Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 178
Filter
1.
Front Immunol ; 12: 644862, 2021.
Article in English | MEDLINE | ID: mdl-34093533

ABSTRACT

NLRP3 inflammasome has emerged as a crucial regulator of inflammatory bowel disease (IBD) characterized by a chronic inflammatory disease of the gastrointestinal tract. The expression of MCT4 is significantly increased in intestinal mucosal tissue of IBD, which has been identified to regulate intestinal barrier function. However, the function of MCT4 in cell pyroptosis remained unknown. In this study, we have established a stable cell line with MCT4 overexpression in HT-29 and CaCO2 cells, respectively. Functional analysis revealed that ectopic expression of MCT4 in CaCO2 cells contributed to cell pyroptosis as evidenced by LDH assay, which is largely attributed to Caspase-1-mediated canonical pyroptosis, but not Caspase-4 and Caspase-5, leading to cleave pro-IL-1ß and IL-18 into mature form and release mediated by cleaved GSDMD. Mechanically, MCT4 overexpression in HT-29 and CaCO2 cell triggered the phosphorylation of ERK1/2 and NF-κB p65, while inhibition of MCT4 by MCT inhibitor α-Cyano-4-hydroxycinnamic acid (α-CHCA) in HT-29 and CaCO2 cells led to a significant downregulation of ERK1/2 and NF-κB activity. What's more, blockade of ERK1/2-NF-κB pathway could reverse the promotion effect of MCT4 on IL-1ß expression. Importantly, both MCT4 and Caspase-1, GSDMD were significantly increased in patients with IBD, and a positive clinical correlation between MCT4 and Caspase-1 expression was observed (p < 0.001). Taken together, these findings suggested that MCT4 promoted Caspase-1-mediated canonical cell pyroptosis to aggravate intestinal inflammation in intestinal epithelial cells (IECs) through the ERK1/2-NF-κB pathway.


Subject(s)
Inflammatory Bowel Diseases/immunology , MAP Kinase Signaling System/immunology , Monocarboxylic Acid Transporters/immunology , Muscle Proteins/immunology , Pyroptosis/immunology , Caco-2 Cells , Caspases/immunology , HT29 Cells , Humans , Inflammation/immunology , Inflammation/pathology , Inflammatory Bowel Diseases/pathology , Interleukin-18/immunology , Interleukin-1beta/immunology , Mitogen-Activated Protein Kinase 1/immunology , Mitogen-Activated Protein Kinase 3/immunology , Transcription Factor RelA/immunology
2.
Immunopharmacol Immunotoxicol ; 43(3): 343-352, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33881378

ABSTRACT

OBJECTS: Osteoarthritis is the most common joint disease and a major cause of functional limitation and pain in adults. This study aims to investigate the effect of wogonoside (WOG) on the progression of knee osteoarthritis (KOA) in model rats. MATERIALS AND METHODS: Rats KOA models were established and treated with different doses of WOG (10 mg/kg, 20 mg/kg and 30 mg/kg). The degree of cartilage injury was detected by Mankin scores via HE/Alcian blue staining. The levels of IFN-γ and IL-4 in peripheral blood and synovial fluid and the Th1/Th2 ratio were detected by flow cytometry. The model mice were injected with NF-κB p65 or ERK1/2 inhibitors or activators to further investigate the effect of WOG on KOA. RESULTS: WOG significantly improved cartilage tissue damage and reduced the Mankins score. WOG down-regulated the level of IFN-γ while up-regulated the expression of IL-4, which maintained the balance of Th1/Th2 cells. Further studies showed that the expression of NF-κB p65, phosphorylated p65, cytoplasmic ERK1/2 and nuclear ERK1/2 were all inhibited by WOG. The results of reverse verification experiments showed that the activator of NF-κB p65 and ERK1/2 weakened the protective effect of WOG on KOA, and the inhibitor of NF-κB p65ERK1/2 enhanced the protective effect of WOG on KOA. CONCLUSIONS: WOG inhibited the activation of NF-κB and ERK1/2 to alleviate the articular cartilage injury and Th1/th2 cytokine infiltration in KOA rats.


Subject(s)
Cartilage, Articular/immunology , Cytokines/immunology , Flavanones/pharmacology , Glucosides/pharmacology , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinase 1/immunology , Mitogen-Activated Protein Kinase 3/immunology , NF-kappa B/immunology , Osteoarthritis , Papain/adverse effects , Th1 Cells/immunology , Th2 Cells/immunology , Animals , Cartilage, Articular/pathology , Disease Models, Animal , MAP Kinase Signaling System/immunology , Male , Osteoarthritis/chemically induced , Osteoarthritis/drug therapy , Osteoarthritis/immunology , Papain/pharmacology , Rats , Rats, Sprague-Dawley , Th1 Cells/pathology , Th2 Cells/pathology
3.
Pancreas ; 50(3): 405-413, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33835973

