Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.596
Filter
1.
Technol Cancer Res Treat ; 23: 15330338241258570, 2024.
Article in English | MEDLINE | ID: mdl-38832431

ABSTRACT

Background: Colon adenocarcinoma (COAD) has increasing incidence and is one of the most common malignant tumors. The mitochondria involved in cell energy metabolism, oxygen free radical generation, and cell apoptosis play important roles in tumorigenesis and progression. The relationship between mitochondrial genes and COAD remains largely unknown. Methods: COAD data including 512 samples were set out from the UCSC Xena database. The nuclear mitochondrial-related genes (NMRGs)-related risk prognostic model and prognostic nomogram were constructed, and NMRGs-related gene mutation and the immune environment were analyzed using bioinformatics methods. Then, a liver metastasis model of colorectal cancer was constructed and protein expression was detected using Western blot assay. Results: A prognostic model for COAD was constructed. Comparing the prognostic model dataset and the validation dataset showed considerable correlation in both risk grouping and prognosis. Based on the risk score (RS) model, the samples of the prognostic dataset were divided into high risk group and low risk group. Moreover, pathologic N and T stage and tumor recurrence in the two risk groups were significantly different. The four prognostic factors, including age and pathologic T stage in the nomogram survival model also showed excellent predictive performance. An optimal combination of nine differentially expressed NMRGs was finally obtained, including LARS2, PARS2, ETHE1, LRPPRC, TMEM70, AARS2, ACAD9, VARS2, and ATP8A2. The high-RS group had more inflamed immune features, including T and CD4+ memory cell activation. Besides, mitochondria-associated LRPPRC and LARS2 expression levels were increased in vivo xenograft construction and liver metastases assays. Conclusion: This study established a comprehensive prognostic model for COAD, incorporating nine genes associated with nuclear-mitochondrial functions. This model demonstrates superior predictive performance across four prognostic factors: age, pathological T stage, tumor recurrence, and overall prognosis. It is anticipated to be an effective model for enhancing the prognosis and treatment of COAD.


Subject(s)
Adenocarcinoma , Biomarkers, Tumor , Colonic Neoplasms , Gene Expression Regulation, Neoplastic , Humans , Prognosis , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Colonic Neoplasms/mortality , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/secondary , Mice , Animals , Biomarkers, Tumor/genetics , Nomograms , Computational Biology/methods , Genes, Mitochondrial , Disease Models, Animal , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Liver Neoplasms/pathology , Gene Expression Profiling , Neoplasm Staging , Male , Databases, Genetic , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Female
2.
Cell Death Dis ; 15(5): 348, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769308

ABSTRACT

Regenerating gene family member 4 (Reg4) has been implicated in acute pancreatitis, but its precise functions and involved mechanisms have remained unclear. Herein, we sought to investigate the contribution of Reg4 to the pathogenesis of pancreatitis and evaluate its therapeutic effects in experimental pancreatitis. In acute pancreatitis, Reg4 deletion increases inflammatory infiltrates and mitochondrial cell death and decreases autophagy recovery, which are rescued by the administration of recombinant Reg4 (rReg4) protein. In chronic pancreatitis, Reg4 deficiency aggravates inflammation and fibrosis and inhibits compensatory cell proliferation. Moreover, C-X-C motif ligand 12 (CXCL12)/C-X-C motif receptor 4 (CXCR4) axis is sustained and activated in Reg4-deficient pancreas. The detrimental effects of Reg4 deletion are attenuated by the administration of the approved CXCR4 antagonist plerixafor (AMD3100). Mechanistically, Reg4 mediates its function in pancreatitis potentially via binding its receptor exostosin-like glycosyltransferase 3 (Extl3). In conclusion, our findings suggest that Reg4 exerts a therapeutic effect during pancreatitis by limiting inflammation and fibrosis and improving cellular regeneration.


Subject(s)
Fibrosis , Mitochondria , Pancreatitis-Associated Proteins , Pancreatitis , Receptors, CXCR4 , Animals , Pancreatitis-Associated Proteins/metabolism , Pancreatitis-Associated Proteins/genetics , Mitochondria/metabolism , Mitochondria/pathology , Pancreatitis/pathology , Pancreatitis/metabolism , Mice , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Humans , Mice, Inbred C57BL , Cyclams/pharmacology , Male , Mice, Knockout , Benzylamines/pharmacology , Chemokine CXCL12/metabolism , Cell Proliferation , Signal Transduction , Autophagy , Pancreas/pathology , Pancreas/metabolism , Cell Death
3.
Signal Transduct Target Ther ; 9(1): 133, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38744811

