Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 837
Filter
1.
J Nanobiotechnology ; 22(1): 249, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745193

ABSTRACT

BACKGROUND: Chemotherapy, the mainstay treatment for metastatic cancer, presents serious side effects due to off-target exposure. In addition to the negative impact on patients' quality of life, side effects limit the dose that can be administered and thus the efficacy of the drug. Encapsulation of chemotherapeutic drugs in nanocarriers is a promising strategy to mitigate these issues. However, avoiding premature drug release from the nanocarriers and selectively targeting the tumour remains a challenge. RESULTS: In this study, we present a pioneering method for drug integration into nanoparticles known as mesoporous organosilica drugs (MODs), a distinctive variant of periodic mesoporous organosilica nanoparticles (PMOs) in which the drug is an inherent component of the silica nanoparticle structure. This groundbreaking approach involves the chemical modification of drugs to produce bis-organosilane prodrugs, which act as silica precursors for MOD synthesis. Mitoxantrone (MTO), a drug used to treat metastatic breast cancer, was selected for the development of MTO@MOD nanomedicines, which demonstrated a significant reduction in breast cancer cell viability. Several MODs with different amounts of MTO were synthesised and found to be efficient nanoplatforms for the sustained delivery of MTO after biodegradation. In addition, Fe3O4 NPs were incorporated into the MODs to generate magnetic MODs to actively target the tumour and further enhance drug efficacy. Importantly, magnetic MTO@MODs underwent a Fenton reaction, which increased cancer cell death twofold compared to non-magnetic MODs. CONCLUSIONS: A new PMO-based material, MOD nanomedicines, was synthesised using the chemotherapeutic drug MTO as a silica precursor. MTO@MOD nanomedicines demonstrated their efficacy in significantly reducing the viability of breast cancer cells. In addition, we incorporated Fe3O4 into MODs to generate magnetic MODs for active tumour targeting and enhanced drug efficacy by ROS generation. These findings pave the way for the designing of silica-based multitherapeutic nanomedicines for cancer treatment with improved drug delivery, reduced side effects and enhanced efficacy.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Cell Survival , Mitoxantrone , Organosilicon Compounds , Humans , Breast Neoplasms/drug therapy , Female , Cell Survival/drug effects , Organosilicon Compounds/chemistry , Organosilicon Compounds/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Mitoxantrone/pharmacology , Mitoxantrone/chemistry , Mitoxantrone/therapeutic use , Cell Line, Tumor , Drug Carriers/chemistry , Silicon Dioxide/chemistry , Porosity , Drug Liberation , Nanoparticles/chemistry , MCF-7 Cells , Nanomedicine/methods , Reactive Oxygen Species/metabolism
2.
J Colloid Interface Sci ; 669: 731-739, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38735255

ABSTRACT

HYPOTHESIS: Hydrophilic cationic drugs such as mitoxantrone hydrochloride (MTO) pose a significant delivery challenge to the development of nanodrug systems. Herein, we report the use of a hydrophobic ion-pairing strategy to enhance the nano-assembly of MTO. EXPERIMENTS: We employed biocompatible sodium cholesteryl sulfate (SCS) as a modification module to form stable ion pairs with MTO, which balanced the intermolecular forces and facilitated nano-assembly. PEGylated MTO-SCS nanoassemblies (pMS NAs) were prepared via nanoprecipitation. We systematically evaluated the effect of the ratio of the drug module (MTO) to the modification module (SCS) on the nanoassemblies. FINDINGS: The increased lipophilicity of MTO-SCS ion pair could significantly improve the encapsulation efficiency (∼97 %) and cellular uptake efficiency of MTO. The pMS NAs showed prolonged blood circulation, maintained the same level of tumor antiproliferative activity, and exhibited reduced toxicity compared with the free MTO solution. It is noteworthy that the stability, cellular uptake, cytotoxicity, and in vivo pharmacokinetic behavior of the pMS NAs increased in proportion to the molar ratio of SCS to MTO. This study presents a self-assembly strategy mediated by ion pairing to overcome the challenges commonly associated with the poor assembly ability of hydrophilic cationic drugs.


Subject(s)
Antineoplastic Agents , Cholesterol Esters , Hydrophobic and Hydrophilic Interactions , Mitoxantrone , Mitoxantrone/chemistry , Mitoxantrone/pharmacology , Mitoxantrone/pharmacokinetics , Humans , Animals , Cholesterol Esters/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Mice , Cell Proliferation/drug effects , Cations/chemistry , Cell Survival/drug effects , Particle Size , Nanoparticles/chemistry , Surface Properties , Drug Carriers/chemistry , Drug Screening Assays, Antitumor , Cell Line, Tumor , Polyethylene Glycols/chemistry
3.
Toxicol Appl Pharmacol ; 484: 116866, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367674

