Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
1.
Int J Biol Macromol ; 273(Pt 1): 133059, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38866269

ABSTRACT

Kratom, Mitragyna speciosa, is one of the most popular herbs in the West and Southeast Asia. A number of previous works have focused on bioactive alkaloids in this plant; however, non-alkaloids have never been investigated for their biological activities. Antiviral and virucidal assays of a methanol leaf extract of Kratom, M. speciosa, revealed that a crude extract displayed virucidal activity against the SARS-CoV-2. Activity-guided isolation of a methanol leaf extract of Kratom led to the identification of B-type procyanidin condensed tannins of (-)-epicatechin as virucidal compounds against SARS-CoV-2. The fraction containing condensed tannins exhibited virucidal activity with an EC50 value of 8.38 µg/mL and a selectivity index (SI) value >23.86. LC-MS/MS analysis and MALDI-TOF MS identified the structure of the virucidal compounds in Kratom as B-type procyanidin condensed tannins, while gel permeation chromatograph (GPC) revealed weight average molecular weight of 238,946 Da for high molecular-weight condensed tannins. In addition to alkaloids, (-)-epicatechin was found as a major component in the leaves of M. speciosa, but it did not have virucidal activity. Macromolecules of (-)-epicatechin, i.e., procyanidin condensed tannins, showed potent virucidal activity against SARS-CoV-2, suggesting that the high molecular weights of these polyphenols are important for virucidal activity.


Subject(s)
Antiviral Agents , Biflavonoids , Catechin , Mitragyna , Plant Extracts , Plant Leaves , Proanthocyanidins , SARS-CoV-2 , Catechin/chemistry , Catechin/pharmacology , Proanthocyanidins/chemistry , Proanthocyanidins/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Mitragyna/chemistry , Biflavonoids/pharmacology , Biflavonoids/chemistry , Plant Leaves/chemistry , Vero Cells , Chlorocebus aethiops , Humans , Animals , COVID-19/virology , Tandem Mass Spectrometry , COVID-19 Drug Treatment
2.
Front Public Health ; 12: 1416689, 2024.
Article in English | MEDLINE | ID: mdl-38873312

ABSTRACT

Substance use disorders contribute to considerable U.S. morbidity and mortality. While effective pharmacotherapy options are available to treat opioid and alcohol use disorders, for a variety of reasons, many patients lack access to treatment or may be reluctant to seek care due to concerns such as perceived stigma or a current lack of desire to completely curtail their substance use. Furthermore, treatment options are limited for patients with stimulant or polysubstance use disorders. Thus, there is considerable need to expand the substance use disorder harm reduction armamentarium. Kratom (Mitragyna speciosa Korth.) is an herbal substance that can produce both opioid and stimulant-like effects, and its use in the US is growing. Though there are concerns regarding adverse effects, dependence risk, and limited regulation of its manufacturing and sale, the pharmacology of kratom and early preclinical studies suggest a potential role as a harm reduction agent for various substance use disorders, and it has historically been used in Southeast Asia for such purposes. The goal of this review is to describe kratom's history of use, pharmacology, and early pre-clinical and observational research regarding its therapeutic potential in opioid use disorder, as well as alcohol, stimulant, and polysubstance use disorders, while also highlighting current concerns around its use, existing gaps in the literature, and directions for future research.


Subject(s)
Harm Reduction , Mitragyna , Substance-Related Disorders , Mitragyna/chemistry , Humans , Substance-Related Disorders/prevention & control , Plant Extracts/therapeutic use
3.
J Forensic Sci ; 69(4): 1421-1428, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38775145

ABSTRACT

Mitragyna speciosa, commonly known as kratom, is a narcotic plant that is used for its unique mood-enhancing and pain-relieving effects. It is marketed throughout the United States as a 'legal high' and has gained popularity as an alternative to opioids. However, kratom's increasing involvement in accidental overdoses, especially among polydrug users, has prompted warnings from the Drug Enforcement Agency (DEA) and the Food and Drug Administration (FDA). Despite these warnings, kratom remains legal federally, although it is banned in six states. This legal disparity complicates monitoring and enforcement efforts in states where kratom is illegal. Common forensic techniques using morphology or chemical analysis are beneficial in some instances but are not useful in source attribution because most seized kratom is powdered and the alkaloid content of samples can vary within products, making sourcing unreliable. This study focused on developing a DNA barcoding method to access sequence variation in commercial kratom products. It evaluated the utility of one nuclear barcode region (ITS) and three chloroplast barcode regions (matK, rbcL, and trnH-psbA) in assessing sequence variation across commercially available kratom products. Novel polymorphisms were discovered, and the ITS region showed the greatest variation between samples. Among the 15 kratom products tested, only two haplotypes were identified across the four barcoding regions. The findings highlight the potential of DNA barcoding as a forensic tool in the traceability and enforcement against illegal kratom distribution. Nonetheless, the limited haplotypic diversity points to a need for further development and expansion of the M. speciosa DNA sequence database.