ABSTRACT

Sirtuin 3 (SIRT3) is well known as a conserved nicotinamide adenine dinucleotide+ (NAD+)-dependent deacetylase located in the mitochondria that may regulate oxidative stress, catabolism and ATP production. Accumulating evidence has recently revealed that SIRT3 plays its critical roles in cardiac fibrosis, myocardial fibrosis and even heart failure (HF), through its deacetylation modifications. Accordingly, discovery of SIRT3 activators and elucidating their underlying mechanisms of HF should be urgently needed. Herein, we identified a new small-molecule activator of SIRT3 (named 2-APQC) by the structure-based drug designing strategy. 2-APQC was shown to alleviate isoproterenol (ISO)-induced cardiac hypertrophy and myocardial fibrosis in vitro and in vivo rat models. Importantly, in SIRT3 knockout mice, 2-APQC could not relieve HF, suggesting that 2-APQC is dependent on SIRT3 for its protective role. Mechanically, 2-APQC was found to inhibit the mammalian target of rapamycin (mTOR)-p70 ribosomal protein S6 kinase (p70S6K), c-jun N-terminal kinase (JNK) and transforming growth factor-ß (TGF-ß)/ small mother against decapentaplegic 3 (Smad3) pathways to improve ISO-induced cardiac hypertrophy and myocardial fibrosis. Based upon RNA-seq analyses, we demonstrated that SIRT3-pyrroline-5-carboxylate reductase 1 (PYCR1) axis was closely assoiated with HF. By activating PYCR1, 2-APQC was shown to enhance mitochondrial proline metabolism, inhibited reactive oxygen species (ROS)-p38 mitogen activated protein kinase (p38MAPK) pathway and thereby protecting against ISO-induced mitochondrialoxidative damage. Moreover, activation of SIRT3 by 2-APQC could facilitate AMP-activated protein kinase (AMPK)-Parkin axis to inhibit ISO-induced necrosis. Together, our results demonstrate that 2-APQC is a targeted SIRT3 activator that alleviates myocardial hypertrophy and fibrosis by regulating mitochondrial homeostasis, which may provide a new clue on exploiting a promising drug candidate for the future HF therapeutics.


Subject(s)
Cardiomegaly , Fibrosis , Sirtuin 3 , Animals , Sirtuin 3/genetics , Sirtuin 3/metabolism , Cardiomegaly/genetics , Cardiomegaly/drug therapy , Cardiomegaly/pathology , Cardiomegaly/chemically induced , Cardiomegaly/metabolism , Fibrosis/genetics , Rats , Mice , Isoproterenol , Humans , Mice, Knockout , Homeostasis/drug effects , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/pathology , Mitochondria/metabolism , Mitochondria, Heart/drug effects , Mitochondria, Heart/genetics , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Myocardium/pathology , Myocardium/metabolism , Male
4.
Cell Mol Life Sci ; 81(1): 223, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767677

ABSTRACT

Parkinson's disease (PD) is a common and incurable neurodegenerative disorder that arises from the loss of dopaminergic neurons in the substantia nigra and is mainly characterized by progressive loss of motor function. Monogenic familial PD is associated with highly penetrant variants in specific genes, notably the PRKN gene, where homozygous or compound heterozygous loss-of-function variants predominate. PRKN encodes Parkin, an E3 ubiquitin-protein ligase important for protein ubiquitination and mitophagy of damaged mitochondria. Accordingly, Parkin plays a central role in mitochondrial quality control but is itself also subject to a strict protein quality control system that rapidly eliminates certain disease-linked Parkin variants. Here, we summarize the cellular and molecular functions of Parkin, highlighting the various mechanisms by which PRKN gene variants result in loss-of-function. We emphasize the importance of high-throughput assays and computational tools for the clinical classification of PRKN gene variants and how detailed insights into the pathogenic mechanisms of PRKN gene variants may impact the development of personalized therapeutics.


Subject(s)
Parkinson Disease , Ubiquitin-Protein Ligases , Humans , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Parkinson Disease/genetics , Parkinson Disease/pathology , Parkinson Disease/metabolism , Mitochondria/metabolism , Mitochondria/genetics , Mitochondria/pathology , Ubiquitination/genetics , Mitophagy/genetics , Animals
5.
Free Radic Biol Med ; 220: 249-261, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38697491

ABSTRACT

Carbon black nanoparticles (CBNPs) are widely distributed in the environment and are increasingly recognized as a contributor in the development of cardiovascular disease. A variety of cardiac injuries and diseases result from structural and functional damage to cardiomyocytes. This study explored the mechanisms of CBNPs-mediated myocardial toxicity. CBNPs were given to mice through intra-tracheal instillation and it was demonstrated that the particles can be taken up into the cardiac tissue. Exposure to CBNPs induced cardiomyocyte inflammation and apoptosis. In combination with in vitro experiments, we showed that CBNPs increased the ROS and induced mitochondria fragmentation. Functionally, CBNPs-exposed cardiomyocyte exhibited depolarization of the mitochondrial membrane potential, release of cytochrome c, and activation of pro-apoptotic BAX, thereby initiating programmed cell death. On the other hand, CBNPs impaired autophagy, leading to the inadequate removal of dysfunctional mitochondria. The excess accumulation of damaged mitochondria further stimulated NF-κB activation and triggered the NLRP3 inflammasome pathway. Both the antioxidant N-acetylcysteine and the autophagy activator rapamycin were effective to attenuate the damage of CBNPs on cardiomyocytes. Taken together, this study elucidated the potential mechanism underlying CBNPs-induced myocardial injury and provided a scientific reference for the evaluation and prevention of the CBNPs-related heart risk.


