Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Res Toxicol ; 23(8): 1384-92, 2010 Aug 16.
Article in English | MEDLINE | ID: mdl-20608688

ABSTRACT

Upon reduction, the antitumor drug mitomycin C undergoes a cascade of reactions to give a bis-electrophile that alkylates cellular nucleophiles. We recently reported that dithiols activate mitomycin C by reduction, and we report here that dithiols, after executing the reductive activation of mitomycin C, are bis-alkylated by the activated drug to form S,S'-cross-links as the predominant end products. The diastereomeric pair of adducts formed by 1,3-propanedithiol has been fully characterized by UV, HRMS, CD, and NMR experiments. Racemic dithiol (+/-)-dithiothreitol gave four diastereomeric cross-links, and (+/-)-dihydrolipoic acid gave eight cross-links (two regioisomers with four diastereomers each) that were partially characterized by UV and MS. The observed dependence of cross-link formation on dithiol concentration indicated the requirement of a second reduction step by dithiol, prior to the alkylation of the second arm of the dithiol. The existence of unidentified reaction pathways was manifested by the formation of unexpected intermediates during the course of the reaction of mitomycin C with dithiols and by the formation of unsoluble mitosene derivatives in the reaction between equimolar amounts of dithiol and mitomycin C. Mechanistic details of the reaction are addressed in light of these results. Finally, we discuss the potential relevance of our findings for the interaction of mitomycin C with dithiol-containing proteins.


Subject(s)
Cross-Linking Reagents/chemistry , Mitomycin/chemistry , Sulfhydryl Compounds/chemistry , Chromatography, High Pressure Liquid , Cross-Linking Reagents/isolation & purification , Mass Spectrometry , Mitomycin/isolation & purification , Molecular Conformation , Stereoisomerism , Sulfhydryl Compounds/isolation & purification
2.
Chem Res Toxicol ; 11(3): 203-10, 1998 Mar.
Article in English | MEDLINE | ID: mdl-9544618

ABSTRACT

A minor N6-deoxyadenosine adduct of mitomycin C (MC) was isolated from synthetic oligonucleotides and calf thymus DNA, representing the first adduct of MC and a DNA base other than guanine. The structure of the adduct (8) was elucidated using submilligram quantities of total available material. UV difference spectroscopy, circular dichroism, and electrospray mass spectroscopy as well as chemical transformations were utilized in deriving the structure of 8. A series of synthetic oligonucleotides was designed to probe the specificities of the alkylation of adenine by MC. The nature and frequency of the oligonucleotide-MC adducts formed under conditions of reductive activation of MC were determined by their enzymatic digestion to the nucleoside level followed by quantitative analysis of the products by HPLC. The analyses indicated the following: (i) (A)n sequence is favored over (AT)n for adduct formation; (ii) the alkylation favors the duplex structure; (iii) at adenine sites only monofunctional alkylation occurs; (iv) the adenine-to-alkylation frequency in the model oligonucleotides was 0.3-0.6 relative to guanine alkylation at the 5'-ApG sequence but only 0.02-0.1 relative to guanine alkylation at 5'-CpG. The 5'-phosphodiester linkage of the MC-adenine adduct is resistant to snake venom diesterase. The overall ratio of adenine to guanine alkylation in calf thymus DNA was 0.03, indicating that 8 is a minor MC-DNA adduct relative to MC-DNA adducts at guanine residues in the present experimental residues in the present experimental system. However, the HPLC elution time of 8 coincides with that of a major, unknown MC adduct detected previously in mouse mammary tumor cells treated with radiolabeled MC [Bizanek, R., Chowdary, D., Arai, H., Kasai, M., Hughes, C. S., Sartorelli, A. C., Rockwell, S., and Tomasz, M. (1993) Cancer Res. 53, 5127-5134]. Thus, 8 may be identical or closely related to this major adduct formed in vivo. This possibility can now be tested by further comparison.


Subject(s)
Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/isolation & purification , DNA Adducts/isolation & purification , Deoxyadenosines/chemistry , Deoxyadenosines/isolation & purification , Mitomycin/chemistry , Mitomycin/isolation & purification , Animals , Cattle , Chromatography, High Pressure Liquid , Circular Dichroism
3.
Cancer Res ; 53(21): 5127-34, 1993 Nov 01.
Article in English | MEDLINE | ID: mdl-7693331