ABSTRACT

OBJECTIVE: Pancreatic cancer stem-like cells (P-CSLCs) are thought to be associated with poor prognosis. Previously, we used proteomic analysis to identify a chaperone pro-phagocytic protein calreticulin (CALR) as a P-CSLC-specific protein. This study aimed to investigate the association between CALR and P-CSLC. METHODS: PANC-1-Lm cells were obtained as P-CSLCs from a human pancreatic cancer cell line, PANC-1, using a sphere induction medium followed by long-term cultivation on laminin. To examine the cancer stem cell properties, subcutaneous injection of the cells into immune-deficient mice and sphere formation assay were performed. Cell surface expression analysis was performed using flow cytometry. RESULTS: PANC-1-Lm showed an increased proportion of cell surface CALR-positive and side-population fractions compared with parental cells. PANC-1-Lm cells also had higher frequency of xenograft tumor growth and sphere formation than PANC-1 cells. Moreover, sorted CALRhigh cells from PANC-1-Lm had the highest sphere formation frequency among tested cells. Interestingly, the number of programmed death-ligand 1-positive cells among CALRhigh cells was increased as well, whereas that of human leukocyte antigen class I-positive cells decreased. CONCLUSION: In addition to the cancer stem cell properties, the P-CSLC, which showed elevated CALR expression on the cell surface, might be associated with evasion of immune surveillance.


Subject(s)
Calreticulin/immunology , Immunologic Surveillance/immunology , Neoplastic Stem Cells/immunology , Pancreatic Neoplasms/immunology , Animals , Calreticulin/metabolism , Cell Line, Tumor , Humans , Male , Mice, Inbred NOD , Mice, Knockout , Mitogen-Activated Protein Kinase 1/immunology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/immunology , Mitogen-Activated Protein Kinase 3/metabolism , Neoplastic Stem Cells/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Phosphorylation , Transplantation, Heterologous
4.
Turk J Med Sci ; 51(4): 2142-2149, 2021 08 30.
Article in English | MEDLINE | ID: mdl-33714238

ABSTRACT

Background/aim: The purpose of this study was to investigate the antiarthritic potentials of the inhibition of Src kinase in vivo and in vitro settings. Materials and methods: Arthritis was induced by intradermal injection of chicken type II collagen combined with incomplete Freund's adjuvant (collagen induced arthritis [CIA] model) in Wistar albino rats. One day after the onset of arthritis, dasatinib, a potent Src kinase inhibitor, (5 mg/kg/day) was given via oral gavage. Tissue Src, Fyn, MAPK and STAT mRNA expressions were determined by real-time polymerase chain reaction. On the other hand, fibroblast like synoviocytes (FLSs) were harvested patients with rheumatoid arthritis (RA) undergoing surgical knee joint replacement. FLSs were stimulated with cytokines and dasatinib was added in different concentrations. MMP ­1, ­3, and ­13 levels in FLSs culture were determined by ELISA. Results: The tissue mRNA expressions of Src, Fyn, MAPK and STATs were increased in the arthritis CIA group compared to the control group. Their mRNA expressions in the CIA + dasatinib group were decreased and similar in the control group. In in vitro setting, MMP ­1, ­3, and ­13 expressions from FLSs induced by IL-1ß and TNF-α were increased, while dasatinib suppressed their productions from FLSs. Conclusion: The present study shows that the inhibition of Src kinase has antiarthritic potentials in both in vivo and in vitro settings. Src kinase inhibition may be candidate to further research in human RA.


Subject(s)
Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Dasatinib/pharmacology , Matrix Metalloproteinases/metabolism , src-Family Kinases/genetics , Animals , Arthritis, Experimental/genetics , Cells, Cultured , Fibroblasts , Gene Expression Regulation , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/immunology , RNA, Messenger , Rats , Rats, Inbred WF , Synovial Membrane , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/immunology
5.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Article in English | MEDLINE | ID: mdl-33627405

ABSTRACT

T cells experience complex temporal patterns of stimulus via receptor-ligand-binding interactions with surrounding cells. From these temporal patterns, T cells are able to pick out antigenic signals while establishing self-tolerance. Although features such as duration of antigen binding have been examined, our understanding of how T cells interpret signals with different frequencies or temporal stimulation patterns is relatively unexplored. We engineered T cells to respond to light as a stimulus by building an optogenetically controlled chimeric antigen receptor (optoCAR). We discovered that T cells respond to minute-scale oscillations of activation signal by stimulating optoCAR T cells with tunable pulse trains of light. Systematically scanning signal oscillation period from 1 to 150 min revealed that expression of CD69, a T cell activation marker, reached a local minimum at a period of ∼25 min (corresponding to 5 to 15 min pulse widths). A combination of inhibitors and genetic knockouts suggest that this frequency filtering mechanism lies downstream of the Erk signaling branch of the T cell response network and may involve a negative feedback loop that diminishes Erk activity. The timescale of CD69 filtering corresponds with the duration of T cell encounters with self-peptide-presenting APCs observed via intravital imaging in mice, indicating a potential functional role for temporal filtering in vivo. This study illustrates that the T cell signaling machinery is tuned to temporally filter and interpret time-variant input signals in discriminatory ways.