Subject(s)
Apoptosis , Autophagy , Membrane Potential, Mitochondrial , Mitochondrial Dynamics , Myocytes, Cardiac , Nanoparticles , Reactive Oxygen Species , Soot , Animals , Soot/toxicity , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Reactive Oxygen Species/metabolism , Autophagy/drug effects , Mice , Apoptosis/drug effects , Membrane Potential, Mitochondrial/drug effects , Mitochondrial Dynamics/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Inflammasomes/metabolism , NF-kappa B/metabolism , NF-kappa B/genetics , Acetylcysteine/pharmacology , Male , Sirolimus/pharmacology , Mitochondria/metabolism , Mitochondria/pathology , Mitochondria/drug effects , Oxidative Stress/drug effects
6.
Signal Transduct Target Ther ; 9(1): 124, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38744846

ABSTRACT

Mitochondria, with their intricate networks of functions and information processing, are pivotal in both health regulation and disease progression. Particularly, mitochondrial dysfunctions are identified in many common pathologies, including cardiovascular diseases, neurodegeneration, metabolic syndrome, and cancer. However, the multifaceted nature and elusive phenotypic threshold of mitochondrial dysfunction complicate our understanding of their contributions to diseases. Nonetheless, these complexities do not prevent mitochondria from being among the most important therapeutic targets. In recent years, strategies targeting mitochondrial dysfunction have continuously emerged and transitioned to clinical trials. Advanced intervention such as using healthy mitochondria to replenish or replace damaged mitochondria, has shown promise in preclinical trials of various diseases. Mitochondrial components, including mtDNA, mitochondria-located microRNA, and associated proteins can be potential therapeutic agents to augment mitochondrial function in immunometabolic diseases and tissue injuries. Here, we review current knowledge of mitochondrial pathophysiology in concrete examples of common diseases. We also summarize current strategies to treat mitochondrial dysfunction from the perspective of dietary supplements and targeted therapies, as well as the clinical translational situation of related pharmacology agents. Finally, this review discusses the innovations and potential applications of mitochondrial transplantation as an advanced and promising treatment.


Subject(s)
Mitochondria , Humans , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Diseases/genetics , Mitochondrial Diseases/therapy , Mitochondrial Diseases/metabolism , DNA, Mitochondrial/genetics , MicroRNAs/genetics , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/metabolism , Neoplasms/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/therapy , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/metabolism , Cardiovascular Diseases/genetics , Cardiovascular Diseases/therapy , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Animals
7.
Acta Neuropathol ; 147(1): 84, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750212

ABSTRACT

Amyotrophic Lateral Sclerosis/Parkinsonism-Dementia Complex (ALS/PDC), a rare and complex neurological disorder, is predominantly observed in the Western Pacific islands, including regions of Japan, Guam, and Papua. This enigmatic condition continues to capture medical attention due to affected patients displaying symptoms that parallel those seen in either classical amyotrophic lateral sclerosis (ALS) or Parkinson's disease (PD). Distinctly, postmortem examinations of the brains of affected individuals have shown the presence of α-synuclein aggregates and TDP-43, which are hallmarks of PD and classical ALS, respectively. These observations are further complicated by the detection of phosphorylated tau, accentuating the multifaceted proteinopathic nature of ALS/PDC. The etiological foundations of this disease remain undetermined, and genetic investigations have yet to provide conclusive answers. However, emerging evidence has implicated the contribution of astrocytes, pivotal cells for maintaining brain health, to neurodegenerative onset, and likely to play a significant role in the pathogenesis of ALS/PDC. Leveraging advanced induced pluripotent stem cell technology, our team cultivated multiple astrocyte lines to further investigate the Japanese variant of ALS/PDC (Kii ALS/PDC). CHCHD2 emerged as a significantly dysregulated gene when disease astrocytes were compared to healthy controls. Our analyses also revealed imbalances in the activation of specific pathways: those associated with astrocytic cilium dysfunction, known to be involved in neurodegeneration, and those related to major neurological disorders, including classical ALS and PD. Further in-depth examinations revealed abnormalities in the mitochondrial morphology and metabolic processes of the affected astrocytes. A particularly striking observation was the reduced expression of CHCHD2 in the spinal cord, motor cortex, and oculomotor nuclei of patients with Kii ALS/PDC. In summary, our findings suggest a potential reduction in the support Kii ALS/PDC astrocytes provide to neurons, emphasizing the need to explore the role of CHCHD2 in maintaining mitochondrial health and its implications for the disease.


Subject(s)
Amyotrophic Lateral Sclerosis , Astrocytes , DNA-Binding Proteins , Mitochondrial Proteins , Transcription Factors , Astrocytes/pathology , Astrocytes/metabolism , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Humans , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondria/pathology , Mitochondria/metabolism , Male , Female , Middle Aged , Aged
8.
Front Immunol ; 15: 1393852, 2024.
Article in English | MEDLINE | ID: mdl-38711526

ABSTRACT

Different eukaryotic cell organelles (e.g., mitochondria, endoplasmic reticulum, lysosome) are involved in various cancer processes, by dominating specific cellular activities. Organelles cooperate, such as through contact points, in complex biological activities that help the cell regulate energy metabolism, signal transduction, and membrane dynamics, which influence survival process. Herein, we review the current studies of mechanisms by which mitochondria, endoplasmic reticulum, and lysosome are related to the three major malignant gynecological cancers, and their possible therapeutic interventions and drug targets. We also discuss the similarities and differences of independent organelle and organelle-organelle interactions, and their applications to the respective gynecological cancers; mitochondrial dynamics and energy metabolism, endoplasmic reticulum dysfunction, lysosomal regulation and autophagy, organelle interactions, and organelle regulatory mechanisms of cell death play crucial roles in cancer tumorigenesis, progression, and response to therapy. Finally, we discuss the value of organelle research, its current problems, and its future directions.