ABSTRACT

BACKGROUND: ABC transporter-mediated multidrug resistance (MDR) remains a major obstacle for cancer pharmacological treatment. Some tyrosine kinase inhibitors (TKIs) have been shown to reverse MDR. The present study was designed to evaluate for the first time whether foretinib, a multitargeted TKI, can circumvent ABCB1 and ABCG2-mediated MDR in treatment-resistant cancer models. METHODS: Accumulation of fluorescent substrates of ABCB1 and ABCG2 in ABCB1-overexpressing MES-SA/DX5 and ABCG2-overexpressing MCF-7/MX and their parenteral cells was evaluated by flow cytometry. The growth inhibitory activity of single and combination therapy of foretinib and chemotherapeutic drugs on MDR cells was examined by MTT assay. Analysis of combined interaction effects was performed using CalcuSyn software. RESULTS: It was firstly proved that foretinib increased the intracellular accumulation of rhodamine 123 and mitoxantrone in MES-SA/DX5 and MCF-7/MX cancer cells, with accumulation ratios of 12 and 2.2 at 25 µM concentration, respectively. However, it did not affect the accumulation of fluorescent substrates in the parental cells. Moreover, foretinib synergistically improved the cytotoxic effects of doxorubicin and mitoxantrone. The means of combination index (CI) values at fraction affected (Fa) values of 0.5, 0.75, and 0.9 were 0.64 ± 0.08 and 0.47 ± 0.09, in MES-SA/DX5 and MCF-7/MX cancer cells, respectively. In silico analysis also suggested that the drug-binding domain of ABCB1 and ABCG2 transporters could be considered as potential target for foretinib. CONCLUSION: Overall, our results suggest that foretinib can target MDR-linked ABCB1 and ABCG2 transporters in clinical cancer therapy.


Subject(s)
Anilides , Antineoplastic Agents , Neoplasms , Quinolines , Humans , Proto-Oncogene Proteins c-met/pharmacology , Mitoxantrone/pharmacology , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Drug Resistance, Neoplasm , Drug Resistance, Multiple , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Cell Line, Tumor , Neoplasm Proteins , ATP Binding Cassette Transporter, Subfamily B
4.
Mol Biol Rep ; 51(1): 90, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38194158

ABSTRACT

BACKGROUND: CDC25B, as a member of the cell cycle regulating protein family, is located in the cytoplasm and is involved in the transition of the cell cycle and mitosis. CDC25B is highly expressed in various tumors and is a newly discovered oncogene. This study aimed to investigate the impact of CDC25B on mitoxantrone resistance in stomach adenocarcinoma (STAD) and its possible mechanisms. METHODS: This study analyzed the expression of CDC25B and its potential transcription factor E2F3 in STAD, as well as the IC50 values of tumor tissues by bioinformatics analysis. Expression levels of CDC25B and E2F3 in STAD cells were measured by qRT-PCR. MTT was utilized to evaluate cell viability and IC50 values of STAD cells, and comet assay was utilized to analyze the level of DNA damage in STAD cells. Western blot was used to analyze the expression of DNA damage-related proteins. The targeting relationship between E2F3 and CDC25B was validated by dual-luciferase and ChIP assays. RESULTS: Bioinformatics analysis and molecular experiments showed that CDC25B and E2F3 were highly expressed in STAD, and CDC25B was enriched in the mismatch repair and nucleotide excision repair pathways. The IC50 values of tumor tissues with high expression of CDC25B were relatively high. Dual-luciferase and ChIP assays confirmed that CDC25B could be transcriptionally activated by E2F3. Cell experiments revealed that CDC25B promoted mitoxantrone resistance in STAD cells by regulating DNA damage. Further research found that low expression of E2F3 inhibited mitoxantrone resistance in STAD cells by DNA damage, but overexpression of CDC25B reversed the impact of E2F3 knockdown on mitoxantrone resistance in STAD cells. CONCLUSION: This study confirmed a novel mechanism by which E2F3/CDC25B mediated DNA damage to promote mitoxantrone resistance in STAD cells, providing a new therapeutic target for STAD treatment.


Subject(s)
Adenocarcinoma , Stomach Neoplasms , Humans , Mitoxantrone/pharmacology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , DNA Damage , Mitosis , Luciferases , E2F3 Transcription Factor , cdc25 Phosphatases/genetics
5.
Adv Healthc Mater ; 13(12): e2303631, 2024 May.
Article in English | MEDLINE | ID: mdl-38278138

ABSTRACT

Currently, the secondary development and modification of clinical drugs has become one of the research priorities. Researchers have developed a variety of TME-responsive nanomedicine carriers to solve certain clinical problems. Unfortunately, endogenous stimuli such as reactive oxygen species (ROS), as an important prerequisite for effective therapeutic efficacy, are not enough to achieve the expected drug release process, therefore, it is difficult to achieve a continuous and efficient treatment process. Herein, a self-supply ROS-responsive cascade polyprodrug (PMTO) is designed. The encapsulation of the chemotherapy drug mitoxantrone (MTO) in a polymer backbone could effectively reduce systemic toxicity when transported in vivo. After PMTO is degraded by endogenous ROS of the TME, another part of the polyprodrug backbone becomes cinnamaldehyde (CA), which can further enhance intracellular ROS, thereby achieving a sustained drug release process. Meanwhile, due to the disruption of the intracellular redox environment, the efficacy of chemotherapy drugs is enhanced. Finally, the anticancer treatment efficacy is further enhanced due to the mild hyperthermia effect of PMTO. In conclusion, the designed PMTO demonstrates remarkable antitumor efficacy, effectively addressing the limitations associated with MTO.