Subject(s)
DNA Barcoding, Taxonomic , DNA, Plant , Mitragyna , Mitragyna/genetics , Mitragyna/chemistry , DNA, Plant/genetics , Humans , Polymerase Chain Reaction , Sequence Analysis, DNA , Polymorphism, Genetic , Genetic Variation , DNA, Chloroplast/genetics
4.
Drug Alcohol Depend ; 260: 111329, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38788532

ABSTRACT

BACKGROUND: Kratom products are widely used in the United States, with inadequate understanding of how dosing amounts/frequencies relate to outcomes. METHODS: Between July-November 2022, we enrolled 395 active US adult kratom consumers into a remote study with a baseline survey. We examined self-reported typical dose amounts and frequencies across people and product types, and their associations with outcomes: multiple regression was used to examine whether amounts and frequencies (doses/day) were associated with acute effects, withdrawal symptoms, scores on the Subjective Opioid Withdrawal Scale (SOWS), and addiction (operationalized as DSM-5-based symptoms of kratom-use disorder, KUD). RESULTS: Participants were 54.9% male, aged 38.1 on average, and 81.3% White. Mean length of kratom use was 5.7 years. Most (95.9%) reported regularly using whole-leaf kratom products; 16 (4.1%) reported regular extract use. SOWS scores were mild to moderate on average (13.5, SD 11.9). KUD symptom counts were mostly in the mild/moderate range (80.7%). Withdrawal and KUD symptoms were more closely associated with dose frequency than dose amount. Men reported more acute effects, withdrawal symptoms with cessation, and KUD symptoms than women. CONCLUSIONS: Greater dose amount and frequency were systematically related to the number of withdrawal symptoms upon cessation and to KUD symptoms; the relationship was stronger for dose frequency than amount. Men may have more acute effects and more withdrawal and KUD symptoms than women. Although kratom may be used nonproblematically by some consumers, physical dependence (tolerance, withdrawal, or use to avoid withdrawal) and KUD become more likely with increasing dose frequency.


Subject(s)
Diagnostic and Statistical Manual of Mental Disorders , Mitragyna , Substance Withdrawal Syndrome , Humans , Male , Female , Adult , Mitragyna/chemistry , Middle Aged , Substance Withdrawal Syndrome/diagnosis , Substance-Related Disorders/diagnosis , Substance-Related Disorders/epidemiology , Young Adult , Dose-Response Relationship, Drug
5.
Talanta ; 274: 125923, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38569366

ABSTRACT

Mitragyna speciosa, more commonly known as kratom, has emerged as an alternative to treat chronic pain and addiction. However, the alkaloid components of kratom, which are the major contributors to kratom's pharmaceutical properties, have not yet been fully investigated. In this study, matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry was used to map the biodistribution of three alkaloids (corynantheidine, mitragynine, and speciogynine) in rat brain tissues. The alkaloids produced three main ion types during MALDI analysis: [M + H]+, [M - H]+, and [M - 3H]+. Contrary to previous reports suggesting that the [M - H]+ and [M - 3H]+ ion types form during laser ablation, these ion types can also be produced during the MALDI matrix application process. Several strategies are proposed to accurately map the biodistribution of the alkaloids. Due to differences in the relative abundances of the ions in different biological regions of the tissue, differences in ionization efficiencies of the ions, and potential overlap of the [M - H]+ and [M - 3H]+ ion types with endogenous metabolites of the same empirical formula, a matrix that mainly produces the [M + H]+ ion type is optimal for accurate mapping of the alkaloids. Alternatively, the most abundant ion type can be mapped or the intensities of all ion types can be summed together to generate a composite image. The accuracy of each of these approaches is explored and validated.


Subject(s)
Alkaloids , Brain , Mitragyna , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Animals , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Mitragyna/chemistry , Rats , Brain/metabolism , Brain/diagnostic imaging , Alkaloids/pharmacokinetics , Alkaloids/analysis , Alkaloids/chemistry , Male , Ions/chemistry , Tissue Distribution , Rats, Sprague-Dawley
6.
Br J Pharmacol ; 181(13): 2070-2084, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38523471

