Anopheles quadrimaculatus sensu lato (Say, 1824), and Culex erraticus (Dyar and Knab, 1906). All sampled mites were of the genus Arrenurus. Further identification proved to be impossible given the available resources. Seasonality of the mites corresponded with the seasonality of their hosts, with the highest numbers being recorded in May and September. Nomenclature for mite attachment sites on mosquitoes was developed and provided. Mites most commonly attached to the second abdominal segments of all sampled mosquitoes with varied positions around the segment depending on mosquito species. We found significance for the relationship between the abdominal segment mites attached to and what position on the segment mites would take for Cx. erraticus, which indicates a preference of attaching directly underneath the second and fourth abdominal segments. Such a relationship was not found for either Anopheles species.


Subject(s)
Anopheles , Culex , Mites , Seasons , Animals , Florida , Mites/physiology , Mites/classification , Host-Parasite Interactions , Terminology as Topic , Gardens
12.
J Invertebr Pathol ; 204: 108084, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38452853

ABSTRACT

Opportunistic bacterial infections are common in insect populations but there is little information on how they are acquired or transmitted. We tested the hypothesis that Macrocheles mites can transmit systemic bacterial infections between Drosophila hosts. We found that 24% of mites acquired detectable levels of bacteria after feeding on infected flies and 87% of infected mites passed bacteria to naïve recipient flies. The probability that a mite could pass Serratia from an infected donor fly to a naïve recipient fly was 27.1%. These data demonstrate that Macrocheles mites are capable of serving as vectors of bacterial infection between insects.


Subject(s)
Mites , Animals , Mites/microbiology , Mites/physiology , Drosophila/microbiology , Drosophila/parasitology , Serratia/physiology , Drosophila melanogaster/microbiology
13.
Vet Res Commun ; 48(3): 1853-1857, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38305957

ABSTRACT

This study addresses the report of Psoralges libertus mite infestations in Southern Tamandua (Tamandua tetradactyla) after a 127-year gap in the literature, detailing clinical conditions, histopathological findings, and mite identification via morphology. The research broadens our understanding of mite habitats, highlighting challenges in managing parasitic health in free-ranging and captive animals. It underscores the importance of ongoing surveillance for conservation and public health, including potential zoonotic concerns. A P. libertus report in T. tetradactyla after over a century highlights the scarcity of publications on mite-induced mange in this mammalian species. Investigating potential P. libertus' impacts on tamanduas' well-being necessitates further research, particularly regarding pathogenicity, agent epidemiology, and host interaction. This study enhances our comprehension of parasite-host interactions and their relevance to wildlife conservation.


Subject(s)
Mite Infestations , Animals , Mite Infestations/veterinary , Mite Infestations/parasitology , Mites/physiology , India , Male , Female
14.
J Anim Ecol ; 93(4): 373-376, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38351463

ABSTRACT

Research Highlight: del Mar Labrador, M., Serrano, D., Doña, J., Aguilera, E., Arroyo, J. L., Atiénzar, F., Barba, E., Bermejo, A., Blanco, G., Borràs, A., Calleja, J. A., Cantó, J. L., Cortés, V., de la Puente, J., de Palacio, D., Fernández-González, S., Figuerola, J., Frías, Ó., Fuertes-Marcos, B. Garamszegi, L. Z., Gordo, Ó., Gurpegui, M., Kovács, I., Martínez, J. L., Meléndez, L., Mestre, A., Møller, A. P., Monrós, J. S., Moreno-Opo, R., Navarro, C., Pap, P. L., Pérez-Tris, J., Piculo, R., Ponce, C., Proctor, H., Rodríguez, R., Sallent, Á., Senar, J., Tella, J. L., Vágási, C. I., Vögeli, M., & Jovani, R. (2023). Host space, not energy or symbiont size, constrains feather mite abundance across passerine bird species. Journal of Animal Ecology, https://doi.org/10.1111/1365-2656.14032. Symbionts represent crucial links between species in ecosystems. Consequently, understanding their patterns of abundance is a major goal in the study of symbioses. However, multiple biotic and abiotic factors may regulate symbionts, and disentangling the mechanisms that drive variation in their abundance across host species is challenging. One promising strategy to approach this challenge is to incorporate biologically relevant data into theoretical models. In a recent study, Labrador et al. (2023) used this strategy to investigate the poorly understood symbiosis between feather mites and their avian hosts. They integrate a remarkable amount of empirical data with models based on the metabolic theory of ecology to determine what factors limit feather mite abundance across European passerines. Their quantitative analyses indicate that the number of feather barbs limits mite abundance across host species, suggesting that mite populations are spatially, but not energetically, constrained. These findings not only reveal mechanisms that may drive the variation in feather mite abundances across hosts, but also advance our understanding of the ecology of interspecific interactions more generally.