Subject(s)
Acrolein/analogs & derivatives , Mitoxantrone , Reactive Oxygen Species , Mitoxantrone/chemistry , Mitoxantrone/pharmacology , Mitoxantrone/pharmacokinetics , Reactive Oxygen Species/metabolism , Animals , Humans , Mice , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Hyperthermia, Induced/methods , Prodrugs/chemistry , Prodrugs/pharmacology , Acrolein/chemistry , Acrolein/pharmacology , Mice, Inbred BALB C , Drug Liberation , Female , Mice, Nude , Drug Carriers/chemistry , Polymers/chemistry
6.
Curr Pharm Biotechnol ; 25(4): 510-519, 2024.
Article in English | MEDLINE | ID: mdl-37957921

ABSTRACT

Background: Ligand-mediated liposomes targeting folate receptors (FRs) that are overexpressed on the surface of tumor cells may improve drug delivery. However, the properties of liposomes also affect cellular uptake and drug release.

Objective: Mitoxantrone folate targeted liposomes were prepared to increase the enrichment of drugs in tumor cells and improve the therapeutic index of drugs by changing the route of drug administration.

Methods: Liposomes were prepared with optimized formulation, including mitoxantrone folatetargeted small unilamellar liposome (MIT-FSL), mitoxantrone folate-free small unilamellar liposome (MIT-SL), mitoxantrone folate-targeted large unilamellar liposome (MIT-FLL), mitoxantrone folate-free large unilamellar liposomes (MIT-LL). Cells with different levels of folate alpha receptor (FRα) expression were used to study the differences in the enrichment of liposomes, the killing effect on tumor cells, and their ability to overcome multidrug resistance.

The results of the drug release experiment showed that the particle size of liposomes affected their release behavior. Large single-compartment liposomes could hardly be effectively released, while small single-compartment liposomes could be effectively released, MIT-FSL vs MIT-FLL and MIT-SL vs MIT-LL had significant differences in the drug release rate (P<0.0005). Cell uptake experiments results indicated that the ability of liposomes to enter folic acid receptor-expressing tumor cells could be improved after modification of folic acid ligands on the surface of liposomes and it was related to the expression of folate receptors on the cell surface. There were significant differences in cell uptake rates (p<0.0005) for cells with high FRα expression (SPC-A-1 cells), when MIT-FSL vs MIT-SL and MIT-FLL vs MIT-LL. For cells with low FRα expression (MCF-7 cells), their cell uptake rates were still different (p<0.05), but less pronounced than in SPC-A-1 cells. The results of the cell inhibition experiment suggest that MIT-FLL and MIT-LL had no inhibitory effect on cells, MIT-FSL had a significant inhibitory effect on cells and its IC50 value was calculated to be 4502.4 ng/mL, MIT-SL also had an inhibitory effect, and its IC50 value was 25092.1 ng/mL, there was a statistical difference (p<0.05), MIT-FSL had a higher inhibitory rate than MIT-SL at the same drug concentration. Afterward, we did an inhibitory experiment of different MIT-loaded nanoparticles on MCF-7 cells compared to the drug-resistant cells (ADR), Observing the cell growth inhibition curve, both MIT-FSL and MIT-SL can inhibit the growth of MCF-7 and MCF-7/ADR cells. For MCF- 7 cells, at the same concentration, there is little difference between the inhibition rate of MITFSL and MIT-SL, but for MCF-7/ADR, the inhibition rate of MIT-FSL was significantly higher than that of MIT-SL at the same concentration (P<0.05).

Conclusion: By modifying folic acid on the surface of liposomes, tumor cells with high expression of folic acid receptors can be effectively targeted, thereby increasing the enrichment of intracellular drugs and improving efficacy. It can also change the delivery pathway, increase the amount of drug entering resistant tumor cells, and overcome resistance.

.


Subject(s)
Liposomes , Mitoxantrone , Humans , Mitoxantrone/pharmacology , Cell Line, Tumor , Drug Delivery Systems/methods , Carrier Proteins/metabolism , Ligands , Folic Acid
7.
Mol Oncol ; 18(2): 280-290, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37727134

ABSTRACT

Success of chemotherapy is often hampered by multidrug resistance. One mechanism for drug resistance is the elimination of anticancer drugs through drug transporters, such as breast cancer resistance protein (BCRP; also known as ABCG2), and causes a poor 5-year survival rate of human patients. Co-treatment of chemotherapeutics and natural compounds, such as baicalein, is used to prevent chemotherapeutic resistance but is limited by rapid metabolism. Boron-based clusters as meta-carborane are very promising phenyl mimetics to increase target affinity; we therefore investigated the replacement of a phenyl ring in baicalein by a meta-carborane to improve its affinity towards the human ABCG2 efflux transporter. Baicalein strongly inhibited the ABCG2-mediated efflux and caused a fivefold increase in mitoxantrone cytotoxicity. Whereas the baicalein derivative 5,6,7-trimethoxyflavone inhibited ABCG2 efflux activity in a concentration of 5 µm without reversing mitoxantrone resistance, its carborane analogue 5,6,7-trimethoxyborcalein significantly enhanced the inhibitory effects in nanomolar ranges (0.1 µm) and caused a stronger increase in mitoxantrone toxicity reaching similar values as Ko143, a potent ABCG2 inhibitor. Overall, in silico docking and in vitro studies demonstrated that the modification of baicalein with meta-carborane and three methoxy substituents leads to an enhanced reversal of ABCG2-mediated drug resistance. Thus, this seems to be a promising basis for the development of efficient ABCG2 inhibitors.