Subject(s)
Genital Neoplasms, Female , Mitochondria , Organelles , Humans , Female , Genital Neoplasms, Female/pathology , Genital Neoplasms, Female/metabolism , Mitochondria/metabolism , Mitochondria/pathology , Organelles/metabolism , Cell Survival , Animals , Lysosomes/metabolism , Endoplasmic Reticulum/metabolism , Autophagy , Energy Metabolism , Signal Transduction
9.
Folia Neuropathol ; 62(1): 21-31, 2024.
Article in English | MEDLINE | ID: mdl-38741434

ABSTRACT

Neuronal ceroid lipofuscinoses (NCLs) are a growing group of neurodegenerative storage diseases, in which specific features are sought to facilitate the creation of a universal diagnostic algorithm in the future. In our ultrastructural studies, the group of NCLs was represented by the CLN2 disease caused by a defect in the TPP1 gene encoding the enzyme tripeptidyl-peptidase 1. A 3.5-year-old girl was affected by this disease. Due to diagnostic difficulties, the spectrum of clinical, enzymatic, and genetic tests was extended to include analysis of the ultrastructure of cells from a rectal biopsy. The aim of our research was to search for pathognomonic features of CLN2 and to analyse the mitochondrial damage accompanying the disease. In the examined cells of the rectal mucosa, as expected, filamentous deposits of the curvilinear profile (CVP) type were found, which dominated quantitatively. Mixed deposits of the CVP/fingerprint profile (FPP) type were observed less frequently in the examined cells. A form of inclusions of unknown origin, not described so far in CLN2 disease, were wads of osmophilic material (WOMs). They occurred alone or co-formed mixed deposits. In addition, atypically damaged mitochondria were observed in muscularis mucosae. Their deformed cristae had contact with inclusions that looked like CVPs. Considering the confirmed role of the c subunit of the mitochondrial ATP synthase in the formation of filamentous lipopigment deposits in the group of NCLs, we suggest the possible significance of other mitochondrial proteins, such as mitochondrial contact site and cristae organizing system (MICOS), in the formation of these deposits. The presence of WOMs in the context of searching for ultrastructural pathognomonic features in CLN2 disease also requires further research.


Subject(s)
Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Inclusion Bodies , Mitochondria , Neuronal Ceroid-Lipofuscinoses , Tripeptidyl-Peptidase 1 , Neuronal Ceroid-Lipofuscinoses/pathology , Neuronal Ceroid-Lipofuscinoses/genetics , Humans , Female , Child, Preschool , Mitochondria/pathology , Mitochondria/ultrastructure , Inclusion Bodies/pathology , Inclusion Bodies/ultrastructure , Biopsy , Rectum/pathology , Serine Proteases/genetics , Aminopeptidases/genetics
10.
Free Radic Biol Med ; 220: 154-165, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710340

ABSTRACT

BACKGROUND: Liver fibrosis typically develops as a result of chronic liver injury, which involves inflammatory and regenerative processes. The triggering receptor expressed on myeloid cells 2 (TREM2), predominantly expressing in hepatic non-parenchymal cells, plays a crucial role in regulating the function of macrophages. However, its mechanism in liver fibrosis remains poorly defined. METHODS: Experimental liver fibrosis models in wild type and TREM2-/- mice, and in vitro studies with AML-12 cells and Raw264.7 cells were conducted. The expression of TREM2 and related molecular mechanism were evaluated by using samples from patients with liver fibrosis. RESULTS: We demonstrated that TREM2 was upregulated in murine model with liver fibrosis. Mice lacking TREM2 exhibited reduced phagocytosis activity in macrophages following carbon tetrachloride (CCl4) intoxication. As a result, there was an increased accumulation of necrotic apoptotic hepatocytes. Additionally, TREM2 knockout aggravated the release of mitochondrial damage-associated molecular patterns (mito-DAMPs) from dead hepatocytes during CCl4 exposure, and further promoted the occurrence of macrophage-mediated M1 polarization. Then, TREM2-/- mice showed more serious fibrosis pathological changes. In vitro, the necrotic apoptosis inhibitor GSK872 effectively alleviated the release of mito-DAMPs in AML-12 cells after CCl4 intoxication, which confirmed that mito-DAMPs originated from dead liver cells. Moreover, direct stimulation of Raw264.7 cells by mito-DAMPs from liver tissue can induce intracellular inflammatory response. More importantly, TREM2 was elevated and inflammatory factors were markedly accumulated surrounding dead cells in the livers of human patients with liver fibrosis. CONCLUSION: Our study highlights that TREM2 serves as a negative regulator of liver fibrosis, suggesting its potential as a novel therapeutic target.


