Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27.600
Filter
1.
J Acoust Soc Am ; 155(5): 2948-2958, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38717204

ABSTRACT

Arteriosclerosis is a major risk factor for cardiovascular disease and results in arterial vessel stiffening. Velocity estimation of the pulse wave sent by the heart and propagating into the arteries is a widely accepted biomarker. This symmetrical pulse wave propagates at a speed which is related to the Young's modulus through the Moens Korteweg (MK) equation. Recently, an antisymmetric flexural wave has been observed in vivo. Unlike the symmetrical wave, it is highly dispersive. This property offers promising applications for monitoring arterial stiffness and early detection of atheromatous plaque. However, as far as it is known, no equivalent of the MK equation exists for flexural pulse waves. To bridge this gap, a beam based theory was developed, and approximate analytical solutions were reached. An experiment in soft polymer artery phantoms was built to observe the dispersion of flexural waves. A good agreement was found between the analytical expression derived from beam theory and experiments. Moreover, numerical simulations validated wave speed dependence on the elastic and geometric parameters at low frequencies. Clinical applications, such as arterial age estimation and arterial pressure measurement, are foreseen.


Subject(s)
Models, Cardiovascular , Phantoms, Imaging , Pulse Wave Analysis , Vascular Stiffness , Pulse Wave Analysis/methods , Humans , Elastic Modulus , Computer Simulation , Arteries/physiology , Arteries/physiopathology , Numerical Analysis, Computer-Assisted , Blood Flow Velocity/physiology
2.
Sci Rep ; 14(1): 10588, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719919

ABSTRACT

Solitary wave solutions are of great interest to bio-mathematicians and other scientists because they provide a basic description of nonlinear phenomena with many practical applications. They provide a strong foundation for the development of novel biological and medical models and therapies because of their remarkable behavior and persistence. They have the potential to improve our comprehension of intricate biological systems and help us create novel therapeutic approaches, which is something that researchers are actively investigating. In this study, solitary wave solutions of the nonlinear Murray equation will be discovered using a modified extended direct algebraic method. These solutions represent a uniform variation in blood vessel shape and diameter that can be used to stimulate blood flow in patients with cardiovascular disease. These solutions are newly in the literature, and give researchers an important tool for grasping complex biological systems. To see how the solitary wave solutions behave, graphs are displayed using Matlab.


Subject(s)
Nonlinear Dynamics , Humans , Models, Cardiovascular , Blood Vessels/physiology , Blood Flow Velocity , Algorithms
3.
Med Eng Phys ; 127: 104166, 2024 May.
Article in English | MEDLINE | ID: mdl-38692765

ABSTRACT

A profound investigation of the interaction mechanics between blood vessels and guidewires is necessary to achieve safe intervention. An interactive force model between guidewires and blood vessels is established based on cardiovascular fluid dynamics theory and contact mechanics, considering two intervention phases (straight intervention and contact intervention at a corner named "J-vessel"). The contributing factors of the force model, including intervention conditions, guidewire characteristics, and intravascular environment, are analyzed. A series of experiments were performed to validate the availability of the interactive force model and explore the effects of influential factors on intervention force. The intervention force data were collected using a 2-DOF mechanical testing system instrumented with a force sensor. The guidewire diameter and material were found to significantly impact the intervention force. Additionally, the intervention force was influenced by factors such as blood viscosity, blood vessel wall thickness, blood flow velocity, as well as the interventional velocity and interventional mode. The experiment of the intervention in a coronary artery physical vascular model confirms the practicality validation of the predicted force model and can provide an optimized interventional strategy for vascular interventional surgery. The enhanced intervention strategy has resulted in a considerable reduction of approximately 21.97 % in the force exerted on blood vessels, effectively minimizing the potential for complications associated with the interventional surgery.