ABSTRACT

6-CH3-3H-Mitomycin C (MC) was used to identify MC-DNA adducts formed in EMT6 mouse mammary tumor cells. DNA was isolated from cells treated with 3H-MC. The DNA was enzymatically digested, and the digest was analyzed for 3H-labeled adducts by high performance liquid chromatography. All four major adducts previously isolated and characterized in cell-free systems were detected: two different monoadducts and two bisadducts forming DNA-interstrand and DNA-intrastrand cross-links, respectively. No MC-DNA adducts other than the DNA interstrand cross-link had been shown previously to be formed in living cells. A MC-deoxyguanosine adduct of unknown structure was also detected in DNA from EMT6 cells; this adduct was also formed with purified EMT6 DNA. High performance liquid chromatography analysis was further applied to study the relationship between DNA adducts and cytotoxicity. The number of adducts increased with the concentration of MC in both aerobic and hypoxic cells. At a constant drug level, more adducts were observed in cells treated under hypoxic conditions than in cells treated aerobically; at 2 microM MC, 4.8 x 10(-7) and 3.1 x 10(-7) adducts/nucleotide were observed under hypoxic and aerobic conditions, respectively. The increased adduct frequency under hypoxia correlates with the known increased cytotoxicity of MC to EMT6 cells under hypoxic conditions. In addition, a higher ratio of cross-linked adducts to monoadducts was observed in hypoxic cells. The high performance liquid chromatography techniques were also used to examine the effects of dicumarol (DIC) on adduct patterns in cells treated simultaneously with 3H-MC. The MC-DNA adduct frequencies in DIC-treated cells were increased 1.5-fold under hypoxia and decreased 1.6-fold under aerobic conditions from those observed without DIC. This finding correlates with the known DIC-induced increase and decrease in the cytotoxicity of MC in hypoxic and aerobic EMT6 cells, respectively. The monoadduct resulting from monofunctionally activated MC was suppressed by DIC under both hypoxic and aerobic conditions. In addition, DIC induced the selective formation of an unknown DNA-associated radiolabeled substance in hypoxic cells; this is hypothesized to be a cytotoxic DNA lesion produced by a DIC-stimulated oxido-reductase. The methodology developed to measure MC adduct patterns may be useful as an indicator of distinct enzymatic activation processes for this drug.


Subject(s)
DNA Adducts , DNA, Neoplasm/metabolism , DNA/metabolism , Dicumarol/pharmacology , Mammary Neoplasms, Experimental/metabolism , Mitomycin/metabolism , Aerobiosis , Animals , Cell Hypoxia , Cell Line , Cell Survival/drug effects , Chromatography, High Pressure Liquid , DNA/isolation & purification , DNA, Neoplasm/isolation & purification , Mice , Mitomycin/isolation & purification , Mitomycin/toxicity , Thiosulfates/pharmacology , Tritium , Tumor Cells, Cultured
4.
Biochemistry ; 31(12): 3084-91, 1992 Mar 31.
Article in English | MEDLINE | ID: mdl-1554696

ABSTRACT

A new covalent mitomycin C-DNA adduct (4) was isolated from DNA exposed to reductively activated mitomycin C (MC) in vitro. The MC-treated DNA was hydrolyzed enzymatically under certain conditions, and the new adduct was isolated from the hydrolysate by HPLC. Its structure was determined by ultraviolet and circular dichroism spectroscopy and chemical and enzymatic transformations conducted on microscale. In the structure, a single 2" beta, 7"-diaminomitosene residue is linked bifunctionally to two guanines in the dinucleoside phosphate d(GpG). The guanines are linked at their N2 atoms to the C1" and C10" positions of the mitosene, respectively. A key to the structure was a finding that removal of the mitosene from the adduct by hot piperidine yielded d(GpG); another was that the adduct was slowly converted to the known interstrand cross-link adduct 3 by snake venom diesterase and alkaline phosphatase. Adduct 4 represents an intrastrand cross-link in DNA formed by MC. Of the two possible strand-polarity isomers of 4, 4a in which the mitosene 1"-position is linked to the 3'-guanine of d(GpG) is designated as the proper structure, on the basis of the mechanism of the cross-linking reaction. The same adduct 4 was isolated from poly(dG).poly(dC), synthetic oligonucleotides containing the GpG sequence, and Micrococcus luteus and calf thymus DNAs. The relative yields of interstrand and intrastrand cross-links (3 and 4) were determined under first-order kinetic conditions; an average 3.6-fold preference for the formation of 3 over that of 4 was observed. An explanation for this preference is proposed.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Cross-Linking Reagents/isolation & purification , DNA/isolation & purification , Mitomycin/isolation & purification , Alkylation , Base Sequence , Cross-Linking Reagents/chemistry , DNA/chemistry , DNA/drug effects , DNA, Bacterial/chemistry , DNA, Bacterial/drug effects , DNA, Bacterial/isolation & purification , Kinetics , Micrococcus luteus/chemistry , Micrococcus luteus/genetics , Mitomycin/chemistry , Models, Molecular , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...