Subject(s)
Bird Diseases , Mites , Animals , Mites/physiology , Ecosystem , Ecology , Symbiosis
15.
Exp Appl Acarol ; 92(2): 183-201, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38358409

ABSTRACT

Vitis vinifera is cultivated worldwide for its high nutritional and commercial value. More than 60 grape cultivars are cultivated in Chile. Two of these, the país and the corinto cultivars, are the oldest known and widely used for the preparation of traditional homemade drinks and consumption as table grapes. These two grape cultivars are affected by Colomerus vitis, an eriophyid mite which establishes on their leaves and forms erinea, where the mite and its offspring obtain shelter and food. Although C. vitis has a cosmopolitan distribution, few studies of its impact on the structure and physiology of affected plants have been reported. Herein we aimed to evaluate the impact of C. vitis infection on the structural and physiological leaf performance of the two grape cultivars. The results showed tissue hyperplasia and cell hypertrophy in the epidermis, with an overproduction of trichomes and emergences in the abaxial epidermis in both cultivars. The anatomical changes were similar between the país and corinto cultivars, but they were proportionally greater in the país, where the area affected by the erinea were greater. No significant changes were detected in the photosynthetic pigment content; however, there was an increase in the total soluble sugars content in the erineum leaves of the país cultivar. Higher contents of anthocyanins and total phenols, as well as the presence of the pinocembrin in the corinto cultivar, which was less affected by C. vitis, could also indicate some resistance to mites' attack, which should be investigated in future studies.


Subject(s)
Mites , Vitis , Animals , Vitis/physiology , Anthocyanins/analysis , Mites/physiology , Phenols/analysis , Plant Leaves/physiology , Fruit/chemistry
16.
Pest Manag Sci ; 80(6): 2619-2625, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38294174

ABSTRACT

BACKGROUND: Biological control with predatory mites is applied against pests in greenhouse crops. Chemical control with the use of selective, reduced-risk pesticides, is an important component of Integrated Pest Management (IPM) programs, that often needs to be combined with biological control. Here, we evaluated the effect of plant pollen when used as supplementary food on the survival, reproduction and predation of the predatory mite Amblydromalus limonicus (Acari: Phytoseiidae) after exposing young larvae and adults to flonicamid, an insecticide of moderate toxicity to phytoseiids. Pollen is an important alternative food for generalist phytoseiids ensuring survival and supporting populations build-up during periods of prey scarcity. Two regimes of cattail (Typha angustifolia L.) pollen differing in application frequency were used. In the first, the total amount of pollen was supplied once, within 30 min after insecticide application, whereas in the second regime, the same amount of pollen was supplied gradually, i.e., every 48 h. RESULTS: Regardless of the frequency of application, pollen provisioning results in a reduction in prey (thrips) consumption relative to the control (no pollen provisioning). Nevertheless, when adult mites were directly exposed to flonicamid residues, pollen provisioning attenuated the reduction in prey consumption as compared to the control. In addition, the gradual (every 48 h) provisioning of pollen to adult predators exposed to flonicamid residues impacted positively the intrinsic rate of population increase (rm) of A. limonicus as compared to when feeding on prey. CONCLUSION: Our results reveal an unexpected role of pollen provisioning in alleviating pesticides side-effects on phytoseiids. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Larva , Mites , Niacinamide/analogs & derivatives , Pest Control, Biological , Pollen , Predatory Behavior , Typhaceae , Animals , Mites/drug effects , Mites/physiology , Predatory Behavior/drug effects , Larva/drug effects , Larva/growth & development , Larva/physiology , Insecticides/toxicity , Thysanoptera/physiology , Thysanoptera/drug effects
17.
Parasitology ; 151(5): 463-467, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38148679