ABSTRACT

BACKGROUND AND PURPOSE: Kratom is a preparation from Mitragyna speciosa, which is used as a natural drug preparation for many purposes around the world. However, an overdose of Kratom may cause addiction-like problems including aversive withdrawal states resulting in cognitive impairments via unknown mechanisms. Its main psychoactive alkaloid is mitragynine, showing opioid-like properties. EXPERIMENTAL APPROACH: Here, we analysed the neuropharmacological effects of mitragynine compared with morphine withdrawal in rats and searched for a pharmacological treatment option that may reverse the occurring cognitive deficits that usually aggravate withdrawal. KEY RESULTS: We found that withdrawal from 14-day mitragynine (1-10 mg·kg-1·day-1) treatment caused dose-dependent behavioural withdrawal signs resembling those of morphine (5 mg·kg-1·day-1) withdrawal. However, mitragynine (5 and 10 mg·kg-1·day-1) withdrawal also induced impairments in a passive avoidance task. Mitragynine withdrawal not only reduced hippocampal field excitatory postsynaptic potential (fEPSP) amplitudes in basal synaptic transmission and long-term potentiation (LTP) but also reduced epigenetic markers, such as histone H3K9 and H4K12 expression. At the same time, it up-regulates HDAC2 expression. Targeting the epigenetic adaptations with the HDAC inhibitor, SAHA, reversed the effects of mitragynine withdrawal on epigenetic dysregulation, hippocampal input/output curves, paired-pulse facilitation, LTP and attenuated the cognitive deficit. However, SAHA amplified the effects of morphine withdrawal. CONCLUSION AND IMPLICATIONS: The data from this work show that changes in histone expression and downstream hippocampal plasticity may explain mitragynine, but not morphine, withdrawal behaviours and cognitive impairments. Thus, it may provide a new treatment approach for aversive Kratom/mitragynine withdrawal and addiction.


Subject(s)
Cognitive Dysfunction , Epigenesis, Genetic , Secologanin Tryptamine Alkaloids , Substance Withdrawal Syndrome , Animals , Secologanin Tryptamine Alkaloids/pharmacology , Substance Withdrawal Syndrome/drug therapy , Epigenesis, Genetic/drug effects , Male , Rats , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/chemically induced , Rats, Sprague-Dawley , Morphine/pharmacology , Mitragyna/chemistry , Behavior, Animal/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Avoidance Learning/drug effects , Dose-Response Relationship, Drug
7.
J Pharm Biomed Anal ; 243: 116078, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38489958

ABSTRACT

Kratom (Mitragyna speciosa) is a species of large tree that grows in Southeast Asia and is part of the Rubiaceae family. Its fresh leaves are harvested for their medicinal properties and used for their psychoactive effects. Kratom contains many biologically active alkaloids, including mitragynine and 7-OH-mitragynine, which are considered the two most important psychoactive components and constitute approximately 66% and 2% of the total alkaloid content. Other alkaloids are present in the plant, such as speciogynine, speciociliatine and paynantheine, but have less psychoactive activity. Over the past decade, the sale of kratom powder has increased on the Internet. This led to a significant increase in forensic cases. Given the lack of data existing in the literature, and the total absence of data in nails, the authors report a study to determine the best target alkaloids for documenting kratom consumption in this matrix. Fingernail clippings from a supposed kratom powder user were analyzed after liquid-liquid extraction, chromatography separation using a HSS C18 column and performed on an ultra-high performance liquid chromatography coupled to a tandem mass spectrometer. In the specimen, mitragynine was quantified at 229 pg/mg, speciogynine and paynantheine were both quantified at 2 pg/mg, and speciociliatine was quantified at 19 pg/mg. 7-OH-mitragynine was not detected. The interpretation of these concentrations is complex, since there is currently no reference in the literature, as this is the first identification of mitragynine and other kratom alkaloids in nails. Nevertheless, in view of the high concentration of mitragynine, the subject seems to be a repetitive user of kratom. According to the measured concentrations, it seems that mitragynine remains the best target to document kratom consumption, but the identification of the other alkaloids would enhance the specificity of the test.


Subject(s)
Mitragyna , Secologanin Tryptamine Alkaloids , Nails/chemistry , Powders , Secologanin Tryptamine Alkaloids/analysis , Secologanin Tryptamine Alkaloids/chemistry , Chromatography, High Pressure Liquid , Plant Extracts/chemistry , Mitragyna/chemistry
8.
Regul Toxicol Pharmacol ; 143: 105466, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37536550

ABSTRACT

Mitragyna speciosa Korth also known as kratom, is an herbal drug preparation for its therapeutic properties and opioid-replacement therapy. Kratom is consumed in a brewed decoction form in Malaysia and to date, no studies have characterized its chemical and toxicity profile. Thus, this study aims to evaluate kratom decoction's safety and toxicity profile after 28 days of treatment. Mitragynine content was quantified in kratom decoction and used as a marker to determine the concentration. Male and female Sprague Dawley rats were orally treated with vehicle or kratom decoction (10, 50 or 150 mg/kg) and two satellite groups were treated with vehicle and kratom decoction (150 mg/kg). Blood and organs were collected for hematology, biochemical and histopathology analysis at the end of treatment. No mortality was found after 28 days of treatment and no significant changes in body weight and hematology profile, except for low platelet count. High amounts of uric acid, AST, ALT and alkaline phosphatase were found in the biochemical analysis. Histological investigation of the heart and lungs detected no alterations except for the kidney, liver and brain tissues. In conclusion, repeated administration of kratom decoction provided some evidence of toxicity in the kidney and liver with no occurrence of mortality.