Subject(s)
Hepatocytes , Inflammation , Liver Cirrhosis , Macrophages , Membrane Glycoproteins , Mice, Knockout , Receptors, Immunologic , Animals , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Mice , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Humans , Hepatocytes/metabolism , Hepatocytes/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/genetics , RAW 264.7 Cells , Macrophages/metabolism , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Carbon Tetrachloride/toxicity , Male , Mice, Inbred C57BL , Apoptosis , Phagocytosis , Mitochondria/metabolism , Mitochondria/pathology , Disease Models, Animal
11.
Free Radic Biol Med ; 220: 222-235, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38735540

ABSTRACT

Studies have highlighted oxidative damage in the inner ear as a critical pathological basis for sensorineural hearing loss, especially the presbycusis. Poly(ADP-ribose) polymerase-1 (PARP1) activation responds to oxidative stress-induced DNA damage with pro-repair and pro-death effects resembling two sides of the same coin. PARP1-related cell death, known as parthanatos, whose underlying mechanisms are attractive research hotspots but remain to be clarified. In this study, we observed that aged rats showed stria vascularis degeneration and oxidative damage, and PARP1-dependent cell death was prominent in age-related cochlear disorganization and dysfunction. Based on oxidative stress model of primary cultured stria marginal cells (MCs), we revealed that upregulated PARP1 and PAR (Poly(ADP-ribose)) polymers are responsible for MCs oxidative death with high mitochondrial permeability transition pore (mPTP) opening and mitochondrial membrane potential (MMP) collapse, while inhibition of PARP1 ameliorated the adverse outcomes. Importantly, the PARylation of apoptosis-inducing factor (AIF) is essential for its conformational change and translocation, which subsequently causes DNA break and cell death. Concretely, the interaction of PAR and truncated AIF (tAIF) is the mainstream in the parthanatos pathway. We also found that the effects of AIF cleavage and release were achieved through calpain activity and mPTP opening, both of which could be regulated by PARP1 via mediation of mitochondria Ca2+ concentration. In conclusion, the PAR-Ca2+-tAIF signaling pathway in parthanatos contributes to the oxidative stress damage observed in MCs. Targeting PAR-Ca2+-tAIF might be a potential therapeutic strategy for the early intervention of presbycusis and other oxidative stress-associated sensorineural deafness.


Subject(s)
Apoptosis Inducing Factor , Calcium , Oxidative Stress , Poly (ADP-Ribose) Polymerase-1 , Presbycusis , Animals , Apoptosis Inducing Factor/metabolism , Apoptosis Inducing Factor/genetics , Rats , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Calcium/metabolism , Presbycusis/metabolism , Presbycusis/pathology , Presbycusis/genetics , Parthanatos/genetics , Membrane Potential, Mitochondrial , Stria Vascularis/metabolism , Stria Vascularis/pathology , Apoptosis , Mitochondrial Permeability Transition Pore/metabolism , Mitochondria/metabolism , Mitochondria/pathology , Rats, Sprague-Dawley , DNA Damage , Aging/metabolism , Aging/pathology , Cochlea/metabolism , Cochlea/pathology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Male , Humans , Cells, Cultured
12.
Mov Disord Clin Pract ; 11(6): 708-715, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38698576

ABSTRACT

BACKGROUND: Genetic syndromes of hyperkinetic movement disorders associated with epileptic encephalopathy and intellectual disability are becoming increasingly recognized. Recently, a de novo heterozygous NACC1 (nucleus accumbens-associated 1) missense variant was described in a patient cohort including one patient with a combined mitochondrial oxidative phosphorylation (OXPHOS) deficiency. OBJECTIVES: The objective is to characterize the movement disorder in affected patients with the recurrent c.892C>T NACC1 variant and study the NACC1 protein and mitochondrial function at the cellular level. METHODS: The movement disorder was analyzed on four patients with the NACC1 c.892C>T (p.Arg298Trp) variant. Studies on NACC1 protein and mitochondrial function were performed on patient-derived fibroblasts. RESULTS: All patients had a generalized hyperkinetic movement disorder with chorea and dystonia, which occurred cyclically and during sleep. Complex I was found altered, whereas the other OXPHOS enzymes and the mitochondria network seemed intact in one patient. CONCLUSIONS: The movement disorder is a prominent feature of NACC1-related disease.


Subject(s)
Hyperkinesis , Humans , Male , Hyperkinesis/genetics , Female , Child , Mitochondria/genetics , Mitochondria/pathology , Repressor Proteins/genetics , Mutation, Missense , Oxidative Phosphorylation
13.
Brain ; 147(6): 2069-2084, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38763511

ABSTRACT

The peroxisomal disease adrenoleukodystrophy (X-ALD) is caused by loss of the transporter of very-long-chain fatty acids (VLCFAs), ABCD1. An excess of VLCFAs disrupts essential homeostatic functions crucial for axonal maintenance, including redox metabolism, glycolysis and mitochondrial respiration. As mitochondrial function and morphology are intertwined, we set out to investigate the role of mitochondrial dynamics in X-ALD models. Using quantitative 3D transmission electron microscopy, we revealed mitochondrial fragmentation in corticospinal axons in Abcd1- mice. In patient fibroblasts, an excess of VLCFAs triggers mitochondrial fragmentation through the redox-dependent phosphorylation of DRP1 (DRP1S616). The blockade of DRP1-driven fission by the peptide P110 effectively preserved mitochondrial morphology. Furthermore, mRNA inhibition of DRP1 not only prevented mitochondrial fragmentation but also protected axonal health in a Caenorhabditis elegans model of X-ALD, underscoring DRP1 as a potential therapeutic target. Elevated levels of circulating cell-free mtDNA in patients' CSF align this leukodystrophy with primary mitochondrial disorders. Our findings underscore the intricate interplay between peroxisomal dysfunction, mitochondrial dynamics and axonal integrity in X-ALD, shedding light on potential avenues for therapeutic intervention.