Subject(s)
Antigens, CD/genetics , Antigens, Differentiation, T-Lymphocyte/genetics , Lectins, C-Type/genetics , Light Signal Transduction/genetics , Receptors, Chimeric Antigen/genetics , Self Tolerance , T-Lymphocytes/immunology , Animals , Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/immunology , Brefeldin A/pharmacology , Cell Engineering/methods , Feedback, Physiological , Gene Expression Regulation , Hepatitis A Virus Cellular Receptor 2/genetics , Hepatitis A Virus Cellular Receptor 2/immunology , Humans , Interferon-gamma/genetics , Interferon-gamma/immunology , K562 Cells , Lectins, C-Type/immunology , Light , Lymphocyte Activation/drug effects , Mice , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/immunology , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/immunology , Monensin/pharmacology , Optogenetics/methods , Primary Cell Culture , Protein Tyrosine Phosphatase, Non-Receptor Type 22/deficiency , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 22/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/cytology , T-Lymphocytes/radiation effects
6.
Clin Immunol ; 219: 108570, 2020 10.
Article in English | MEDLINE | ID: mdl-32791312

ABSTRACT

Chronic hepatitis B (CHB) is a life-threatening disease caused by HBV infection. Our previous work proved that activation of ERK1/2 and STAT3 signaling was involved in HBV tolerance. We herein investigated clinical significances of serum ERK1/2 and STAT3 proteins in CHB. Results showed that ERK1/2 and STAT3 were fluctuated with natural history of CHB. In addition, STAT3 was found to be positively correlated to the elevation of ALT, AST and GGT, while ERK1 was negatively correlated to decreases of TP and ALB. Also, there was a positive correlation between the anti-HBc antibody and ERK1, ERK2 or STAT3 in HBeAg-negative patients. Strikingly, serum ERK1 and ERK2 could reflect level of HBsAg-specific CD8+ T cells. A model composed with baseline ERK1 and ERK2 levels had a high accuracy to predict the effect of IFNα treatment. In conclusion, serum ERK1, ERK2 and STAT3 could serve as novel biomarkers in chronic HBV infections.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Hepatitis B, Chronic , Interferon-alpha/therapeutic use , Mitogen-Activated Protein Kinase 1/blood , Mitogen-Activated Protein Kinase 3/blood , Hepatitis B Antibodies/blood , Hepatitis B, Chronic/blood , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/immunology , Humans , Mitogen-Activated Protein Kinase 1/immunology , Mitogen-Activated Protein Kinase 3/immunology , STAT3 Transcription Factor/blood , STAT3 Transcription Factor/immunology , Treatment Outcome
7.
Immunity ; 52(5): 782-793.e5, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32272082

ABSTRACT

Splenic red pulp macrophages (RPMs) contribute to erythrocyte homeostasis and are required for iron recycling. Heme induces the expression of SPIC transcription factor in monocyte-derived macrophages and promotes their differentiation into RPM precursors, pre-RPMs. However, the requirements for differentiation into mature RPMs remain unknown. Here, we have demonstrated that interleukin (IL)-33 associated with erythrocytes and co-cooperated with heme to promote the generation of mature RPMs through activation of the MyD88 adaptor protein and ERK1/2 kinases downstream of the IL-33 receptor, IL1RL1. IL-33- and IL1RL1-deficient mice showed defective iron recycling and increased splenic iron deposition. Gene expression and chromatin accessibility studies revealed a role for GATA transcription factors downstream of IL-33 signaling during the development of pre-RPMs that retained full potential to differentiate into RPMs. Thus, IL-33 instructs the development of RPMs as a response to physiological erythrocyte damage with important implications to iron recycling and iron homeostasis.


Subject(s)
Interleukin-1 Receptor-Like 1 Protein/immunology , Interleukin-33/immunology , Iron/metabolism , Macrophages/immunology , Signal Transduction/immunology , Spleen/metabolism , Animals , Erythrocytes/immunology , Erythrocytes/metabolism , Heme/immunology , Heme/metabolism , Homeostasis/immunology , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-33/genetics , Interleukin-33/metabolism , Macrophages/metabolism , Mice, Knockout , Mitogen-Activated Protein Kinase 1/immunology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/immunology , Mitogen-Activated Protein Kinase 3/metabolism , Myeloid Differentiation Factor 88/immunology , Myeloid Differentiation Factor 88/metabolism , Spleen/cytology
8.
Trends Pharmacol Sci ; 40(11): 897-910, 2019 11.
Article in English | MEDLINE | ID: mdl-31662208

ABSTRACT

Recent clinical and therapeutic success with RAF and MEK1/2 inhibitors has revolutionized the existing treatment schemes for previously incurable cancers like melanomas. However, the overall therapeutic efficacies are still largely compromised by the dose-limiting side effects and emerging drug resistance mechanisms. Accumulating evidence has revealed the intricate nature of the RAS-RAF-MEK1/2-ERK1/2 pathway, such as activation mechanisms, kinase-substrate relationships, crosstalk with parallel signaling pathways, feedback regulations, and intimate interplay with immune responses. Limited strategies are currently available to exploit the benefits of combining RAF-MEK1/2-ERK1/2 pathway inhibitors with other targeted therapies or immunotherapies. Here, we compiled the kinase-substrate relationships and analyzed the intricate signaling networks of the renowned pathway, providing an integrated and simplified visualization, to reveal the potentials of RAS-RAF-MEK1/2-ERK1/2-based combination therapies.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Immunologic Factors/pharmacology , Mitogen-Activated Protein Kinases/metabolism , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Humans , Immunologic Factors/administration & dosage , Immunologic Factors/therapeutic use , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/immunology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/immunology , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinases/administration & dosage , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/immunology , Neoplasms/enzymology , Neoplasms/immunology , Protein Kinase Inhibitors/therapeutic use , raf Kinases/antagonists & inhibitors , raf Kinases/immunology , raf Kinases/metabolism , ras Proteins/antagonists & inhibitors , ras Proteins/immunology , ras Proteins/metabolism
9.
Food Funct ; 10(9): 5827-5842, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31463498