Subject(s)
Antineoplastic Agents , Flavanones , Mitoxantrone , Humans , Mitoxantrone/pharmacology , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Drug Resistance, Neoplasm , Neoplasm Proteins/metabolism , Antineoplastic Agents/pharmacology
8.
DNA Repair (Amst) ; 133: 103606, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38039951

ABSTRACT

Mitoxantrone (1,4-dihydroxy-5,8-bis[2-(2-hydroxyethylamino)ethylamino]-anthracene-9,10-dione) is a clinically-relevant synthetic anthracenedione that functions as a topoisomerase II poison by trapping DNA double-strand break intermediates. Mitoxantrone binds to DNA via both stacking interactions with DNA bases and hydrogen bonding with the sugar-phosphate backbone. It has been shown that mitoxantrone inhibits apurinic/apyrimidinic (AP) endonuclease 1 (APE1)-catalyzed incision of DNA containing a tetrahydrofuran (THF) moiety and more recently, that mitoxantrone forms Schiff base conjugates at AP sites in DNA. In this study, mitoxantrone-mediated inhibition of APE1 at THF sites was shown to be consistent with preferential binding to, and thermal stabilization of DNA containing a THF site as compared to non-damaged DNA. Investigations into the properties of mitoxantrone at AP and 3' α,ß-unsaturated aldehyde sites demonstrated that in addition to being a potent inhibitor of APE1 at these biologically-relevant substrates (∼ 0.5 µM IC50 on AP site-containing DNA), mitoxantrone also incised AP site-containing DNA by catalyzing ß- and ß/δ-elimination reactions. The efficiency of these reactions to generate the 3' α,ß-unsaturated aldehyde and 3' phosphate products was modulated by DNA structure. Although these cell-free reactions revealed that mitoxantrone can generate 3' phosphates, cells lacking polynucleotide kinase phosphatase did not show increased sensitivity to mitoxantrone treatment. Consistent with its ability to inhibit APE1 activity on DNAs containing either an AP site or a 3' α,ß-unsaturated aldehyde, combined exposures to clinically-relevant concentrations of mitoxantrone and a small molecule APE1 inhibitor revealed additive cytotoxicity. These data suggest that in a cellular context, mitoxantrone may interfere with APE1 DNA repair functions.


Subject(s)
DNA , Mitoxantrone , Mitoxantrone/pharmacology , DNA/metabolism , DNA Repair , Aldehydes , Phosphates , Endonucleases/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism
9.
Biomed Pharmacother ; 170: 116038, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38141281

ABSTRACT

Cholangiocarcinomas (CCAs) are cancers originated in the biliary tree, which are characterized by their high mortality and marked chemoresistance, partly due to the activity of ATP-binding cassette (ABC) export pumps, whose inhibition has been proposed as a strategy for enhancing the response to chemotherapy. We have previously shown that ß-caryophyllene oxide (CRYO) acts as a chemosensitizer in hepatocellular carcinoma by inhibiting ABCB1, MRP1, and MRP2. Here, we have evaluated the usefulness of CRYO in inhibiting BCRP and improving the response of CCA to antitumor drugs. The TCGA-CHOL cohort (n = 36) was used for in silico analysis. BCRP expression (mRNA and protein) was assayed in samples from intrahepatic (iCCA) and extrahepatic (eCCA) tumors (n = 50) and CCA-derived cells (EGI-1 and TFK-1). In these cells, BCRP-dependent mitoxantrone transport was determined by flow cytometry. At non-toxic concentrations, CRYO inhibited BCRP function, which enhanced the cytostatic effect of drugs used in the treatment of CCA. The BCRP ability to confer resistance to a panel of antitumor drugs was determined in Chinese hamster ovary (CHO) cells with stable BCRP expression. At non-toxic concentrations, CRYO markedly reduced BCRP-induced resistance to known substrate drugs (mitoxantrone and SN-38) and cisplatin, gemcitabine, sorafenib, and 5-FU but not oxaliplatin. Neither CRYO nor cisplatin alone significantly affected the growth of BCRP-expressing tumors subcutaneously implanted in immunodeficient mice. In contrast, intratumor drug content was enhanced when administered together, and tumor growth was inhibited. In sum, the combined treatment of drugs exported by BCRP with CRYO can improve the response to chemotherapy in CCA patients.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Cholangiocarcinoma , Liver Neoplasms , Cricetinae , Humans , Mice , Animals , Cisplatin/pharmacology , Mitoxantrone/pharmacology , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , CHO Cells , Drug Resistance, Neoplasm , ATP-Binding Cassette Transporters , Neoplasm Proteins/metabolism , Cricetulus , Antineoplastic Agents/pharmacology , Cholangiocarcinoma/drug therapy , Cell Line, Tumor
10.
Mol Inform ; 43(3): e202300284, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38123523