ABSTRACT

Investigations of the parasites associated with extinct avian species provide unique insights into the ecology and evolution of both hosts and their parasitic counterparts. In the present paper, a new quill mite species, Peristerophila conuropsis sp. n., belonging to the family Syringophilidae (Prostigmata: Cheyletoidea) is described from the Carolina parakeet Conuropsis carolinensis Linnaeus (Psittaciformes: Psittacidae). This new species was collected from museum dry skin of the Carolina parakeet, the only native representative of the Psittacidae in the United States, which was an abundant resident of the southeastern and midwestern states and has been extinct in the beginning of the 20th century. Comment on the current taxonomic state and host associations of the genus Peristerophila are provided. Based on the host associations and habitats occupied by Peristerophila and related genera on parrots, it is hypothesized with the high probability that P. conuropsis has been extinct along with its host.


Subject(s)
Bird Diseases , Mite Infestations , Mites , Animals , Mites/classification , Mites/physiology , Bird Diseases/parasitology , Mite Infestations/parasitology , Mite Infestations/veterinary , Mite Infestations/epidemiology , Parakeets/parasitology , Host-Parasite Interactions , Female , Male , Ecosystem , Extinction, Biological
18.
Pest Manag Sci ; 80(4): 2021-2031, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38110295

ABSTRACT

BACKGROUND: Structural and chemical plant defence traits may reduce the efficacy of biological control agents in integrated pest management. Breeding programmes have shown arthropod predators' potential to acclimate to challenging host plants. However, whether and how these predators adapt to novel plant environments remain unclear. Using the predatory mite Phytoseiulus persimilis - herbivorous mite Tetranychus urticae system in an experimental evolution setup, we studied the adaptation mechanisms to tomato and cucumber, plants that possess a distinct repertoire of defensive traits. RESULTS: Experimental evolution experiments on whole plants revealed that allowing P. persimilis to adapt to tomatoes led to an ~100% larger population size. Independent feeding assays showed that tomato- and cucumber-adapted prey reduced predator fecundity. The deleterious effect of ingesting low-quality prey persisted after adaptation of the predator to both cucumber and tomato. We demonstrated that jasmonic acid (JA)-dependent defences reduce prey quality by evaluating predator performance on prey fed on JA defence-deficient tomato plants. Transcriptomic profiling of the replicated P. persimilis lines showed that long-term propagation on tomato and cucumber plants produces distinctive gene-expression levels. Predator adaptation to tomatoes results in the loss of a large transcriptional response, in which predicted cuticle-building rather than detoxification pathways are affected. CONCLUSION: We showed that the adaptation of predatory arthropods to a novel, challenging plant does not necessarily occur via the prey, but rather through the physical environment of the plant. We provided first insights into the underlying molecular mechanisms. © 2023 Society of Chemical Industry.