Subject(s)
Mechanical Phenomena , Blood Vessels/physiology , Models, Cardiovascular , Hydrodynamics , Humans , Biomechanical Phenomena , Models, Biological , Coronary Vessels/physiology
4.
Biomed Eng Online ; 23(1): 46, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741182

ABSTRACT

BACKGROUND: Integration of a patient's non-invasive imaging data in a digital twin (DT) of the heart can provide valuable insight into the myocardial disease substrates underlying left ventricular (LV) mechanical discoordination. However, when generating a DT, model parameters should be identifiable to obtain robust parameter estimations. In this study, we used the CircAdapt model of the human heart and circulation to find a subset of parameters which were identifiable from LV cavity volume and regional strain measurements of patients with different substrates of left bundle branch block (LBBB) and myocardial infarction (MI). To this end, we included seven patients with heart failure with reduced ejection fraction (HFrEF) and LBBB (study ID: 2018-0863, registration date: 2019-10-07), of which four were non-ischemic (LBBB-only) and three had previous MI (LBBB-MI), and six narrow QRS patients with MI (MI-only) (study ID: NL45241.041.13, registration date: 2013-11-12). Morris screening method (MSM) was applied first to find parameters which were important for LV volume, regional strain, and strain rate indices. Second, this parameter subset was iteratively reduced based on parameter identifiability and reproducibility. Parameter identifiability was based on the diaphony calculated from quasi-Monte Carlo simulations and reproducibility was based on the intraclass correlation coefficient ( ICC ) obtained from repeated parameter estimation using dynamic multi-swarm particle swarm optimization. Goodness-of-fit was defined as the mean squared error ( χ 2 ) of LV myocardial strain, strain rate, and cavity volume. RESULTS: A subset of 270 parameters remained after MSM which produced high-quality DTs of all patients ( χ 2 < 1.6), but minimum parameter reproducibility was poor ( ICC min = 0.01). Iterative reduction yielded a reproducible ( ICC min = 0.83) subset of 75 parameters, including cardiac output, global LV activation duration, regional mechanical activation delay, and regional LV myocardial constitutive properties. This reduced subset produced patient-resembling DTs ( χ 2 < 2.2), while septal-to-lateral wall workload imbalance was higher for the LBBB-only DTs than for the MI-only DTs (p < 0.05). CONCLUSIONS: By applying sensitivity and identifiability analysis, we successfully determined a parameter subset of the CircAdapt model which can be used to generate imaging-based DTs of patients with LV mechanical discoordination. Parameters were reproducibly estimated using particle swarm optimization, and derived LV myocardial work distribution was representative for the patient's underlying disease substrate. This DT technology enables patient-specific substrate characterization and can potentially be used to support clinical decision making.


Subject(s)
Heart Ventricles , Image Processing, Computer-Assisted , Humans , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Image Processing, Computer-Assisted/methods , Bundle-Branch Block/diagnostic imaging , Bundle-Branch Block/physiopathology , Biomechanical Phenomena , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/physiopathology , Mechanical Phenomena , Male , Female , Middle Aged , Models, Cardiovascular
5.
J Biomech ; 168: 112124, 2024 May.
Article in English | MEDLINE | ID: mdl-38701696

ABSTRACT

Congenital arterial stenosis such as supravalvar aortic stenosis (SVAS) are highly prevalent in Williams syndrome (WS) and other arteriopathies pose a substantial health risk. Conventional tools for severity assessment, including clinical findings and pressure gradient estimations, often fall short due to their susceptibility to transient physiological changes and disease stage influences. Moreover, in the pediatric population, the severity of these and other congenital heart defects (CHDs) often restricts the applicability of invasive techniques for obtaining crucial physiological data. Conversely, evaluating CHDs and their progression requires a comprehensive understanding of intracardiac blood flow. Current imaging modalities, such as blood speckle imaging (BSI) and four-dimensional magnetic resonance imaging (4D MRI) face limitations in resolving flow data, especially in cases of elevated flow velocities. To address these challenges, we devised a computational framework employing zero-dimensional (0D) lumped parameter models coupled with patient-specific reconstructed geometries pre- and post-surgical intervention to execute computational fluid dynamic (CFD) simulations. This framework facilitates the analysis and visualization of intricate blood flow patterns, offering insights into geometry and flow dynamics alterations impacting cardiac function. In this study, we aim to assess the efficacy of surgical intervention in correcting an extreme aortic defect in a patient with WS, leading to reductions in wall shear stress (WSS), maximum velocity magnitude, pressure drop, and ultimately a decrease in cardiac workload.