Subject(s)
Mitragyna , Plants, Medicinal , Male , Rats , Female , Animals , Plant Extracts/toxicity , Mitragyna/chemistry , Rats, Sprague-Dawley , Liver
9.
Angew Chem Int Ed Engl ; 62(35): e202303700, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37332089

ABSTRACT

Mitragynine pseudoindoxyl, a kratom metabolite, has attracted increasing attention due to its favorable side effect profile as compared to conventional opioids. Herein, we describe the first enantioselective and scalable total synthesis of this natural product and its epimeric congener, speciogynine pseudoindoxyl. The characteristic spiro-5-5-6-tricyclic system of these alkaloids was formed through a protecting-group-free cascade relay process in which oxidized tryptamine and secologanin analogues were used. Furthermore, we discovered that mitragynine pseudoindoxyl acts not as a single molecular entity but as a dynamic ensemble of stereoisomers in protic environments; thus, it exhibits structural plasticity in biological systems. Accordingly, these synthetic, structural, and biological studies provide a basis for the planned design of mitragynine pseudoindoxyl analogues, which can guide the development of next-generation analgesics.


Subject(s)
Mitragyna , Secologanin Tryptamine Alkaloids , Mitragyna/chemistry , Mitragyna/metabolism , Secologanin Tryptamine Alkaloids/chemistry , Analgesics, Opioid
10.
J Chromatogr A ; 1703: 464094, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37262932

ABSTRACT

Mitragyna speciosa or kratom is emerging worldwide as a "legal" herbal drug of abuse. An increasing number of papers is appearing in the scientific literature regarding its pharmacological profile and the analysis of its chemical constituents, mainly represented by alkaloids. However, its detection and identification are not straightforward as the plant material is not particularly distinctive. Hyphenated techniques are generally preferred for the identification and quantification of these compounds, especially the main purported psychoactive substances, mitragynine (MG) and 7-hydroxymitragynine (7-OH-MG), in raw and commercial products. Considering the vast popularity of this recreational drug and the growing concern about its safety, the analysis of alkaloids in biological specimens is also of great importance for forensic and toxicological laboratories. The review addresses the analytical aspects of kratom spanning the extraction techniques used to isolate the alkaloids, the qualitative and quantitative analytical methods and the strategies for the distinction of the naturally occurring isomers.


Subject(s)
Illicit Drugs , Mitragyna , Plant Extracts/chemistry , Mitragyna/chemistry
11.
PLoS One ; 18(3): e0283147, 2023.
Article in English | MEDLINE | ID: mdl-36943850

ABSTRACT

The fresh leaves of Mitragyna speciosa (Korth.) Havil. have been traditionally consumed for centuries in Southeast Asia for its healing properties. Although the alkaloids of M. speciosa have been studied since the 1920s, comparative and systematic studies of metabolite composition based on different leaf maturity levels are still lacking. This study assessed the secondary metabolite composition in two different leaf stages (young and mature) of M. speciosa, using an untargeted liquid chromatography-electrospray ionisation-time-of-flight-mass spectrometry (LC-ESI-TOF-MS) metabolite profiling. The results revealed 86 putatively annotated metabolite features (RT:m/z value) comprising 63 alkaloids, 10 flavonoids, 6 terpenoids, 3 phenylpropanoids, and 1 of each carboxylic acid, glucoside, phenol, and phenolic aldehyde. The alkaloid features were further categorised into 14 subclasses, i.e., the most abundant class of secondary metabolites identified. As per previous reports, indole alkaloids are the most abundant alkaloid subclass in M. speciosa. The result of multivariate analysis (MVA) using principal component analysis (PCA) showed a clear separation of 92.8% between the young and mature leaf samples, indicating a high variance in metabolite levels between them. Akuammidine, alstonine, tryptamine, and yohimbine were tentatively identified among the many new alkaloids reported in this study, depicting the diverse biological activities of M. speciosa. Besides delving into the knowledge of metabolite distribution in different leaf stages, these findings have extended the current alkaloid repository of M. speciosa for a better understanding of its pharmaceutical potential.