ABSTRACT

Tuberculosis (TB) is the second leading cause of mortality after COVID-19, with a global death toll of 1.6 million in 2021. The escalating situation of drug-resistant forms of TB has threatened the current TB management strategies. New therapeutics with novel mechanisms of action are urgently required to address the current global TB crisis. The essential mycobacterial primase DnaG with no structural homology to homo sapiens presents itself as a good candidate for drug targeting. In the present study, Mitoxantrone and Vapreotide, two FDA-approved drugs, were identified as potential anti-mycobacterial agents. Both Mitoxantrone and Vapreotide exhibit a strong Minimum Inhibitory Concentration (MIC) of ≤25µg/ml against both the virulent (M.tb-H37Rv) and avirulent (M.tb-H37Ra) strains of M.tb. Extending the validations further revealed the inhibitory potential drugs in ex vivo conditions. Leveraging the computational high-throughput multi-level docking procedures from the pool of ~2700 FDA-approved compounds, Mitoxantrone and Vapreotide were screened out as potential inhibitors of DnaG. Extensive 200 ns long all-atoms molecular dynamic simulation of DnaGDrugs complexes revealed that both drugs bind strongly and stabilize the DnaG during simulations. Reduced solvent exposure and confined motions of the active centre of DnaG upon complexation with drugs indicated that both drugs led to the closure of the active site of DnaG. From this study's findings, we propose Mitoxantrone and Vapreotide as potential anti-mycobacterial agents, with their novel mechanism of action against mycobacterial DnaG.


Subject(s)
Mycobacterium tuberculosis , Somatostatin/analogs & derivatives , Humans , Antitubercular Agents/pharmacology , DNA Primase/chemistry , DNA Primase/metabolism , Mitoxantrone/pharmacology
11.
Med Oncol ; 40(11): 337, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37864019

ABSTRACT

Cervical cancer remains a significant global health concern that starts in the cervix, the lower part of the uterus that connects to the vagina and is caused by the human papillomavirus (HPV), necessitating the development of effective multitargeted effective and resistance-proof therapies. In early-stage cervical cancer may not show any symptoms, however, as the cancer progresses, some people may experience- abnormal vaginal bleeding, watery or bloody vaginal discharge, pain in the pelvis or lower back, pain during sex, and frequent and painful urination. In this study, we screened the complete FDA-approved drug library using a multitargeted inhibitory approach against four cervical cancer proteins, namely mitotic arrest deficient -2, DNA polymerase epsilon B-subunit, benzimidazole-related -1, and threonine-protein kinase-1 which crucially plays its role for the in its development process. We employed the HTVS, SP and XP algorithms for efficient filtering and screening that helped to identify Mitoxantrone 2HCl against all of them with docking and MM\GBSA scores ranging from - 11.63 to - 7.802 kcal/mol and - 74.38 to - 47.73 kcal/mol, respectively. We also evaluated the interaction patterns of each complex and the pharmacokinetics properties that helped gain insight into interactions. Subsequently, we performed multiscale MD simulations for 100 ns to understand the dynamic behaviour and stability of the Mitoxantrone 2HCl -protein complexes that revealed the formation of stable drug-protein complexes and provided insights into the molecular interactions that contribute to Mitoxantrone's inhibitory effects on these proteins and can be a better drug for cervical cancer. However, experimental studies of these findings could pave the way for therapies to combat cervical cancer effectively.


Subject(s)
Molecular Dynamics Simulation , Uterine Cervical Neoplasms , Humans , Female , Molecular Docking Simulation , Mitoxantrone/pharmacology , Uterine Cervical Neoplasms/drug therapy , Cell Cycle Proteins , Pain
12.
Bioorg Med Chem Lett ; 94: 129465, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37669721

ABSTRACT

Mitoxantrone (MX) is a robust chemotherapeutic with well-characterized applications in treating certain leukemias and advanced breast and prostate cancers. The canonical mechanism of action associated with MX is its ability to intercalate DNA and inhibit topoisomerase II, giving it the designation of a topoisomerase II poison. Years after FDA approval, investigations have unveiled novel protein-binding partners, such as methyl-CpG-binding domain protein (MBD2), PIM1 serine/threonine kinase, RAD52, and others that may contribute to the therapeutic profile of MX. Moreover, recent proteomic studies have revealed MX's ability to modulate protein expression, illuminating the complex cellular interactions of MX. Although mechanistically relevant, the differential expression across the proteome does not address the direct interaction with potential binding partners. Identification and characterization of these MX-binding cellular partners will provide the molecular basis for the alternate mechanisms that influence MX's cytotoxicity. Here, we describe the design and synthesis of a MX-biotin probe (MXP) and negative control (MXP-NC) that can be used to define MX's cellular targets and expand our understanding of the proteome-wide profile for MX. In proof of concept studies, we used MXP to successfully isolate a recently identified protein-binding partner of MX, RAD52, in a cell lysate pulldown with streptavidin beads and western blotting.