Subject(s)
Hemodynamics , Models, Cardiovascular , Williams Syndrome , Humans , Williams Syndrome/physiopathology , Williams Syndrome/diagnostic imaging , Hemodynamics/physiology , Heart Defects, Congenital/physiopathology , Heart Defects, Congenital/complications , Heart Defects, Congenital/diagnostic imaging , Aorta/physiopathology , Aorta/diagnostic imaging , Blood Flow Velocity/physiology , Male , Female , Computer Simulation
6.
Int J Artif Organs ; 47(5): 329-337, 2024 May.
Article in English | MEDLINE | ID: mdl-38742880

ABSTRACT

BACKGROUND: This study investigates the hypothesis that presence of atrial fibrillation (AF) in LVAD patients increases thrombogenicity in the left ventricle (LV) and exacerbates stroke risk. METHODS: Using an anatomical LV model implanted with an LVAD inflow cannula, we analyze thrombogenic risk and blood flow patterns in either AF or sinus rhythm (SR) using unsteady computational fluid dynamics (CFD). To analyze platelet activation and thrombogenesis in the LV, hundreds of thousands of platelets are individually tracked to quantify platelet residence time (RT) and shear stress accumulation history (SH). RESULTS: The irregular and chaotic mitral inflow associated with AF results in markedly different intraventricular flow patterns, with profoundly negative impact on blood flow-induced stimuli experienced by platelets as they traverse the LV. Twice as many platelets accumulated very high SH in the LVAD + AF case, resulting in a 36% increase in thrombogenic potential score, relative to the LVAD + SR case. CONCLUSIONS: This supports the hypothesis that AF results in unfavorable blood flow patterns in the LV adding to an increased stroke risk for LVAD + AF patients. Quantification of thrombogenic risk associated with AF for LVAD patients may help guide clinical decision-making on interventions to mitigate the increased risk of thromboembolic events.


Subject(s)
Atrial Fibrillation , Heart-Assist Devices , Atrial Fibrillation/physiopathology , Atrial Fibrillation/etiology , Heart-Assist Devices/adverse effects , Humans , Thrombosis/etiology , Thrombosis/physiopathology , Platelet Activation , Models, Cardiovascular , Heart Ventricles/physiopathology , Heart Ventricles/diagnostic imaging , Stroke/etiology , Blood Platelets/metabolism , Ventricular Function, Left , Models, Anatomic , Hydrodynamics , Hemodynamics
7.
Sci Rep ; 14(1): 11317, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760455

ABSTRACT

Uncertainty quantification is becoming a key tool to ensure that numerical models can be sufficiently trusted to be used in domains such as medical device design. Demonstration of how input parameters impact the quantities of interest generated by any numerical model is essential to understanding the limits of its reliability. With the lattice Boltzmann method now a widely used approach for computational fluid dynamics, building greater understanding of its numerical uncertainty characteristics will support its further use in science and industry. In this study we apply an in-depth uncertainty quantification study of the lattice Boltzmann method in a canonical bifurcating geometry that is representative of the vascular junctions present in arterial and venous domains. These campaigns examine how quantities of interest-pressure and velocity along the central axes of the bifurcation-are influenced by the algorithmic parameters of the lattice Boltzmann method and the parameters controlling the values imposed at inlet velocity and outlet pressure boundary conditions. We also conduct a similar campaign on a set of personalised vessels to further illustrate the application of these techniques. Our work provides insights into how input parameters and boundary conditions impact the velocity and pressure distributions calculated in a simulation and can guide the choices of such values when applied to vascular studies of patient specific geometries. We observe that, from an algorithmic perspective, the number of time steps and the size of the grid spacing are the most influential parameters. When considering the influence of boundary conditions, we note that the magnitude of the inlet velocity and the mean pressure applied within sinusoidal pressure outlets have the greatest impact on output quantities of interest. We also observe that, when comparing the magnitude of variation imposed in the input parameters with that observed in the output quantities, this variability is particularly magnified when the input velocity is altered. This study also demonstrates how open-source toolkits for validation, verification and uncertainty quantification can be applied to numerical models deployed on high-performance computers without the need for modifying the simulation code itself. Such an ability is key to the more widespread adoption of the analysis of uncertainty in numerical models by significantly reducing the complexity of their execution and analysis.