Subject(s)
Mitragyna , Secologanin Tryptamine Alkaloids , Plant Extracts/chemistry , Mitragyna/chemistry , Indole Alkaloids/analysis , Plant Leaves/metabolism , Metabolomics
12.
Molecules ; 28(1)2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36615587

ABSTRACT

Tamarindus indica and Mitragyna inermis are widely used by herbalists to cure diabetes mellitus. The aim of this study is to investigate the inhibitory potential of aqueous and various organic solvent fractions from both plants and some isolated compounds against advanced glycation end-products (AGEs). For this purpose, an in vitro BSA-fructose glycation model was used to evaluate the inhibition of AGE formation. Furthermore, the effects of the fractions on mouse fibroblast (NIH-3T3) and human hepatocyte (HepG2) survival were evaluated. The leaf, stem, and root fractions of both plants exhibited significant inhibition of AGEs formation. The IC50 values appeared to be less than 250 µg/mL; however, all fractions presented no adverse effects on NIH-3T3 up to 500 µg/mL. Otherwise, our phytochemical investigation afforded the isolation of a secoiridoid from the Mitragyna genus named secoiridoid glucoside sweroside (1), along with three known quinovic acid glycosides: quinovic acid-3ß-O-ß-d-glucopyranoside (2), quinovic acid-3-O-ß-d-6-deoxy-glucopyranoside, 28-O-ß-d-glucopyranosyl ester (3), and quinovic acid 3-O-α-l-rhamnopyranosyl-(4→1)-ß-d-glucopyranoside (4). In particular, 1-3 are compounds which have not previously been described in Mitragyna inermis roots. However, the isolated compounds did not exhibit AGE inhibitory activity. Further investigation on these potent antiglycation fractions may allow for the isolation of new antidiabetic drug candidates.


Subject(s)
Mitragyna , Tamarindus , Mice , Animals , Humans , Mitragyna/chemistry , Maillard Reaction , Plant Extracts/pharmacology , Plant Extracts/chemistry , Hepatocytes , Glycation End Products, Advanced
13.
Drug Test Anal ; 15(2): 213-219, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36258649

ABSTRACT

Mitragyna speciosa, known as kratom, is a tropical tree native to Southeast Asia that has long been used to increase energy and in traditional medicine. Kratom leaves contain several indole alkaloids including mitragynine, mitraciliatine, speciogynine, and speciociliatine, which have the same molecular formula and connectivity, but different spatial arrangements (i.e., diastereomers). A routine liquid-chromatographic-high-resolution mass-spectrometric (LC-HRMS) multi-analyte method for addictive and herbal drugs in urine did not separate mitragynine from speciogynine and speciociliatine. Separation and individual measurement of the four diastereomers was possible with an improved LC method. All diastereomers were detected in 29 patient urine samples who tested positive for mitragynine with the routine method, albeit at variable absolute amounts and relative proportions. The presence of all diastereomers rather than individual substances indicated that they originated from the intake of kratom (i.e., plant material). Speciociliatine dominated in most samples (66%), whereas mitragynine and mitraciliatine were the highest in 17% each. A kratom product (powdered plant material) marketed in Sweden contained all diastereomers with mitragynine showing the highest level. In Sweden, there are signs of an increasing use of kratom in society, based on the results from drug testing, the number of poisons center consultations on intoxications, and customs seizure statistics. Because there may be health risks associated with kratom use, including dependence, serious adverse reactions, and death, analytical methods should be able to identify and quantify all diastereomers. In Sweden, this is important from a legal perspective, as only mitragynine is classified, whereas the other three diastereomers, and kratom (plant material), are not.


Subject(s)
Mitragyna , Secologanin Tryptamine Alkaloids , Humans , Mitragyna/chemistry , Secologanin Tryptamine Alkaloids/analysis , Chromatography, Liquid/methods , Plant Extracts/chemistry
14.
J Anal Toxicol ; 46(9): 957-964, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36047661

ABSTRACT

Kratom is an herbal drug that is legal in the USA. While it is marketed as a safer alternative to opioids, it can cause opioid-like withdrawal symptoms when discontinued after regular use. Several case studies have shown that kratom exposure in utero can lead to symptoms in newborns consistent with neonatal abstinence syndrome. Here, we present a validated method for the detection of kratom in umbilical cord by liquid chromatography--tandem mass spectrometry. The umbilical cord is homogenized in solvent and kratom analytes are purified by solid phase extraction (strong cation exchange). Diastereomeric kratom alkaloids mitragynine (MG), speciociliatine (SC), speciogynine and mitraciliatine are separated by reverse phase chromatography on a phenyl-hexyl column. Applying this method to residual umbilical cords submitted to our laboratory for drug testing, 29 positive specimens exhibiting varied kratom analyte distributions were observed. MG and SC were the most abundant kratom analytes and were selected as biomarkers of kratom exposure. A cutoff concentration of 0.08 ng/g was established for both MG and SC.


