Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Heart Circ Physiol ; 319(4): H775-H786, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32822209

ABSTRACT

The efficacy of an anthracycline antibiotic doxorubicin (DOX) as a chemotherapeutic agent is limited by dose-dependent cardiotoxicity. DOX is associated with activation of intracellular stress signaling pathways including p38 MAPKs. While previous studies have implicated p38 MAPK signaling in DOX-induced cardiac injury, the roles of the individual p38 isoforms, specifically, of the alternative isoforms p38γ and p38δ, remain uncharacterized. We aimed to determine the potential cardioprotective effects of p38γ and p38δ genetic deletion in mice subjected to acute DOX treatment. Male and female wild-type (WT), p38γ-/-, p38δ-/-, and p38γ-/-δ-/- mice were injected with 30 mg/kg DOX and their survival was tracked for 10 days. During this period, cardiac function was assessed by echocardiography and electrocardiography and fibrosis by Picro Sirius Red staining. Immunoblotting was performed to assess the expression of signaling proteins and markers linked to autophagy. Significantly improved survival was observed in p38δ-/- female mice post-DOX relative to WT females, but not in p38γ-/- or p38γ-/-δ-/- male or female mice. The improved survival in DOX-treated p38δ-/- females was associated with decreased fibrosis, increased cardiac output and LV diameter relative to DOX-treated WT females, and similar to saline-treated controls. Structural and echocardiographic parameters were either unchanged or worsened in all other groups. Increased autophagy, as suggested by increased LC3-II level, and decreased mammalian target of rapamycin activation was also observed in DOX-treated p38δ-/- females. p38δ plays a crucial role in promoting DOX-induced cardiotoxicity in female mice by inhibiting autophagy. Therefore, p38δ targeting could be a potential cardioprotective strategy in anthracycline chemotherapy.NEW & NOTEWORTHY This study for the first time identifies the sex-specific roles of the alternative p38γ and p38δ MAPK isoforms in promoting doxorubicin (DOX) cardiotoxicity. We show that p38δ and p38γ/δ systemic deletion was cardioprotective in female but not in male mice. Cardiac structure and function were preserved in DOX-treated p38δ-/- females and autophagy marker was increased.


Subject(s)
Doxorubicin , Heart Diseases/prevention & control , Mitogen-Activated Protein Kinase 13/deficiency , Myocardium/enzymology , Animals , Autophagy/drug effects , Cardiotoxicity , Disease Models, Animal , Female , Fibrosis , Gene Knockout Techniques , Heart Diseases/enzymology , Heart Diseases/genetics , Heart Diseases/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Microtubule-Associated Proteins/metabolism , Mitogen-Activated Protein Kinase 12/deficiency , Mitogen-Activated Protein Kinase 12/genetics , Mitogen-Activated Protein Kinase 13/genetics , Myocardium/pathology , Sex Factors , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Ventricular Function, Left/drug effects
2.
Cell Death Dis ; 10(6): 376, 2019 05 15.
Article in English | MEDLINE | ID: mdl-31092814

ABSTRACT

Apoptosis and senescence are two mutually exclusive cell fate programs that can be activated by stress. The factors that instruct cells to enter into senescence or apoptosis are not fully understood, but both programs can be regulated by the stress kinase p38α. Using an inducible system that specifically activates this pathway, we show that sustained p38α activation suffices to trigger massive autophagosome formation and to enhance the basal autophagic flux. This requires the concurrent effect of increased mitochondrial reactive oxygen species production and the phosphorylation of the ULK1 kinase on Ser-555 by p38α. Moreover, we demonstrate that macroautophagy induction by p38α signaling determines that cancer cells preferentially enter senescence instead of undergoing apoptosis. In agreement with these results, we present evidence that the induction of autophagy by p38α protects cancer cells from chemotherapy-induced apoptosis by promoting senescence. Our results identify a new mechanism of p38α-regulated basal autophagy that controls the fate of cancer cells in response to stress.


Subject(s)
Autophagy , Cellular Senescence , Mitogen-Activated Protein Kinase 14/metabolism , Apoptosis/drug effects , Autophagy/drug effects , Autophagy-Related Protein-1 Homolog/antagonists & inhibitors , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Cell Line, Tumor , Cellular Senescence/drug effects , Doxorubicin/pharmacology , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , MAP Kinase Kinase 6/antagonists & inhibitors , MAP Kinase Kinase 6/genetics , MAP Kinase Kinase 6/metabolism , Mitochondria/metabolism , Mitogen-Activated Protein Kinase 12/deficiency , Mitogen-Activated Protein Kinase 12/genetics , Mitogen-Activated Protein Kinase 12/metabolism , Mitogen-Activated Protein Kinase 14/deficiency , Mitogen-Activated Protein Kinase 14/genetics , Phosphorylation , RNA Interference , RNA, Small Interfering/metabolism , Reactive Oxygen Species/metabolism , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism , Signal Transduction
3.
EMBO Mol Med ; 10(5)2018 05.
Article in English | MEDLINE | ID: mdl-29661910