ABSTRACT

In this study, we aim to assess possible impacts of essential oil (SEO) from Schisandra chinensis (Turcz.) Baill. (S. chinensis) on mice with cognition impairment. Our data showed that SEO improved the cognitive ability of mice with Aß1-42 or lipopolysaccharides (LPS)-induced Alzheimer's disease (AD) and suppressed the production of tumor necrosis factor-a (TNF-a), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß) in the hippocampus. Furthermore, SEO inhibited p38 activation, but had little effect on other signaling proteins in the MAPK family, such as extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase 1/2 (JNK). The SEO and BV-2 microglia co-culture was performed to further confirm the anti-inflammatory activity of SEO. The data showed that SEO decreased nitric oxide (NO) levels in LPS-stimulated BV-2 microglia and significantly blocked LPS-induced MAPKs activation. Taken together, these findings suggested that SEO produces anti-AD effects on AD mice partly by modulating neuroinflammation through the NF-κB/MAPK signaling pathway.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/psychology , Oils, Volatile/administration & dosage , Plant Oils/administration & dosage , Schisandra/chemistry , Alzheimer Disease/genetics , Alzheimer Disease/immunology , Animals , Anti-Inflammatory Agents/administration & dosage , Cognition/drug effects , Humans , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Male , Mice , Microglia/chemistry , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/immunology , NF-kappa B/genetics , NF-kappa B/immunology , Nitric Oxide/immunology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
10.
Biosci Rep ; 39(9)2019 09 30.
Article in English | MEDLINE | ID: mdl-31431516

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is a chronic articular synovial inflammatory disease. The precise etiology underlying the pathogenesis of RA remains unknown. We aimed to investigate the inhibitory effect of curcumin analog FM0807 (curcumin salicylate monoester, 2-hydroxy-, 4-[(1E,6E)-7-(4-hydroxy-3-methoxyphenyl)-3,5-dioxo-1,6-heptadien-1-yl]-2-methoxyphenyl ester) on experimental RA and investigate its possible mechanisms of action. METHOD: Rats with Freund's complete adjuvant (FCA)-induced arthritis (AIA) were administered aspirin (0.1 mmol.kg-1), curcumin (0.1 mmol.kg-1), FM0807 (0.1, 0.2 mmol.kg-1) and vehicle via gastric gavage, from days 7 to 21, once daily. The hind paw volume and arthritis index (AI) were measured, and radiographic and histological examinations were performed. Twenty-one days later, the animals were killed and left ankle joints were removed to measure protein expression of the elements of the nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathway by Western blot analysis. The enzyme-linked immunosorbent assay (ELISA) was employed to measure synovial fluid levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1ß and IL-10. RESULTS: Compared with AIA group, FM0807 reduced the AI and swelling of the injected hind paw in a dose-dependent manner, and inhibited increases in inflammatory cell infiltration, pannus formation and cartilage destruction. FM0807 also potently attenuated the increase in the expression of inflammatory factors TNF-α, IL-6 and IL-1ß in synovial fluid, while IL-10 levels were also elevated. FM0807 significantly suppressed phosphorylation of extracellular-signal-regulated kinase (ERK) 1/2 (ERK1/2), c-Jun-N-terminal kinase (JNK) 1/2 (JNK1/2), p38MAPK, inhibitor of NF-κB kinase (IKK), IκB and NF-κB p65 protein, (all P<0.05), which displayed more potential effects compared with those of the aspirin and curcumin groups. CONCLUSION: FM0807 exerts its therapeutic effects on RA by inhibiting cartilage degeneration. FM0807 treatment might be an effective therapeutic approach for RA.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Arthritis, Experimental/drug therapy , Curcumin/pharmacology , Edema/prevention & control , Gene Expression Regulation/drug effects , MAP Kinase Signaling System/drug effects , Animals , Anti-Inflammatory Agents/chemical synthesis , Arthritis, Experimental/chemically induced , Arthritis, Experimental/genetics , Arthritis, Experimental/immunology , Aspirin/pharmacology , Curcumin/analogs & derivatives , Curcumin/chemical synthesis , Disease Progression , Edema/chemically induced , Edema/genetics , Edema/immunology , Freund's Adjuvant/administration & dosage , Freund's Adjuvant/antagonists & inhibitors , Hindlimb , Inflammation , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Male , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/immunology , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/immunology , NF-kappa B/genetics , NF-kappa B/immunology , Rats , Rats, Sprague-Dawley , Tarsus, Animal/drug effects , Tarsus, Animal/immunology , Tarsus, Animal/pathology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
11.
J Leukoc Biol ; 106(5): 1069-1077, 2019 11.
Article in English | MEDLINE | ID: mdl-31299111

ABSTRACT

Human MCs are primary effectors implicated in immune surveillance and defense by secreting histamine and various inflammatory mediators, a mechanism termed as degranulation. MCs can be activated by two pathways: IgE-dependent classical pathway and the IgE-independent pathway that utilizes various cationic molecules including substance P (SP) and pituitary adenylate cyclase-activating polypeptides, which are host defense peptides collectively known as basic secretagogues. Our pharmacological study investigated whether or not IgE-independent MC activation is mediated via MRGPRX2. We identified two novel MRGPRX2 antagonists, which completely inhibited the degranulation of human cord blood-derived MCs (hCMCs) induced by basic secretagogues and pseudoallergic drug, icatibant, but IgE- or A23187-challenged hCMCs were resistant to MRGPRX2 antagonists. The MRGPRX2 antagonists markedly inhibited the de novo synthesis of SP-induced prostaglandin D2 in hCMCs. Moreover, the antagonists were able to inhibit p42/44 mitogen-activated protein kinase signal in hCMCs activated by SP. This study strongly suggests that MRGPRX2 antagonists may be a promising drug to prevent the IgE-independent allergic reactions, and thus, MRGPRX2 antagonist development may lead to a promising therapeutic medication for the IgE-independent allergic reactions.