Subject(s)
Mitragyna , Prenatal Exposure Delayed Effects , Secologanin Tryptamine Alkaloids , Infant, Newborn , Female , Humans , Chromatography, Liquid/methods , Mitragyna/chemistry , Tandem Mass Spectrometry/methods , Secologanin Tryptamine Alkaloids/chemistry , Analgesics, Opioid
15.
Nutrients ; 14(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36235558

ABSTRACT

Kratom (Mitragyna speciosa (Korth.) Havil.) has been used to reduce blood sugar and lipid profiles in traditional medicine, and mitragynine is a major constituent in kratom leaves. Previous data on the blood sugar and lipid-altering effects of kratom are limited. In this study, phytochemical analyses of mitragynine, 7-hydroxymitragynine, quercetin, and rutin were performed in kratom extracts. The effects on α-glucosidase and pancreatic lipase activities were investigated in kratom extracts and mitragynine. The LC-MS/MS analysis showed that the mitragynine, quercetin, and rutin contents from kratom extracts were different. The ethanol extract exhibited the highest total phenolic content (TPC), total flavonoid content (TFC), and total alkaloid content (TAC). Additionally, compared to methanol and aqueous extracts, the ethanol extract showed the strongest inhibition activity against α-glucosidase and pancreatic lipase. Compared with the anti-diabetic agent acarbose, mitragynine showed the most potent α-glucosidase inhibition, with less potent activity of pancreatic lipase inhibition. Analysis of α-glucosidase and pancreatic lipase kinetics revealed that mitragynine inhibited noncompetitive and competitive effects, respectively. Combining mitragynine with acarbose resulted in a synergistic interaction with α-glucosidase inhibition. These results have established the potential of mitragynine from kratom as a herbal supplement for the treatment and prevention of diabetes mellitus.


Subject(s)
Mitragyna , Acarbose , Blood Glucose/analysis , Chromatography, Liquid , Ethanol/analysis , Lipase , Lipids/analysis , Methanol , Mitragyna/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Quercetin/analysis , Rutin/analysis , Tandem Mass Spectrometry , alpha-Glucosidases
16.
Psychopharmacology (Berl) ; 239(12): 3793-3804, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36308562

ABSTRACT

RATIONALE: Kratom derives from Mitragyna speciosa (Korth.), a tropical tree in the genus Mitragyna (Rubiaceae) that also includes the coffee tree. Kratom leaf powders, tea-like decoctions, and commercial extracts are taken orally, primarily for health and well-being by millions of people globally. Others take kratom to eliminate opioid use for analgesia and manage opioid withdrawal and use disorder. There is debate over the possible respiratory depressant overdose risk of the primary active alkaloid, mitragynine, a partial µ-opioid receptor agonist, that does not signal through ß-arrestin, the primary opioid respiratory depressant pathway. OBJECTIVES: Compare the respiratory effects of oral mitragynine to oral oxycodone in rats with the study design previously published by US Food and Drug Administration (FDA) scientists for evaluating the respiratory effects of opioids (Xu et al., Toxicol Rep 7:188-197, 2020). METHODS: Blood gases, observable signs, and mitragynine pharmacokinetics were assessed for 12 h after 20, 40, 80, 240, and 400 mg/kg oral mitragynine isolate and 6.75, 60, and 150 mg/kg oral oxycodone hydrochloride. FINDINGS: Oxycodone administration produced significant dose-related respiratory depressant effects and pronounced sedation with one death each at 60 and 150 mg/kg. Mitragynine did not yield significant dose-related respiratory depressant or life-threatening effects. Sedative-like effects, milder than produced by oxycodone, were evident at the highest mitragynine dose. Maximum oxycodone and mitragynine plasma concentrations were dose related. CONCLUSIONS: Consistent with mitragynine's pharmacology that includes partial µ-opioid receptor agonism with little recruitment of the respiratory depressant activating ß-arrestin pathway, mitragynine produced no evidence of respiratory depression at doses many times higher than known to be taken by humans.