ABSTRACT

Candida albicans is a frequent aetiologic agent of sepsis associated with high mortality in immunocompromised patients. Developing new antifungal therapies is a medical need due to the low efficiency and resistance to current antifungal drugs. Here, we show that p38γ and p38δ regulate the innate immune response to C. albicans We describe a new TAK1-TPL2-MKK1-ERK1/2 pathway in macrophages, which is activated by Dectin-1 engagement and positively regulated by p38γ/p38δ. In mice, p38γ/p38δ deficiency protects against C. albicans infection by increasing ROS and iNOS production and thus the antifungal capacity of neutrophils and macrophages, and by decreasing the hyper-inflammation that leads to severe host damage. Leucocyte recruitment to infected kidneys and production of inflammatory mediators are decreased in p38γ/δ-null mice, reducing septic shock. p38γ/p38δ in myeloid cells are critical for this effect. Moreover, pharmacological inhibition of p38γ/p38δ in mice reduces fungal burden, revealing that these p38MAPKs may be therapeutic targets for treating C. albicans infection in humans.


Subject(s)
Candida albicans/immunology , Candidiasis/immunology , Mitogen-Activated Protein Kinase 12/immunology , Mitogen-Activated Protein Kinase 13/immunology , Myeloid Cells/immunology , Animals , Candida albicans/physiology , Candidiasis/genetics , Candidiasis/microbiology , Female , Host-Pathogen Interactions/immunology , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Mice, Inbred C57BL , Mice, Knockout , Mitogen-Activated Protein Kinase 12/deficiency , Mitogen-Activated Protein Kinase 12/genetics , Mitogen-Activated Protein Kinase 13/deficiency , Mitogen-Activated Protein Kinase 13/genetics , Myeloid Cells/metabolism , Myeloid Cells/microbiology , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/microbiology , Nitric Oxide Synthase Type II/immunology , Nitric Oxide Synthase Type II/metabolism , Reactive Oxygen Species/immunology , Reactive Oxygen Species/metabolism , Signal Transduction/genetics , Signal Transduction/immunology
4.
Oncotarget ; 6(15): 12920-35, 2015 May 30.
Article in English | MEDLINE | ID: mdl-26079427

ABSTRACT

The contribution of chronic skin inflammation to the development of squamous cell carcinoma (SCC) is poorly understood. While the mitogen-activated protein kinase p38α regulates inflammatory responses and tumour development, little is known about the role of p38γ and p38δ in these processes. Here we show that combined p38γ and p38δ (p38γ/δ) deletion blocked skin tumour development in a chemically induced carcinogenesis model. p38γ/δ deletion reduced TPA-induced epidermal hyperproliferation and inflammation; it inhibited expression of proinflammatory cytokines and chemokines in keratinocytes in vitro and in whole skin in vivo, resulting in decreased neutrophil recruitment to skin. Our data indicate that p38γ/δ in keratinocytes promote carcinogenesis by enabling formation of a proinflammatory microenvironment that fosters epidermal hyperproliferation and tumourigenesis. These findings provide genetic evidence that p38γ and p38δ have essential roles in skin tumour development, and suggest that targeting inflammation through p38γ/δ offers a therapeutic strategy for SCC treatment and prevention.


Subject(s)
Carcinogenesis/metabolism , Dermatitis/enzymology , Mitogen-Activated Protein Kinase 12/deficiency , Mitogen-Activated Protein Kinase 13/deficiency , Animals , Carcinoma, Squamous Cell/chemically induced , Carcinoma, Squamous Cell/enzymology , Cell Line, Tumor , Cell Transformation, Neoplastic , Female , HEK293 Cells , Heterografts , Humans , Mice, Knockout , Mice, Nude , Mitogen-Activated Protein Kinase 12/genetics , Mitogen-Activated Protein Kinase 13/genetics , Skin Neoplasms/chemically induced , Skin Neoplasms/enzymology
5.
Arthritis Rheumatol ; 66(5): 1208-17, 2014 May.
Article in English | MEDLINE | ID: mdl-24782184

ABSTRACT

OBJECTIVE: The role of most p38 MAPK isoforms in inflammatory arthritis is not known. This study was undertaken to evaluate p38γ and p38δ deficiency in the collagen-induced arthritis (CIA) model. METHODS: Wild-type, p38γ(-/-) , p38δ(-/-) , and p38γ/δ(-/-) mice were immunized with chicken type II collagen, and disease activity was evaluated by semiquantitative scoring and histologic assessment. Serum cytokine levels and in vitro T cell cytokine responses were quantified by flow cytometry and multiplex analysis, and serum anticollagen antibody levels by enzyme-linked immunosorbent assay. Cytokine and p38 MAPK isoform expression in joints were determined by quantitative polymerase chain reaction. RESULTS: Compound p38γ and p38δ deficiency markedly reduced arthritis severity compared with that in wild-type mice, whereas lack of either p38γ or p38δ had an intermediate effect. Joint damage was minimal in arthritic p38γ/δ(-/-) mice compared with wild-type mice. The p38γ/δ(-/-) mice had lower levels of pathogenic anticollagen antibodies and interleukin-1ß (IL-1ß) and tumor necrosis factor α than controls. In vitro T cell assays showed reduced proliferation, interferon-γ (IFNγ) production, and IL-17 production by lymph node cells from p38γ/δ(-/-) mice. IL-17 and IFNγ messenger RNA expression in joints was significantly inhibited in p38γ/δ(-/-) mice. Wild-type chimeric mice with p38γ/δ(-/-) bone marrow did not show decreased CIA. CONCLUSION: Reduced disease severity in p38γ/δ(-/-) mice was associated with lower cytokine production and anticollagen antibody responses than in controls, indicating that p38γ and p38δ are crucial regulators of inflammatory joint destruction in CIA. Our findings indicate that p38γ and p38δ are potential therapeutic targets in complex diseases, such as rheumatoid arthritis, that involve innate and adaptive immune responses.