Subject(s)
Mitoxantrone , Humans , Male , DNA Topoisomerases, Type II , DNA-Binding Proteins , Mitoxantrone/pharmacology , Prostatic Neoplasms/drug therapy , Proteome , Proteomics , Molecular Probes/chemistry , Molecular Probes/pharmacology , Breast Neoplasms/drug therapy , Female
13.
Naunyn Schmiedebergs Arch Pharmacol ; 396(12): 3723-3732, 2023 12.
Article in English | MEDLINE | ID: mdl-37310508

ABSTRACT

Cancer endocrine therapy can promote evolutionary dynamics and lead to changes in the gene expression profile of tumor cells. We aimed to assess the effect of tamoxifen (TAM)-resistance induction on ABCG2 pump mRNA, protein, and activity in ER + MCF-7 breast cancer cells. We also evaluated if the resistance to TAM leads to the cross-resistance toward mitoxantrone (MX), a well-known substrate of the ABCG2 pump. The ABCG2 mRNA and protein expression were compared in MCF-7 and its TAM-resistant derivative MCF-7/TAMR cells using RT-qPCR and western blot methods, respectively. Cross-resistance of MCF-7/TAMR cells toward MX was evaluated by the MTT method. Flow cytometry was applied to compare ABCG2 function between cell lines using MX accumulation assay. ABCG2 mRNA expression was also analyzed in tamoxifen-sensitive (TAM-S) and tamoxifen-resistant (TAM-R) breast tumor tissues. The levels of ABCG2 mRNA, protein, and activity were significantly higher in MCF-7/TAMR cells compared to TAM-sensitive MCF-7 cells. MX was also less toxic in MCF-7/TAMR compared to MCF-7 cells. ABCG2 was also upregulated in tissue samples obtained from TAM-R cancer patients compared to TAM-S patients. Prolonged exposure of ER + breast cancer cells to the active form of TAM and clonal evolution imposed by the selective pressure of the drug can lead to higher expression of the ABCG2 pump in the emerged TAM-resistant cells. Therefore, in choosing a sequential therapy for a patient who develops resistance to TAM, the possibility of the cross-resistance of the evolved tumor to chemotherapy drugs that are ABCG2 substrates should be considered. Prolonged exposure of MCF-7 breast cancer cells to tamoxifen can cause resistance to it and an increase in the expression of the ABCG2 mRNA and protein levels in the cells. Tamoxifen resistance can lead to cross-resistance to mitoxantrone.


Subject(s)
Breast Neoplasms , Tamoxifen , Humans , Female , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Mitoxantrone/pharmacology , Mitoxantrone/therapeutic use , MCF-7 Cells , Up-Regulation , Antineoplastic Agents, Hormonal/pharmacology , Antineoplastic Agents, Hormonal/therapeutic use , Drug Resistance, Neoplasm , RNA, Messenger/metabolism , Gene Expression Regulation, Neoplastic , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasm Proteins/pharmacology
14.
Biomolecules ; 13(6)2023 05 31.
Article in English | MEDLINE | ID: mdl-37371499

ABSTRACT

Doxorubicin (DOX) and mitoxantrone (MTX) are classical chemotherapeutic agents used in cancer that induce similar clinical cardiotoxic effects, although it is not clear if they share similar underlying molecular mechanisms. We aimed to assess the effects of DOX and MTX on the cardiac remodeling, focusing mainly on metabolism and autophagy. Adult male CD-1 mice received pharmacologically relevant cumulative doses of DOX (18 mg/kg) and MTX (6 mg/kg). Both DOX and MTX disturbed cardiac metabolism, decreasing glycolysis, and increasing the dependency on fatty acids (FA) oxidation, namely, through decreased AMP-activated protein kinase (AMPK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) content and decreased free carnitine (C0) and increased acetylcarnitine (C2) concentration. Additionally, DOX heavily influenced glycolysis, oxidative metabolism, and amino acids turnover by exclusively decreasing phosphofructokinase (PFKM) and electron transfer flavoprotein-ubiquinone oxidoreductase (ETFDH) content, and the concentration of several amino acids. Conversely, both drugs downregulated autophagy given by the decreased content of autophagy protein 5 (ATG5) and microtubule-associated protein light chain 3 (LC3B), with MTX having also an impact on Beclin1. These results emphasize that DOX and MTX modulate cardiac remodeling differently, despite their clinical similarities, which is of paramount importance for future treatments.