Subject(s)
Mitragyna , Plant Extracts , Secologanin Tryptamine Alkaloids , Animals , Rats , Analgesics, Opioid/pharmacology , Mitragyna/chemistry , Oxycodone/pharmacology , Plant Extracts/pharmacology , Receptors, Opioid , Secologanin Tryptamine Alkaloids/pharmacology
17.
J Pharmacol Exp Ther ; 383(3): 182-198, 2022 12.
Article in English | MEDLINE | ID: mdl-36153006

ABSTRACT

The primary kratom alkaloid mitragynine is proposed to act through multiple mechanisms, including actions at µ-opioid receptors (MORs) and adrenergic-α 2 receptors (Aα 2Rs), as well as conversion in vivo to a MOR agonist metabolite (i.e., 7-hydroxymitragynine). Aα 2R and MOR agonists can produce antinociceptive synergism. Here, contributions of both receptors to produce mitragynine-related effects were assessed by measuring receptor binding in cell membranes and, in rats, pharmacological behavioral effect antagonism studies. Mitragynine displayed binding affinity at both receptors, whereas 7-hydroxymitragynine only displayed MOR binding affinity. Compounds were tested for their capacity to decrease food-maintained responding and rectal temperature and to produce antinociception in a hotplate test. Prototypical MOR agonists and 7-hydroxymitragynine, but not mitragynine, produced antinociception. MOR agonist and 7-hydroxymitragynine rate-deceasing and antinociceptive effects were antagonized by the opioid antagonist naltrexone but not by the Aα 2R antagonist yohimbine. Hypothermia only resulted from reference Aα 2R agonists. The rate-deceasing and hypothermic effects of reference Aα 2R agonists were antagonized by yohimbine but not naltrexone. Neither naltrexone nor yohimbine antagonized the rate-decreasing effects of mitragynine. Mitragynine and 7-hydroxymitragynine increased the potency of the antinociceptive effects of Aα 2R but not MOR reference agonists. Only mitragynine produced hypothermic effects. Isobolographic analyses for the rate-decreasing effects of the reference Aα 2R and MOR agonists were also conducted. These results suggest mitragynine and 7-hydroxymitragynine may produce antinociceptive synergism with Aα 2R and MOR agonists. When combined with Aα 2R agonists, mitragynine could also produce hypothermic synergism. SIGNIFICANCE STATEMENT: Mitragynine is proposed to target the µ-opioid receptor (MOR) and adrenergic-α2 receptor (Aα2R) and to produce behavioral effects through conversion to its MOR agonist metabolite 7-hydroxymitragynine. Isobolographic analyses indicated supra-additivity in some dose ratio combinations. This study suggests mitragynine and 7-hydroxymitragynine may produce antinociceptive synergism with Aα2R and MOR agonists. When combined with Aα2R agonists, mitragynine could also produce hypothermic synergism.


Subject(s)
Mitragyna , Secologanin Tryptamine Alkaloids , Animals , Rats , Adrenergic alpha-2 Receptor Agonists , Analgesics, Opioid/pharmacology , Mitragyna/chemistry , Naltrexone/pharmacology , Receptors, Adrenergic, alpha-2 , Receptors, Opioid, mu/agonists , Secologanin Tryptamine Alkaloids/pharmacology , Yohimbine/pharmacology
18.
AAPS J ; 24(5): 86, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35854066

ABSTRACT

Speciociliatine, a diastereomer of mitragynine, is an indole-based alkaloid found in kratom (Mitragyna speciosa). Kratom has been widely used for the mitigation of pain and opioid dependence, as a mood enhancer, and/or as an energy booster. Speciociliatine is a partial µ-opioid agonist with a 3-fold higher binding affinity than mitragynine. Speciociliatine has been found to be a major circulating alkaloid in humans following oral administration of a kratom product. In this report, we have characterized the metabolism of speciociliatine in human and preclinical species (mouse, rat, dog, and cynomolgus monkey) liver microsomes and hepatocytes. Speciociliatine metabolized rapidly in monkey, rat, and mouse hepatocytes (in vitro half-life was 6.6 ± 0.2, 8.3 ± 1.1, 11.2 ± 0.7 min, respectively), while a slower metabolism was observed in human and dog hepatocytes (91.7 ± 12.8 and > 120 min, respectively). Speciociliatine underwent extensive metabolism, primarily through monooxidation and O-demethylation metabolic pathways in liver microsomes and hepatocytes across species. No human-specific or disproportionate metabolites of speciociliatine were found in human liver microsomes. The metabolism of speciociliatine was predominantly mediated by CYP3A4 with minor contributions by CYP2D6.