Subject(s)
Arthritis, Experimental/metabolism , Disease Progression , Mitogen-Activated Protein Kinase 12/metabolism , Mitogen-Activated Protein Kinase 13/metabolism , Animals , Disease Models, Animal , Female , Interferon-gamma/metabolism , Interleukin-17/metabolism , Interleukin-1beta/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitogen-Activated Protein Kinase 12/deficiency , Mitogen-Activated Protein Kinase 12/genetics , Mitogen-Activated Protein Kinase 13/deficiency , Mitogen-Activated Protein Kinase 13/genetics , Tumor Necrosis Factor-alpha/metabolism
6.
J Cell Sci ; 124(Pt 2): 216-27, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21172807

ABSTRACT

The p38 mitogen-activated protein kinase (p38 MAPK) family, which is comprised of four protein isoforms, p38α, p38ß, p38γ and p38δ, forms one of the key MAPK pathways. The p38 MAPKs are implicated in many cellular processes including inflammation, differentiation, cell growth, cell cycle and cell death. The function of p38 MAPKs in mitotic entry has been well established, but their role in mitotic progression has remained controversial. We identify p38γ MAPK as a modulator of mitotic progression and mitotic cell death. In HeLa cells, loss of p38γ results in multipolar spindle formation and chromosome misalignment, which induce a transient M phase arrest. The majority of p38γ-depleted cells die at mitotic arrest or soon after abnormal exit from M-phase. We show that p38 MAPKs are activated at the kinetochores and spindle poles throughout mitosis by kinase(s) that are stably bound to these structures. Finally, p38γ is required for the normal kinetochore localization of polo-like kinase 1 (Plk1), and this contributes to the activity of the p38 MAPK pathway. Our data suggest a link between mitotic regulation and the p38 MAPK pathway, in which p38γ prevents chromosomal instability and supports mitotic cell viability.


Subject(s)
Cells/cytology , Cells/enzymology , Mitogen-Activated Protein Kinase 12/deficiency , Mitosis , Cell Death , Cell Line , Cell Survival , HeLa Cells , Humans , Mitogen-Activated Protein Kinase 12/genetics , Spindle Apparatus/enzymology
7.
Cell Cycle ; 7(14): 2208-14, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18641461

ABSTRACT

Adult skeletal muscle is a very stable tissue containing a small population of myofiber-associated quiescent satellite cells compared with late embryonic/neonatal skeletal muscle, which contains highly proliferating myoblasts and small actively growing myofibers, suggesting that specific regulatory pathways may control myogenesis at distinct developmental stages. The p38 MAPK signaling pathway is central for myogenesis, based on studies using immortalized and neonatal primary myoblasts in vitro. However, the contribution of this pathway to adult myogenesis has never been investigated. Four p38 isoforms (p38alpha, p38beta, p38gamma and p38delta) exist in mammalian cells, being p38alpha and p38gamma the most abundantly expressed isoforms in adult skeletal muscle. Given the embryonic/neonatal lethality of p38alpha-deficient mice, here we investigate the relative contribution of p38beta, p38gamma and p38delta to adult myogenesis. Regeneration and myofiber growth of adult muscle proceeds with similar efficiency in mice lacking p38beta, p38gamma and p38delta as in wild-type control mice. In agreement with this, there is no difference in adult primary myoblasts behavior in vitro among the different genotypes. Importantly, the pattern of p38 activation (ascribed to p38alpha) remains unperturbed during satellite cell-mediated myogenesis in vitro and adult muscle regeneration in wild type and p38beta-, p38gamma- and p38delta-deficient mice, rendering p38alpha as the essential p38 isoform sustaining adult myogenesis. This study constitutes the first analysis addressing the functionality of p38beta, p38gamma and p38delta in satellite cell-dependent adult muscle regeneration and growth.


Subject(s)
Muscle, Skeletal/enzymology , Muscle, Skeletal/physiology , Regeneration , p38 Mitogen-Activated Protein Kinases/deficiency , Animals , Animals, Newborn , Biomarkers/metabolism , Cell Differentiation , Cell Fusion , Cell Proliferation , Cells, Cultured , Mice , Mitogen-Activated Protein Kinase 11/deficiency , Mitogen-Activated Protein Kinase 12/deficiency , Mitogen-Activated Protein Kinase 13/deficiency , Muscle Development , Myoblasts/cytology , Myoblasts/enzymology , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...