Subject(s)
Algorithms , Models, Cardiovascular , Humans , Uncertainty , Blood Flow Velocity/physiology , Computer Simulation , Hydrodynamics , Hemodynamics
8.
Med Eng Phys ; 128: 104164, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38789211

ABSTRACT

In computational fluid dynamic studies related to blood flow, investigating the behavior of blood particles is crucial, especially red blood cells as they constitute a significant proportion of blood particles. Additionally, studying red blood cell movements is necessary, especially in stenotic artery geometries. A new multiphase scheme was utilized to demonstrate the effect of red blood cells on hemodynamics in complex coronary arteries and investigate the consequence of their motion. To investigate the effect of red blood cell movement on flow, the dense discrete phase model (DDPM) was used. This simulation was performed in 3D coronary arteries with different degrees of stenosis, utilizing blood pressure as inlet and outlet boundary conditions while assuming the arterial wall to be rigid. The model prediction shows good agreement with experimental data. Velocity values were comparable in both single-phase and two-phase flow simulations, but the shear stress in two-phase modeling had higher values. In the two-phase DDPM modeling, the recirculation areas indicated a higher probability of atherosclerosis plaque re-formation in the pre-stenosis area compared to the stenosis and post-stenosis areas. The DDPM model was found to be more effective in obtaining shear stress values in the artery. Additionally, this model provides good results compared to the single-phase model in investigating the movement of particles along the artery as well as recirculation areas that lead to the deposition of particles.


Subject(s)
Coronary Stenosis , Coronary Vessels , Coronary Stenosis/physiopathology , Coronary Vessels/physiopathology , Humans , Hydrodynamics , Hemodynamics , Erythrocytes , Models, Cardiovascular , Stress, Mechanical , Models, Biological
9.
Comput Methods Programs Biomed ; 250: 108186, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692252

ABSTRACT

BACKGROUND AND OBJECTIVES: Venovenous Extracorporeal Membrane Oxygenation (VV ECMO) provides respiratory support to patients with severe lung disease failing conventional medical therapy. An essential component of the ECMO circuit are the cannulas, which drain and return blood into the body. Despite being anchored to the patient to prevent accidental removal, minor cannula movements are common during ECMO. The clinical and haemodynamic consequences of these small movements are currently unclear. This study investigated the risk of thrombosis and recirculation caused by small movements of a dual lumen cannula (DLC) in an adult using computational fluid dynamics. METHODS: The 3D model of an AVALON Elite DLC (27 Fr) and a patient-specific vena cava and right atrium were generated for an adult patient on ECMO. The baseline cannula position was generated where the return jet enters the tricuspid valve. Alternative cannula positions were obtained by shifting the cannula 5 and 15 mm towards inferior (IVC) and superior (SVC) vena cava, respectively. ECMO settings of 4 L/min blood flow and pulsatile flow at SVC and IVC were applied. Recirculation was defined as a scalar value indicating the infused oxygenated blood inside the drainage lumen, while thrombosis risk was evaluated by shear stress, stagnation volume, washout, and turbulent kinetic energy. RESULTS: Recirculation for all models was less than 3.1 %. DLC movements between -5 to 15 mm increased shear stress and turbulence kinetic energy up to 24.7 % and 11.8 %, respectively, compared to the baseline cannula position leading to a higher predicted thrombosis risk. All models obtained a complete washout after nine seconds except for when the cannula migrated 15 mm into the SVC, indicating persisting stasis and circulating zones. CONCLUSION: In conclusion, small DLC movements were not associated with an increased risk of recirculation. However, they may increase the risk of thrombosis due to increased shear rate, turbulence, and slower washout of blood. Developing effective cannula securement devices may reduce this risk.