Subject(s)
Mitragyna , Secologanin Tryptamine Alkaloids , Animals , Dogs , Humans , Macaca fascicularis , Mice , Microsomes, Liver/metabolism , Mitragyna/chemistry , Mitragyna/metabolism , Rats , Secologanin Tryptamine Alkaloids/chemistry , Secologanin Tryptamine Alkaloids/metabolism , Secologanin Tryptamine Alkaloids/pharmacology
19.
J Immunol Methods ; 507: 113291, 2022 08.
Article in English | MEDLINE | ID: mdl-35640723

ABSTRACT

Mitragynine is an alkaloid from Mitragyna speciosa Korth. (kratom), a native tropical plant in Southeast Asia. It could render psychotropic effects and is often misused in substitution for commercial drugs. In recent years, the consumption of kratom has grown rapidly and has led some countries to ban its use. The misuse of kratom can be detected and monitored through the determination of mitragynine from biological samples of the users. Therefore, the development of a rapid and effective detection method is needed. In this study, polyclonal antibodies were produced using mitragynine coupled to a carrier protein (cationic bovine serum albumin, cBSA) as an immunogen, which was prepared with coupling agents (i.e., N, N- dicyclohexylcarbodiimide, DCC and N-hydroxysuccinimide, NHS). It was conjugated to different mitragynine structure, 16-COOCH3 (methyl ester) and 9-OCH3 (aromatic ether). 2,4,6-Trinitrobenzenesulfonic acid (TNBS) method showed that 45 and 46 amino groups were bound to C22-MG-cBSA and C9-MG-cBSA, respectively. Fourier-transform infrared spectroscopy (FTIR) spectral changes at C22- and C9-hydroxymitragynine indicated reduction and demethylation process. In UV-Vis spectra, conjugated mitragynine to cBSA and OVA were displayed at a spectral region at 240-300 nm. For the antibody titre, the C22-MG-cBSA anti-serum showed a significantly higher titre than the C9-MG-cBSA at 1/128000 and 1/32000 dilutions, respectively. The detection range of the developed competitive indirect ELISA (CI-ELISA) was 0.01 to 10.00 µg/mL (R2 = 0.9964). The assay exhibited a limit of detection (LOD) and limit of quantification (LOQ) at 0.041 and 0.124 µg/mL, respectively. The antibody produced is a high-value biorecognition molecule that can be further used in developing immuno-based detection methods such as immunosensors and immunochromatographic lateral flow assays. This will benefit the task force or forensic agencies for toxicological screening with high speed and efficiency.


Subject(s)
Biosensing Techniques , Mitragyna , Antibodies , Esters , Ether , Ethers , Immunoassay , Mitragyna/chemistry , Secologanin Tryptamine Alkaloids
20.
PLoS One ; 17(4): e0259326, 2022.
Article in English | MEDLINE | ID: mdl-35472200

ABSTRACT

Leaves harvested from kratom [Mitragyna speciosa (Korth.)] have a history of use as a traditional ethnobotanical medicine to combat fatigue and improve work productivity in Southeast Asia. In recent years, increased interest in the application and use of kratom has emerged globally, including North America, for its potential application as an alternative source of medicine for pain management and opioid withdrawal syndrome mitigation. Although the chemistry and pharmacology of major kratom alkaloids, mitragynine and 7-hydroxymitragynine, are well documented, foundational information on the impact of plant production environment on growth and kratom alkaloids synthesis is unavailable. To directly address this need, kratom plant growth, leaf chlorophyll content, and alkaloid concentration were evaluated under three lighting conditions: field full sun (FLD-Sun), greenhouse unshaded (GH-Unshaded), and greenhouse shaded (GH-Shaded). Nine kratom alkaloids were quantified using an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. Greenhouse cultivation generally promoted kratom height and width extension by 93-114% and 53-57%, respectively, compared to FLD-Sun. Similarly, total leaf area and leaf number were increased by 118-160% and 54-80% under such conditions. Average leaf size of plants grown under GH-Shaded was 41 and 69% greater than GH-Unshaded and FLD-Sun, respectively; however, no differences were observed between GH-Unshaded and FLD-Sun treatments. At the termination of the study, total leaf chlorophyll a+b content of FLD-Sun was 17-23% less than those grown in the greenhouse. Total leaf dry mass was maximized when cultivated in the greenhouse and was 89-91% greater than in the field. Leaf content of four alkaloids to include speciociliatine, mitraphylline, corynantheidine, and isocorynantheidine were not significantly impacted by lighting conditions, whereas 7-hydroxymitragynine was below the lower limit of quantification across all treatments. However, mitragynine, paynantheine, and corynoxine concentration per leaf dry mass were increased by 40%, 35%, and 111%, respectively, when cultivated under GH-Shaded compared to FLD-Sun. Additionally, total alkaloid yield per plant was maximized and nearly tripled for several alkaloids when plants were cultivated under such conditions. Furthermore, rapid, non-destructive chlorophyll evaluation correlated well (r2 = 0.68) with extracted chlorophyll concentrations. Given these findings, production efforts where low-light conditions can be implemented are likely to maximize plant biomass and total leaf alkaloid production.


Subject(s)
Mitragyna , Secologanin Tryptamine Alkaloids , Substance Withdrawal Syndrome , Chlorophyll A , Chromatography, Liquid , Mitragyna/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...