Subject(s)
ATP Binding Cassette Transporter, Subfamily D, Member 1 , Adrenoleukodystrophy , Dynamins , Mitochondrial Dynamics , Adrenoleukodystrophy/metabolism , Adrenoleukodystrophy/pathology , Adrenoleukodystrophy/genetics , Animals , Mitochondrial Dynamics/physiology , Humans , Mice , Dynamins/metabolism , Dynamins/genetics , ATP Binding Cassette Transporter, Subfamily D, Member 1/genetics , Caenorhabditis elegans , Mitochondria/metabolism , Mitochondria/pathology , Axons/pathology , Axons/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Male , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Disease Models, Animal , Pyramidal Tracts/pathology , Pyramidal Tracts/metabolism , Peptide Fragments , GTP Phosphohydrolases
14.
Biomed Pharmacother ; 175: 116690, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718519

ABSTRACT

Acute pancreatitis (AP) is one of the most common gastrointestinal tract diseases with significant morbidity and mortality. Current treatments remain unspecific and supportive due to the severity and clinical course of AP, which can fluctuate rapidly and unpredictably. Mitochondria, cellular power plant to produce energy, are involved in a variety of physiological or pathological activities in human body. There is a growing evidence indicating that mitochondria damage-associated molecular patterns (mtDAMPs) play an important role in pathogenesis and progression of AP. With the pro-inflammatory properties, released mtDAMPs may damage pancreatic cells by binding with receptors, activating downstream molecules and releasing inflammatory factors. This review focuses on the possible interaction between AP and mtDAMPs, which include cytochrome c (Cyt c), mitochondrial transcription factor A (TFAM), mitochondrial DNA (mtDNA), cardiolipin (CL), adenosine triphosphate (ATP) and succinate, with focus on experimental research and potential therapeutic targets in clinical practice. Preventing or diminishing the release of mtDAMPs or targeting the mtDAMPs receptors might have a role in AP progression.


Subject(s)
Mitochondria , Pancreatitis , Humans , Pancreatitis/metabolism , Pancreatitis/pathology , Pancreatitis/genetics , Mitochondria/metabolism , Mitochondria/pathology , Animals , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Acute Disease , Alarmins/metabolism , Adenosine Triphosphate/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics
15.
Signal Transduct Target Ther ; 9(1): 127, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38782919

ABSTRACT

DEAD-box helicase 17 (DDX17) is a typical member of the DEAD-box family with transcriptional cofactor activity. Although DDX17 is abundantly expressed in the myocardium, its role in heart is not fully understood. We generated cardiomyocyte-specific Ddx17-knockout mice (Ddx17-cKO), cardiomyocyte-specific Ddx17 transgenic mice (Ddx17-Tg), and various models of cardiomyocyte injury and heart failure (HF). DDX17 is downregulated in the myocardium of mouse models of heart failure and cardiomyocyte injury. Cardiomyocyte-specific knockout of Ddx17 promotes autophagic flux blockage and cardiomyocyte apoptosis, leading to progressive cardiac dysfunction, maladaptive remodeling and progression to heart failure. Restoration of DDX17 expression in cardiomyocytes protects cardiac function under pathological conditions. Further studies showed that DDX17 can bind to the transcriptional repressor B-cell lymphoma 6 (BCL6) and inhibit the expression of dynamin-related protein 1 (DRP1). When DDX17 expression is reduced, transcriptional repression of BCL6 is attenuated, leading to increased DRP1 expression and mitochondrial fission, which in turn leads to impaired mitochondrial homeostasis and heart failure. We also investigated the correlation of DDX17 expression with cardiac function and DRP1 expression in myocardial biopsy samples from patients with heart failure. These findings suggest that DDX17 protects cardiac function by promoting mitochondrial homeostasis through the BCL6-DRP1 pathway in heart failure.


Subject(s)
DEAD-box RNA Helicases , Heart Failure , Myocytes, Cardiac , Animals , Humans , Mice , Apoptosis/genetics , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Dynamins/genetics , Dynamins/metabolism , Heart Failure/genetics , Heart Failure/pathology , Heart Failure/metabolism , Homeostasis/genetics , Mice, Knockout , Mice, Transgenic , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Dynamics/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism
16.
Free Radic Biol Med ; 220: 312-323, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38740101