Subject(s)
Antineoplastic Agents , Mitoxantrone , Male , Mice , Animals , Mitoxantrone/pharmacology , Mitoxantrone/metabolism , Ventricular Remodeling , Antineoplastic Agents/pharmacology , Doxorubicin/pharmacology , Doxorubicin/metabolism , Autophagy , Amino Acids/metabolism , Myocytes, Cardiac/metabolism , Apoptosis , Oxidative Stress
15.
Genes (Basel) ; 14(5)2023 04 26.
Article in English | MEDLINE | ID: mdl-37239338

ABSTRACT

Occurrence of non-canonical G-quadruplex (G4) DNA structures in the genome have been recognized as key factors in gene regulation and several other cellular processes. The mosR and ndhA genes involved in pathways of oxidation sensing regulation and ATP generation, respectively, make Mycobacterium tuberculosis (Mtb) bacteria responsible for oxidative stress inside host macrophage cells. Circular Dichroism spectra demonstrate stable hybrid G4 DNA conformations of mosR/ndhA DNA sequences. Real-time binding of mitoxantrone to G4 DNA with an affinity constant ~105-107 M-1, leads to hypochromism with a red shift of ~18 nm, followed by hyperchromism in the absorption spectra. The corresponding fluorescence is quenched with a red shift ~15 nm followed by an increase in intensity. A change in conformation of the G4 DNA accompanies the formation of multiple stoichiometric complexes with a dual binding mode. The external binding of mitoxantrone with a partial stacking with G-quartets and/or groove binding induces significant thermal stabilization, ~20-29 °C in ndhA/mosR G4 DNA. The interaction leads to a two/four-fold downregulation of transcriptomes of mosR/ndhA genes apart from the suppression of DNA replication by Taq polymerase enzyme, establishing the role of mitoxantrone in targeting G4 DNA, as an alternate strategy for effective anti-tuberculosis action in view of deadly multi-drug resistant tuberculosis disease causing bacterial strains t that arise from existing therapeutic treatments.


Subject(s)
G-Quadruplexes , Mycobacterium tuberculosis , Mitoxantrone/pharmacology , Mitoxantrone/chemistry , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , DNA/genetics , Base Sequence
16.
Apoptosis ; 28(11-12): 1534-1545, 2023 12.
Article in English | MEDLINE | ID: mdl-37243774

ABSTRACT

Target-negative relapse after CD19 chimeric antigen receptor engineered (CAR) T cell therapy for patients with B lineage acute lymphoblastic leukemia (B-ALL) presents limited treatment options with dismal outcomes. Although CD22-CAR T cells mediate similarly potent antineoplastic effects in patients with CD19dim or even CD19-negative relapse following CD19-directed immunotherapy, a high rate of relapse associated with diminished CD22 cell surface expression has also been observed. Therefore, it is unclear whether any other therapeutic options are available. Mitoxantrone has shown significant antineoplastic activity in patients with relapsed or refractory leukemia over the past decades, and in some cases, the addition of bortezomib to conventional chemotherapeutic agents has demonstrated improved response rates. However, whether this mitoxantrone and bortezomib combination therapy is effective for those patients who have relapsed B-ALL after receiving CD19-CAR T cell therapy remains to be elucidated. In this study, we established a cellular model system using a CD19-positive B-ALL cell line Nalm-6 to investigate the treatment options for CD19-negative relapsed B-ALL after CD19-CAR T cell therapy. In addition to CD22-CAR T therapy, we observed that the combination of bortezomib and mitoxantrone exhibited effective anti-leukemia activity in the CD19-negative Nalm-6 cell line by downregulating p-AKT and p-mTOR. These results suggest that this combination therapy is a possible option for target-negative refractory leukemia cells after CAR-T cell treatment.


Subject(s)
Antineoplastic Agents , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Mitoxantrone/pharmacology , Mitoxantrone/therapeutic use , Bortezomib/pharmacology , Bortezomib/therapeutic use , Apoptosis , Recurrence , Cell Line , Antigens, CD19 , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Sialic Acid Binding Ig-like Lectin 2
17.
IEEE Trans Nanobioscience ; 22(4): 872-880, 2023 10.
Article in English | MEDLINE | ID: mdl-37022888

ABSTRACT

The development nano-carriers based therapeutic methods is a potent strategy for enhancing cellular delivery of drugs and therapeutic efficiency in cancer chemotherapy. In the study, silymarin(SLM) and metformin (Met) were co-loaded into mesoporous silica nanoparticles (MSNs) and evaluated the synergistic inhibitory effect of these natural herbal compound in improving chemotherapeutic efficiency against MCF7MX and MCF7 human breast cancer cells. Nanoparticles have been synthesized and characterized by FTIR, BET, TEM, SEM, and X-ray diffraction. Drug loading capacity and release determined. The both single and combined form of SLM and Met (free and loaded MSN) were used for MTT assay, colony formation and real time-PCR in cellular study. The synthesis MSN were uniformity in size and shape with particle size of approximately 100 nm and pore size of approximately 2 nm. The Met-MSNs IC30, SLM -MSNs IC50 and dual-drug loaded MSNs IC50 were much lower than of free-Met IC30, free-SLM IC50 and free Met-SLM IC50 MCF7MX and MCF7cells. The co-loaded MSNs treated cells were increased sensitivity to mitoxantrone with the inhibition of BCRP mRNA expressions and could induce apoptosis in MCF7MX and MCF7 cells in comparison with other groups. Colony numbers were significantly reduced in comparison to with other groups in the co-loaded MSNs -treated cells ( ). Our results indicate that Nano-SLM enhances the anti-cancer effects of SLM against human breast cancer cells. The findings of the present study suggest that the anti-cancer effects of both metformin and silymarin enhances against breast cancer cells when MSNs are used as a drug delivery system.