Subject(s)
Fetal Blood/immunology , Immunoglobulin E/immunology , Mast Cells/immunology , Nerve Tissue Proteins/antagonists & inhibitors , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, Neuropeptide/antagonists & inhibitors , Bradykinin/analogs & derivatives , Bradykinin/pharmacology , Calcimycin/pharmacology , Fetal Blood/cytology , Humans , Mast Cells/cytology , Mitogen-Activated Protein Kinase 1/immunology , Mitogen-Activated Protein Kinase 3/immunology , Nerve Tissue Proteins/immunology , Receptors, G-Protein-Coupled/immunology , Receptors, Neuropeptide/immunology
12.
Environ Toxicol ; 34(10): 1094-1104, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31199065

ABSTRACT

Fine particulate matter (PM2.5 ) is an important environmental risk factor for cardiovascular diseases. However, little is known about the effects of PM2.5 on arteries. The present study investigated whether PM2.5 alters 5-hydroxytryptamine (5-HT) receptor expression and inflammatory mediators on rat mesenteric arteries, and examined the underlying mechanisms. Isolated rat mesenteric arteries segments were cultured with PM2.5 in the presence or absence of ERK1/2, JNK, and p38 pathway inhibitors. Contractile reactivity was monitored by a sensitive myograph. The expression of 5-HT2A/1B receptors and inflammatory mediators were studied by a real-time polymerase chain reaction and/or by immunohistochemistry. The phosphorylation of mitogen-activated protein kinases (MAPK) pathway was detected by Western blot. Compared with the fresh or culture alone groups, 1.0 µg/mL PM2.5 cultured for 16 hours significantly enhanced contractile response induced by 5-HT and increased 5-HT2A receptor mRNA and protein expressions, indicating PM2.5 upregulates 5-HT2A receptor. SB203580 (p38 inhibitor) and U0126 (ERK1/2 inhibitor) significantly decreased PM2.5 -induced elevated contraction and mRNA and protein expression of 5-HT2A receptor. Cultured with PM2.5 significantly increased the mRNA expression of inflammatory mediators (NOS2, IL-1ß, and TNF-α), while SB203580 decreased mRNA expression level of NOS2, IL-1ß, and TNF-α. SP600125 (JNK inhibitor) decreased mRNA expression level of TNF-α and IL-1ß. After PM2.5 exposure, the phosphorylation of p38 and ERK1/2 protein were increased. SB203580 and U0126 inhibited the PM2.5 caused increased phosphorylation protein of p38 and ERK1/2. In conclusion, PM2.5 induces inflammatory-mediated MAPK pathway in artery which subsequently results in enhanced vascular contraction responding to 5-HT via the upregulated 5-HT2A receptors.


Subject(s)
Mesenteric Arteries/immunology , Mitogen-Activated Protein Kinases/immunology , Particulate Matter/toxicity , Receptor, Serotonin, 5-HT2A/immunology , Animals , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Mesenteric Arteries/drug effects , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/immunology , Mitogen-Activated Protein Kinases/genetics , Rats , Rats, Sprague-Dawley , Receptor, Serotonin, 5-HT2A/genetics , Signal Transduction/drug effects , Transcriptional Activation/drug effects , Up-Regulation , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/immunology
13.
Monoclon Antib Immunodiagn Immunother ; 38(3): 114-119, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31192779

ABSTRACT

The establishment of a relevant regulatory T cell (Treg) pool in the periphery is of importance to ensure immune homoeostasis. Finely tuned signaling pathways in Tregs control the immune response during extreme endocrine changes in pregnancy and afterward. In this study, we investigate the population of Tregs and, in particular, the natural Tregs (nTregs) in healthy women divided into three groups according to the number of previous pregnancies, if any (Gr.1-one pregnancy, Gr.2-≥2 pregnancies, and Gr.0-no pregnancy). The overall analysis showed similar proportions in the entire Treg pool and nTregs (FoxP3+CD45RA+) in all the three groups (p > 0.05). However, the age-related trend of CD25+ nTregs was found to be different in parous and nonparous women. Analysis of phosphorylated ERK1/2, an important signaling molecule in T cell maintenance, showed a significantly higher percentage in CD25+ nTregs in the group of nonparous compared with parous women (p < 0.05). Thus, our results provide evidence that pregnancy may exert a long-lasting impact on the subset of nTregs due to the extreme changes in the hormonal status, which in turn, influences pre- and post-thymic maturation.