ABSTRACT

Podocytes are crucial for regulating glomerular permeability. They have foot processes that are integral to the renal filtration barrier. Understanding their energy metabolism could shed light on the pathogenesis of filtration barrier injury. Lactate has been increasingly recognized as more than a waste product and has emerged as a significant metabolic fuel and reserve. The recent identification of lactate transporters in podocytes, the expression of which is modulated by glucose levels and lactate, highlights lactate's relevance. The present study investigated the impact of lactate on podocyte respiratory efficiency and mitochondrial dynamics. We confirmed lactate oxidation in podocytes, suggesting its role in cellular energy production. Under conditions of glucose deprivation or lactate supplementation, a significant shift was seen toward oxidative phosphorylation, reflected by an increase in the oxygen consumption rate/extracellular acidification rate ratio. Notably, lactate dehydrogenase A (LDHA) and lactate dehydrogenase B (LDHB) isoforms, which are involved in lactate conversion to pyruvate, were detected in podocytes for the first time. The presence of lactate led to higher intracellular pyruvate levels, greater LDH activity, and higher LDHB expression. Furthermore, lactate exposure increased mitochondrial DNA-to-nuclear DNA ratios and resulted in upregulation of the mitochondrial biogenesis markers peroxisome proliferator-activated receptor coactivator-1α and transcription factor A mitochondrial, regardless of glucose availability. Changes in mitochondrial size and shape were observed in lactate-exposed podocytes. These findings suggest that lactate is a pivotal energy source for podocytes, especially during energy fluctuations. Understanding lactate's role in podocyte metabolism could offer insights into renal function and pathologies that involve podocyte injury.


Subject(s)
L-Lactate Dehydrogenase , Lactic Acid , Mitochondrial Dynamics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Podocytes , Podocytes/metabolism , Podocytes/pathology , Animals , Rats , Lactic Acid/metabolism , L-Lactate Dehydrogenase/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Mitochondria/metabolism , Mitochondria/pathology , Glucose/metabolism , Energy Metabolism , Lactate Dehydrogenase 5/metabolism , Oxidative Phosphorylation/drug effects , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/genetics , Oxygen Consumption , Cells, Cultured , Pyruvic Acid/metabolism , Isoenzymes
17.
Genes (Basel) ; 15(5)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38790159

ABSTRACT

Inherited optic neuropathies (IONs) are rare genetic diseases characterized by progressive visual loss due the atrophy of optic nerves. The standard diagnostic workup involving next-generation sequencing panels has a diagnostic yield of about forty percent. In the other 60% of the patients with a clinical diagnosis of ION, the underlying genetic variants remain unknown. In this case study, we describe a potentially new disease-associated gene, NSUN3, for IONs. The proband was a young woman with consanguineous parents. She presented with bilateral optic atrophy and nystagmus at the age of seven years. Genetic testing revealed the homozygous variant c.349_352dup p.(Ala118Glufs*45) in NSUN3, with a segregation in the family compatible with autosomal recessive inheritance. Additional functional analysis showed decreased NSUN3 mRNA levels, slightly diminished mitochondrial complex IV levels, and decreased cell respiration rates in patient fibroblasts compared to healthy controls. In conclusion, pathogenic variants in NSUN3 can cause optic neuropathy. Trio whole-exome sequencing should be considered as a diagnostic strategy in ION cases where standard diagnostic analysis does not reveal disease-causing variants.


Subject(s)
Optic Nerve Diseases , Pedigree , Humans , Female , Optic Nerve Diseases/genetics , Optic Nerve Diseases/diagnosis , Mutation , Methyltransferases/genetics , Child , Mitochondria/genetics , Mitochondria/pathology , Adult
18.
Cell Rep Med ; 5(5): 101519, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38692271

ABSTRACT

Osteosarcoma (OS) is the most common malignant bone tumor with a poor prognosis. Here, we show that the nuclear receptor RORγ may serve as a potential therapeutic target in OS. OS exhibits a hyperactivated oxidative phosphorylation (OXPHOS) program, which fuels the carbon source to promote tumor progression. We found that RORγ is overexpressed in OS tumors and is linked to hyperactivated OXPHOS. RORγ induces the expression of PGC-1ß and physically interacts with it to activate the OXPHOS program by upregulating the expression of respiratory chain component genes. Inhibition of RORγ strongly inhibits OXPHOS activation, downregulates mitochondrial functions, and increases ROS production, which results in OS cell apoptosis and ferroptosis. RORγ inverse agonists strongly suppressed OS tumor growth and progression and sensitized OS tumors to chemotherapy. Taken together, our results indicate that RORγ is a critical regulator of the OXPHOS program in OS and provides an effective therapeutic strategy for this deadly disease.


Subject(s)
Bone Neoplasms , Mitochondria , Nuclear Receptor Subfamily 1, Group F, Member 3 , Osteosarcoma , Oxidative Phosphorylation , Osteosarcoma/metabolism , Osteosarcoma/pathology , Osteosarcoma/genetics , Humans , Oxidative Phosphorylation/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Cell Line, Tumor , Animals , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Bone Neoplasms/genetics , Bone Neoplasms/drug therapy , Mice , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Gene Expression Regulation, Neoplastic , Ferroptosis/genetics , Ferroptosis/drug effects , Mice, Nude , Male , Cell Proliferation , RNA-Binding Proteins
19.
Arterioscler Thromb Vasc Biol ; 44(6): 1365-1378, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38695170