Subject(s)
Breast Neoplasms , Nanoparticles , Silymarin , Humans , Female , MCF-7 Cells , Mitoxantrone/pharmacology , Silicon Dioxide , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Breast Neoplasms/drug therapy , Neoplasm Proteins , Drug Delivery Systems/methods , Porosity , Drug Carriers
18.
J Mol Model ; 29(5): 153, 2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37086344

ABSTRACT

The PI3K/Akt/mTOR pathway is one of the important pathways in many cancers. Akt is a serine-threonine kinase protein identified as a drug target for cancer treatment. Therefore, anticancer drugs are essential therapeutic targets for this pathway. In the current study, the inhibitory effect of two anticancer molecules, XFE and mitoxantrone, on AKT1 protein that can impact the activity of the AKT1 protein was investigated by using molecular docking and molecular dynamics (MD) simulations. The molecular docking results presented a relatively higher binding affinity of the mitoxantrone molecule in interaction with AKT1 than the XFE molecule. These results were validated by the MM/PBSA technique that was performed on obtained trajectories of 25 ns MD simulations. The mitoxantrone molecule has an intense binding energy of - 880.536 kcal/mol with AKT1 protein, while the XFE molecule shows a binding energy value of - 83.569 kcal/mol. Our findings from molecular dynamics simulations indicated that both molecules have favorite interactions with AKT1 protein. Other analyses, such as RMSF and hydrogen binding on trajectories obtained from MD simulations, indicated that the mitoxantrone molecule could be a relatively potent inhibitor for AKT1. Based on the results of this study and the structure of mitoxantrone, it is expected to be a good candidate for cancer treatment as a (PI3K)/Akt/mTOR inhibitor.


Subject(s)
Mitoxantrone , Proto-Oncogene Proteins c-akt , Mitoxantrone/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/chemistry , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism
19.
Int J Mol Sci ; 24(6)2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36982905

ABSTRACT

A collection of repurposing drugs (Prestwick Chemical Library) containing 1200 compounds was screened to investigate the drugs' antimicrobial effects against planktonic cultures of the respiratory pathogen Streptococcus pneumoniae. After four discrimination rounds, a set of seven compounds was finally selected, namely (i) clofilium tosylate; (ii) vanoxerine; (iii) mitoxantrone dihydrochloride; (iv) amiodarone hydrochloride; (v) tamoxifen citrate; (vi) terfenadine; and (vii) clomiphene citrate (Z, E). These molecules arrested pneumococcal growth in a liquid medium and induced a decrease in bacterial viability between 90.0% and 99.9% at 25 µM concentration, with minimal inhibitory concentrations (MICs) also in the micromolar range. Moreover, all compounds but mitoxantrone caused a remarkable increase in the permeability of the bacterial membrane and share a common, minimal chemical structure consisting of an aliphatic amine linked to a phenyl moiety via a short carbon/oxygen linker. These results open new possibilities to tackle pneumococcal disease through drug repositioning and provide clues for the design of novel membrane-targeted antimicrobials with a related chemical structure.


Subject(s)
Anti-Infective Agents , Pneumococcal Infections , Humans , Streptococcus pneumoniae , Anti-Bacterial Agents/pharmacology , Drug Repositioning , Mitoxantrone/pharmacology , Pneumococcal Infections/drug therapy , Anti-Infective Agents/pharmacology , Microbial Sensitivity Tests , Cell Membrane
20.
ChemMedChem ; 18(11): e202300094, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36988057

ABSTRACT

The role of ATP-binding cassette (ABC) transporter-mediated multidrug resistance (MDR) in anti-cancer therapy is often challenging, frequently leading to inefficiency of treatments. Cancer cells exploit efflux transporters, like the breast cancer resistance protein (BCRP, ABCG2), to secrete chemotherapeutic substances. In this study, an N-phenyl-2-carboranylquinazolin-4-amine (8) was designed as inorganic-organic hybrid BCRP inhibitor. In particular, the ABCG2-transporter inhibitor-prominent scaffold N-phenylquinazolin-4-amine was combined with a boron-carbon cluster (carborane) moiety. Introducing a carborane at 2-position of the quinazoline scaffold resulted in an increased inhibitory activity towards human ABCG2 (hABCG2) compared to its recently published regioisomer N-carboranyl-2-phenyl-quinazolin-4-amine. The carboranylquinazoline 8 further showed the ability to reverse hABCG2-mediated drug resistance in MDCKII-hABCG2 cells by lowering the IC50 value of the BCRP-substrate mitoxantrone, similar to the standard reference and strong inhibitor Ko143, without exhibiting intrinsic toxicity in the lower micromolar ranges. These results make compound 8 a promising scaffold for the design of further BCRP inhibitors.


Subject(s)
Antineoplastic Agents , Neoplasm Proteins , Humans , ATP Binding Cassette Transporter, Subfamily G, Member 2 , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/pharmacology , Mitoxantrone/pharmacology , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...