Subject(s)
Interleukin-2 Receptor alpha Subunit/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Parity , T-Lymphocytes, Regulatory/immunology , Adult , Cell Differentiation , Female , Humans , Interleukin-2 Receptor alpha Subunit/immunology , Mitogen-Activated Protein Kinase 1/immunology , Mitogen-Activated Protein Kinase 3/immunology , Pregnancy , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/metabolism , Young Adult
14.
Cell Immunol ; 341: 103918, 2019 07.
Article in English | MEDLINE | ID: mdl-31030957

ABSTRACT

Mast cells have functional plasticity affected by their tissue microenvironment, which greatly impacts their inflammatory responses. Because lactic acid (LA) is abundant in inflamed tissues and tumors, we investigated how it affects mast cell function. Using IgE-mediated activation as a model system, we found that LA suppressed inflammatory cytokine production and degranulation in mouse peritoneal mast cells, data that were confirmed with human skin mast cells. In mouse peritoneal mast cells, LA-mediated cytokine suppression was dependent on pH- and monocarboxylic transporter-1 expression. Additionally, LA reduced IgE-induced Syk, Btk, and ERK phosphorylation, key signals eliciting inflammation. In vivo, LA injection reduced IgE-mediated hypothermia in mice undergoing passive systemic anaphylaxis. Our data suggest that LA may serve as a feedback inhibitor that limits mast cell-mediated inflammation.


Subject(s)
Anaphylaxis/prevention & control , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Feedback, Physiological , Immunoglobulin E/genetics , Lactic Acid/pharmacology , Mast Cells/drug effects , Agammaglobulinaemia Tyrosine Kinase/genetics , Agammaglobulinaemia Tyrosine Kinase/immunology , Anaphylaxis/chemically induced , Anaphylaxis/immunology , Anaphylaxis/pathology , Animals , Dinitrophenols/administration & dosage , Dinitrophenols/antagonists & inhibitors , Female , Gene Expression Regulation , Ketoprofen/pharmacology , Lactic Acid/immunology , Lactic Acid/metabolism , Mast Cells/immunology , Mast Cells/pathology , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/immunology , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/immunology , Peritoneal Cavity/pathology , Phosphorylation/drug effects , Primary Cell Culture , Serum Albumin/administration & dosage , Serum Albumin/antagonists & inhibitors , Signal Transduction , Skin/drug effects , Skin/immunology , Skin/pathology , Syk Kinase/genetics , Syk Kinase/immunology , Symporters/genetics , Symporters/immunology
15.
Nat Commun ; 10(1): 1364, 2019 03 25.
Article in English | MEDLINE | ID: mdl-30910999

ABSTRACT

The mechanisms linking muscle injury and regeneration are not fully understood. Here we report an unexpected role for ZEB1 regulating inflammatory and repair responses in dystrophic and acutely injured muscles. ZEB1 is upregulated in the undamaged and regenerating myofibers of injured muscles. Compared to wild-type counterparts, Zeb1-deficient injured muscles exhibit enhanced damage that corresponds with a retarded p38-MAPK-dependent transition of their macrophages towards an anti-inflammatory phenotype. Zeb1-deficient injured muscles also display a delayed and poorer regeneration that is accounted by the retarded anti-inflammatory macrophage transition and their intrinsically deficient muscle satellite cells (MuSCs). Macrophages in Zeb1-deficient injured muscles show lower phosphorylation of p38 and its forced activation reverts the enhanced muscle damage and poorer regeneration. MuSCs require ZEB1 to maintain their quiescence, prevent their premature activation following injury, and drive efficient regeneration in dystrophic muscles. These data indicate that ZEB1 protects muscle from damage and is required for its regeneration.


Subject(s)
Muscle, Skeletal/metabolism , Muscular Dystrophies/genetics , RNA, Messenger/genetics , Regeneration/genetics , Zinc Finger E-box-Binding Homeobox 1/genetics , p38 Mitogen-Activated Protein Kinases/genetics , Animals , Chemokine CCL2/genetics , Chemokine CCL2/immunology , Chromones/pharmacology , Disease Models, Animal , Flavonoids/pharmacology , Gene Expression Regulation , Humans , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/immunology , Laminin/genetics , Laminin/immunology , Macrophages/immunology , Macrophages/pathology , Mice , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/immunology , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/immunology , Morpholines/pharmacology , Muscle, Skeletal/immunology , Muscle, Skeletal/injuries , Muscular Dystrophies/immunology , Muscular Dystrophies/pathology , Phenotype , Phosphorylation , RNA, Messenger/immunology , Regeneration/immunology , Satellite Cells, Skeletal Muscle/immunology , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/pathology , Signal Transduction , Zinc Finger E-box-Binding Homeobox 1/deficiency , Zinc Finger E-box-Binding Homeobox 1/immunology , p38 Mitogen-Activated Protein Kinases/immunology
16.
Cell Biol Int ; 43(5): 574-579, 2019 May.
Article in English | MEDLINE | ID: mdl-30761646

ABSTRACT

Although interleukin-24 (IL-24) has been extensively explored in the immunopathologies of autoimmune diseases, neoplasms, and infections, its role in HIV-1 infection has not been thoroughly elucidated to date. Therefore, the objective of this study was to evaluate the gene and protein expressions of IL-24 at the initial moments of HIV infection in PBMCs. Due to the pro-apoptotic role of IL-24, we evaluated the protein expression of caspase-3, as well as Annexin V/Propidium Iodide flow cytometry and phosphorylation of ERK, which may induce an apoptotic signal block when phosphorylated. The results of this study demonstrated that HIV-1 infection had an impact on the gene and protein expressions of IL-24 and ERK. Annexin V/Propidium Iodide assay demonstrated decrease in the mechanisms of apoptosis in infected cells after incubation of IL-24 neutralizing antibody. Studies on how HIV-1 regulates IL-24 expression may play a role in characterizing viral persistence mechanisms and designing antiretroviral strategies.