ABSTRACT

BACKGROUND: Macrophages play a crucial role in atherosclerotic plaque formation, and the death of macrophages is a vital factor in determining the fate of atherosclerosis. GSDMD (gasdermin D)-mediated pyroptosis is a programmed cell death, characterized by membrane pore formation and inflammatory factor release. METHODS: ApoE-/- and Gsdmd-/- ApoE-/- mice, bone marrow transplantation, and AAV (adeno-associated virus serotype 9)-F4/80-shGSDMD (shRNA-GSDMD) were used to examine the effect of macrophage-derived GSDMD on atherosclerosis. Single-cell RNA sequencing was used to investigate the changing profile of different cellular components and the cellular localization of GSDMD during atherosclerosis. RESULTS: First, we found that GSDMD is activated in human and mouse atherosclerotic plaques and Gsdmd-/- attenuates the atherosclerotic lesion area in high-fat diet-fed ApoE-/- mice. We performed single-cell RNA sequencing of ApoE-/- and Gsdmd-/- ApoE-/- mouse aortas and showed that GSDMD is principally expressed in atherosclerotic macrophages. Using bone marrow transplantation and AAV-F4/80-shGSDMD, we identified the potential role of macrophage-derived GSDMD in aortic pyroptosis and atherosclerotic injuries in vivo. Mechanistically, GSDMD contributes to mitochondrial perforation and mitochondrial DNA leakage and subsequently activates the STING (stimulator of interferon gene)-IRF3 (interferon regulatory factor 3)/NF-κB (nuclear factor kappa B) axis. Meanwhile, GSDMD regulates the STING pathway activation and macrophage migration via cytokine secretion. Inhibition of GSDMD with GSDMD-specific inhibitor GI-Y1 (GSDMD inhibitor Y1) can effectively alleviate the progression of atherosclerosis. CONCLUSIONS: Our study has provided a novel macrophage-derived GSDMD mechanism in the promotion of atherosclerosis and demonstrated that GSDMD can be a potential therapeutic target for atherosclerosis.


Subject(s)
Atherosclerosis , Disease Models, Animal , Interferon Regulatory Factor-3 , Intracellular Signaling Peptides and Proteins , Macrophages , Membrane Proteins , Mice, Inbred C57BL , Mitochondria , NF-kappa B , Phosphate-Binding Proteins , Pyroptosis , Signal Transduction , Animals , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/genetics , Macrophages/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Mice , NF-kappa B/metabolism , Mitochondria/metabolism , Mitochondria/pathology , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Male , Mice, Knockout, ApoE , Plaque, Atherosclerotic , Aortic Diseases/pathology , Aortic Diseases/metabolism , Aortic Diseases/genetics , Aortic Diseases/prevention & control , Gasdermins
20.
Free Radic Biol Med ; 220: 192-206, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38734265

ABSTRACT

Enhanced formation of advanced glycation end products (AGEs) is a pivotal factor in diabetes pathophysiology, increasing the risk of diabetic complications. Nε-carboxy-methyl-lysine (CML) is one of the most relevant AGEs found in several tissues including the peripheral blood of diabetic subjects. Despite recognizing diabetes as a risk factor for neurodegenerative diseases and the documented role of mitochondrial abnormalities in this connection, the impact of CML on neuronal mitochondria and its contribution to diabetes-related neurodegeneration remain uncertain. Here, we evaluated the effects of CML in differentiated SH-SY5Y human neuroblastoma cells. Due to the association between mitochondrial dysfunction and increased production of reactive oxygen species (ROS), the possible protective effects of MitoTempo, a mitochondria-targeted antioxidant, were also evaluated. Several parameters were assessed namely cells viability, mitochondrial respiration and membrane potential, ATP and ROS production, Ca2+ levels, mitochondrial biogenesis and dynamics, mito/autophagy, endoplasmic reticulum (ER) stress and amyloidogenic and synaptic integrity markers. CML caused pronounced mitochondrial defects characterized by a significant decrease in mitochondrial respiration, membrane potential, and ATP production and an increase in ROS production. An accumulation of individual mitochondria associated with disrupted mitochondrial networks was also observed. Furthermore, CML caused mitochondrial fusion and a decrease in mitochondrial mass and induced ER stress associated with altered unfolded protein response and Ca2+ dyshomeostasis. Moreover, CML increased the protein levels of ß-secretase-1 and amyloid precursor protein, key proteins involved in Alzheimer's Disease pathophysiology. All these effects contributed to the decline in neuronal cells viability. Notable, MitoTempo was able to counteract most of CML-mediated mitochondrial defects and neuronal cells injury and death. Overall, these findings suggest that CML induces pronounced defects in neuronal mitochondria and ER stress, predisposing to neurodegenerative events. More, our observations suggest that MitoTempo holds therapeutic promise in mitigating CML-induced mitochondrial imbalance and neuronal damage and death.


Subject(s)
Endoplasmic Reticulum Stress , Lysine , Membrane Potential, Mitochondrial , Mitochondria , Neurons , Organophosphorus Compounds , Reactive Oxygen Species , Humans , Lysine/analogs & derivatives , Lysine/metabolism , Mitochondria/metabolism , Mitochondria/pathology , Mitochondria/drug effects , Neurons/metabolism , Neurons/pathology , Neurons/drug effects , Reactive Oxygen Species/metabolism , Organophosphorus Compounds/pharmacology , Endoplasmic Reticulum Stress/drug effects , Membrane Potential, Mitochondrial/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Glycation End Products, Advanced/metabolism , Homeostasis , Antioxidants/pharmacology , Antioxidants/metabolism , Neuroblastoma/pathology , Neuroblastoma/metabolism , Piperidines
SELECTION OF CITATIONS
SEARCH DETAIL
...