Subject(s)
Arthropods , Cucumis sativus , Cyclopentanes , Mites , Oxylipins , Tetranychidae , Animals , Plant Breeding , Mites/physiology , Tetranychidae/genetics , Plants , Cucumis sativus/genetics , Predatory Behavior
19.
Pest Manag Sci ; 80(4): 2154-2161, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38153938

ABSTRACT

BACKGROUND: Rice is one of the most consumed cereals in the world. Productivity losses are caused by different biotic stresses. One of the most common is the phytophagous mite Schizotetranychus oryzae Rossi de Simons (Acari: Tetranychidae), which inhibits plant development and seed production. The identification of plant defense proteins is important for a better understanding of the mite-plant interaction. We previously detected a high expression of Osmotin1 protein in mite-resistant rice cultivars, under infested conditions, suggesting it could be involved in plant defense against mite attack. We therefore aimed to evaluate the responses of three rice lines overexpressing Osmotin1 (OSM1-OE) and three lines lacking the Osmotin1 gene (osm1-ko) to mite attack. RESULTS: The numbers of individuals (adults, immature stages, and eggs) were significantly lower in OSM1-OE lines than those in wild-type (WT) plants. On the other hand, the osm1-ko lines showed larger numbers of mites per leaf than WT plants. When plants reached the full maturity stage, two out of the three infested OSM1-OE lines presented lower plant height than WT, while the three osm1-ko lines (infested or not) presented higher plant height than WT. The reduction in seed number caused by mite infestation was lower in OSM1-OE lines (12-19%) than in WT plants (34%), while osm1-ko lines presented higher reduction (24-54%) in seed number than WT plants (13%). CONCLUSION: These data suggest that Osmotin1 is involved in rice resistance to S. oryzae infestation. This is the first work showing increased plant resistance to herbivory overexpressing an Osmotin gene. © 2023 Society of Chemical Industry.


Subject(s)
Mite Infestations , Mites , Oryza , Tetranychidae , Humans , Animals , Tetranychidae/genetics , Tetranychidae/metabolism , Oryza/genetics , Oryza/metabolism , Mites/physiology , Plant Proteins/genetics , Plant Proteins/metabolism
20.
PeerJ ; 11: e16461, 2023.
Article in English | MEDLINE | ID: mdl-38034871

ABSTRACT

Environmental factors like temperature have a great impact on the predation potential of biological control agents. In the present study, the functional response of the predatory mite Neoseiulus californicus (Acari: Phytoseiidae) to the pest mite Tetranychus urticae (Acari: Tetranychidae) at moderate to high temperatures under laboratory conditions was determined. The study aimed to understand the prey-predator interaction under different temperatures and prey densities. Five constant temperatures (24 °C, 27 °C, 30 °C, 33 °C, and 36 °C), and thirteen prey densities (4, 5, 8, 10, 12, 15, 16, 20, 24, 25, 30, 32, and 40) of each stage (adult, nymph, larvae, and egg stage) were employed in the experiment. Observations were made 24 h after the start of each experiment. Results revealed that the predatory mites showed type II functional response to adult females of T. urticae, whereas type I to other stages (nymphs, larvae, and eggs) of T. urticae. The predation capability of adult predatory mites on T. urticae was significant at 24-36 °C. The instantaneous attack rate (a) of N. californicus increased and the handling time (Th) decreased with an increase in temperature. The maximum attack rate was recorded at 36 °C (1.28) for the egg stage. The longest handling time was (0.78) for the larval stage of T. urticae at 30 °C. Daily consumption increased with increasing prey density. Maximum daily consumption was observed at 33 °C (30.00) at the prey density of 40. Searching efficiency decreased with the increase in prey density but was found to increase with the rise in temperature. N. californicus was found to be voracious on the larval and egg stages. Conclusively, the incorporation of N. californicus at earlier stages (larvae and eggs) of T. urticae would be beneficial under warm conditions because managing a pest at its initial stage will save the crop from major losses. The results presented in this study at various temperatures will be helpful in different areas with different temperature extremes. The results of the functional response can also be applied to mass rearing, quality testing, and integrated pest management programmes.


Subject(s)
Mites , Tetranychidae , Animals , Female , Tetranychidae/physiology , Temperature , Mites/physiology , Larva , Predatory Behavior/physiology , Nymph
SELECTION OF CITATIONS
SEARCH DETAIL
...