Subject(s)
HIV Infections/immunology , HIV-1/immunology , Interleukins/immunology , Annexin A5/immunology , Apoptosis/physiology , Blood Cells/immunology , Caspase 3/immunology , Humans , Mitogen-Activated Protein Kinase 3/immunology , Primary Cell Culture
17.
PLoS Biol ; 17(2): e3000137, 2019 02.
Article in English | MEDLINE | ID: mdl-30726215

ABSTRACT

Tripartite motif (TRIM) proteins belong to a large family with many roles in host biology, including restricting virus infection. Here, we found that TRIM2, which has been implicated in cases of Charcot-Marie-Tooth disease (CMTD) in humans, acts by blocking hemorrhagic fever New World arenavirus (NWA) entry into cells. We show that Trim2-knockout mice, as well as primary fibroblasts from a CMTD patient with mutations in TRIM2, are more highly infected by the NWAs Junín and Tacaribe virus than wild-type mice or cells are. Using mice with different Trim2 gene deletions and TRIM2 mutant constructs, we demonstrate that its antiviral activity is uniquely independent of the RING domain encoding ubiquitin ligase activity. Finally, we show that one member of the TRIM2 interactome, signal regulatory protein α (SIRPA), a known inhibitor of phagocytosis, also restricts NWA infection and conversely that TRIM2 limits phagocytosis of apoptotic cells. In addition to demonstrating a novel antiviral mechanism for TRIM proteins, these studies suggest that the NWA entry and phagocytosis pathways overlap.


Subject(s)
Antigens, Differentiation/genetics , Arenaviruses, New World/genetics , Charcot-Marie-Tooth Disease/genetics , Host-Pathogen Interactions/genetics , Nuclear Proteins/genetics , Receptors, Immunologic/genetics , Animals , Antigens, Differentiation/immunology , Antigens, Differentiation/metabolism , Apoptosis , Arenaviruses, New World/growth & development , Arenaviruses, New World/pathogenicity , Brain/immunology , Brain/metabolism , Brain/virology , Cell Line, Tumor , Charcot-Marie-Tooth Disease/metabolism , Charcot-Marie-Tooth Disease/pathology , Chlorocebus aethiops , Fibroblasts/immunology , Fibroblasts/metabolism , Fibroblasts/virology , Gene Expression Regulation , HEK293 Cells , Host-Pathogen Interactions/immunology , Humans , Macrophages/immunology , Macrophages/metabolism , Macrophages/virology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/immunology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/immunology , Mitogen-Activated Protein Kinase 3/metabolism , Neurofilament Proteins/genetics , Neurofilament Proteins/immunology , Neurofilament Proteins/metabolism , Nuclear Proteins/immunology , Nuclear Proteins/metabolism , Osteoblasts/immunology , Osteoblasts/metabolism , Osteoblasts/virology , Primary Cell Culture , Receptors, Immunologic/immunology , Receptors, Immunologic/metabolism , Signal Transduction , Vero Cells , Virus Internalization
18.
Immunopharmacol Immunotoxicol ; 41(2): 199-206, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30724633

ABSTRACT

Objective: The industrial production and combustion of coal can produce silica nanoparticles (nano-SiO2). It enters the human body mainly through the respiratory tract and exerts a toxic effect. However, whether nano-SiO2 can increase the IL-1ß-induced inflammatory expression in A549 cells has not been tested. Therefore, the synergistic toxicity of nano-SiO2 and IL-1ß to A549 was observed in our study. Materials and methods: We exposed A549 cells to nano-SiO2 (0, 100, 500, and 1000 µg/ml) for 12 and 24 h. The effect of nano-SiO2 on the viability of A549 cells was observed by the CCK-8 method. The A549 cells were exposed to nano-SiO2 (1 mg/mL) and cytokine IL-1ß (10 ng/mL) for 4 h, and we detected the expression of IL-1ß and IL-6 cytokines by real time quantitative polymerase chain (RT-qPCR) and enzyme linked immunosorbent assay (ELISA). The expression of ß-Actin, I-κB, phospho-ERK1/2 (P-ERK1/2), total-ERK1/2 (T-ERK1/2), phospho-JNK (P-JNK), total-JNK (T-JNK), phospho-P38 (P-P38), and total-P38 (T-P38) in A549 cells was detected by the Western Blot method. Results: The nano-SiO2 treatment resulted in a time-dependent decrease in the viability of A549 cells. The synergistic effect of nano-SiO2 and IL-1ß was observed on the new production of IL-1ß and IL-6 in A549 cells. The Western blot results showed that nano-SiO2 can increase the expression of IL-1ß and IL-6 by promoting the phosphorylation of ERK1/2 and elevating the phosphorylation of I-κB by IL-1ß. IL-1ß and IL-6 were induced by nano-SiO2, and the IL-1ß treatment with 20 µM of I-κBα phosphorylation inhibitor (PD98059) and 20 µM of ERK1/2 inhibitor (BAY11-7082) for 1 h was significantly lower than that of the control group in A549 cells. Discussion and conclusion: These results indicated that nano-SiO2 had a toxic effect on A549 cells, and this effect could increase IL-1ß on the A549 cell-induced inflammatory response. The results suggested that the release of IL-1ß and IL-6 in A549 was enhanced by the synergistic IL-1ß-induced phosphorylation of ERK1/2 and I-κB. This process is similar to a snowball, and it is possible that IL-1ß is continuously produced and repeatedly superimposed in A549 cells to produce an inflammatory effect; then, a vicious circle occurs, and an inflammatory storm is accelerated.


Subject(s)
Interleukin-1beta/toxicity , MAP Kinase Signaling System/drug effects , Nanoparticles/adverse effects , Silicon Dioxide/toxicity , A549 Cells , Humans , Inflammation/chemically induced , Inflammation/immunology , Inflammation/pathology , Interleukin-1beta/immunology , Interleukin-6/immunology , MAP Kinase Signaling System/immunology , Mitogen-Activated Protein Kinase 1/immunology , Mitogen-Activated Protein Kinase 3/immunology , Time Factors
19.
Bull Exp Biol Med ; 166(3): 344-347, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30627910

ABSTRACT

The role of signaling molecules in synthesis of humoral regulators of granulocytopoiesis by the hematopoietic microenvironmental cells during stress was analyzed using specific inhibitors. The major role in stimulation of the synthesis of granulocytic CSF during stressful stimulation is played by PI3K/Akt signaling cascade. Nuclear transcription factor NF-κB plays an auxiliary role in the regulation of functional activity of the bone marrow mononuclears. However, this factor affects the synthesis of granulocytic CSF by CD4+ cells of the bone marrow in response to stressful stimulation. Different degree and specific character of involvement of the signaling proteins in the regulation of the production of humoral factors determining colony-stimulating activity are explained by changes in functional state of monocyte-derived macrophages in different periods of stress response.


Subject(s)
Granulocyte Colony-Stimulating Factor/genetics , Granulocytes/immunology , NF-kappa B/genetics , Phosphatidylinositol 3-Kinases/genetics , Signal Transduction/immunology , Stress, Psychological/genetics , Animals , Bone Marrow Cells/drug effects , Bone Marrow Cells/immunology , Bone Marrow Cells/pathology , Chromones/pharmacology , Flavonoids/pharmacology , Gene Expression Regulation , Gold Sodium Thiomalate/pharmacology , Granulocyte Colony-Stimulating Factor/immunology , Granulocytes/drug effects , Granulocytes/pathology , Imidazoles/pharmacology , Immobilization/methods , Leukopoiesis/drug effects , Leukopoiesis/immunology , Macrophages/drug effects , Macrophages/immunology , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/immunology , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/immunology , Morpholines/pharmacology , NF-kappa B/antagonists & inhibitors , NF-kappa B/immunology , Phosphatidylinositol 3-Kinases/immunology , Phosphoinositide-3 Kinase Inhibitors , Pyridines/pharmacology , Stress, Psychological/immunology , Stress, Psychological/metabolism , Stress, Psychological/physiopathology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/immunology
20.
Biofactors ; 45(1): 69-74, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30496633

ABSTRACT

Resveratrol, a phytochemical, acts several cellular signaling pathways and has anti-inflammatory potentials. The purpose of this study is to research the therapeutic effect of resveratrol in collagen-induced arthritis (CIA) model in rats and whether resveratrol affects the activities of signaling pathways those are potent pathogenic actors of rheumatoid arthritis. Arthritis was induced by intradermal injection of chicken type II collagen combined with incomplete Freund's adjuvant in Wistar albino rats. One day after the onset of arthritis (day 14), resveratrol (20 mg/kg/day) was given via oral gavage, until day 29. The paws of the rats were obtained for further analysis. Tissue Wnt5a, mitogen-activated protein kinase (MAPK), Src tyrosine kinase and signal transducer, and activator of transcription-3 (STAT3) mRNA expressions were determined by real-time polymerase chain reaction. Resveratrol ameliorated the clinical and histopathological (perisynovial inflammation and cartilage-bone destruction) findings of inflammatory arthritis. The tissue mRNA expressions of Wnt5a, MAPK3, Src kinase, and STAT3 were increased in the sham group compared to the control group. Resveratrol supplement decreased their expressions. The present study shows that Src kinase, STAT3, and Wnt signaling pathway are active in the CIA model. Resveratrol inhibits these signaling pathways and ameliorates inflammatory arthritis. © 2018 BioFactors, 45(1):69-74, 2019.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Arthritis, Experimental/drug therapy , Resveratrol/pharmacology , STAT3 Transcription Factor/genetics , Wnt Signaling Pathway/drug effects , src-Family Kinases/genetics , Administration, Oral , Animals , Arthritis, Experimental/genetics , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , Bone and Bones/drug effects , Bone and Bones/immunology , Bone and Bones/pathology , Cartilage/drug effects , Cartilage/immunology , Cartilage/pathology , Drug Administration Schedule , Female , Gene Expression Regulation , Hindlimb , Inflammation , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/immunology , Rats , Rats, Wistar , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/immunology , Wnt-5a Protein/genetics , Wnt-5a Protein/immunology , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...