Subject(s)
Cannula , Extracorporeal Membrane Oxygenation , Hydrodynamics , Extracorporeal Membrane Oxygenation/instrumentation , Humans , Thrombosis/etiology , Thrombosis/prevention & control , Computer Simulation , Adult , Hemodynamics , Models, Cardiovascular
10.
Sci Rep ; 14(1): 10653, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724557

ABSTRACT

The efficacy of flow diverters is influenced by the strut configuration changes resulting from size discrepancies between the stent and the parent artery. This study aimed to quantitatively analyze the impact of size discrepancies between flow diverters and parent arteries on the flow diversion effects, using computational fluid dynamics. Four silicone models with varying parent artery sizes were developed. Real flow diverters were deployed in these models to assess stent configurations at the aneurysm neck. Virtual stents were generated based on these configurations for computational fluid dynamics analysis. The changes in the reduction rate of the hemodynamic parameters were quantified to evaluate the flow diversion effect. Implanting 4.0 mm flow diverters in aneurysm models with parent artery diameters of 3.0-4.5 mm, in 0.5 mm increments, revealed that a shift from oversized to undersized flow diverters led to an increase in the reduction rates of hemodynamic parameter, accompanied by enhanced metal coverage rate and pore density. However, the flow diversion effect observed transitioning from oversizing to matching was less pronounced when moving from matching to undersizing. This emphasizes the importance of proper sizing of flow diverters, considering the benefits of undersizing and not to exceed the threshold of advantages.


Subject(s)
Hemodynamics , Stents , Humans , Models, Cardiovascular , Intracranial Aneurysm/physiopathology , Intracranial Aneurysm/surgery , Computer Simulation , Arteries/physiology , Hydrodynamics
11.
J Biomech ; 169: 112152, 2024 May.
Article in English | MEDLINE | ID: mdl-38763809

ABSTRACT

The healthy adult aorta is a remarkably resilient structure, able to resist relentless cardiac-induced and hemodynamic loads under normal conditions. Fundamental to such mechanical homeostasis is the mechano-sensitive cell signaling that controls gene products and thus the structural integrity of the wall. Mouse models have shown that smooth muscle cell-specific disruption of transforming growth factor-beta (TGFß) signaling during postnatal development compromises this resiliency, rendering the aortic wall susceptible to aneurysm and dissection under normal mechanical loading. By contrast, disruption of such signaling in the adult aorta appears to introduce a vulnerability that remains hidden under normal loading, but manifests under increased loading as experienced during hypertension. We present a multiscale (transcript to tissue) computational model to examine possible reasons for compromised mechanical homeostasis in the adult aorta following reduced TGFß signaling in smooth muscle cells.


Subject(s)
Aorta , Models, Cardiovascular , Signal Transduction , Transforming Growth Factor beta , Vascular Remodeling , Transforming Growth Factor beta/metabolism , Animals , Mice , Aorta/pathology , Aorta/metabolism , Vascular Remodeling/physiology , Computer Simulation , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/physiology , Humans
12.
Sci Rep ; 14(1): 11427, 2024 05 19.
Article in English | MEDLINE | ID: mdl-38763959

ABSTRACT

Despite the key role of fibrosis in atrial fibrillation (AF), the effects of different spatial distributions and textures of fibrosis on wave propagation mechanisms in AF are not fully understood. To clarify these aspects, we performed a systematic computational study to assess fibrosis effects on the characteristics and stability of re-entrant waves in electrically-remodelled atrial tissues. A stochastic algorithm, which generated fibrotic distributions with controlled overall amount, average size, and orientation of fibrosis elements, was implemented on a monolayer spheric atrial model. 245 simulations were run at changing fibrosis parameters. The emerging propagation patterns were quantified in terms of rate, regularity, and coupling by frequency-domain analysis of correspondent synthetic bipolar electrograms. At the increase of fibrosis amount, the rate of reentrant waves significantly decreased and higher levels of regularity and coupling were observed (p < 0.0001). Higher spatial variability and pattern stochasticity over repetitions was observed for larger amount of fibrosis, especially in the presence of patchy and compact fibrosis. Overall, propagation slowing and organization led to higher stability of re-entrant waves. These results strengthen the evidence that the amount and spatial distribution of fibrosis concur in dictating re-entry dynamics in remodeled tissue and represent key factors in AF maintenance.


Subject(s)
Atrial Fibrillation , Computer Simulation , Fibrosis , Heart Atria , Models, Cardiovascular , Humans , Heart Atria/physiopathology , Heart Atria/pathology , Atrial Fibrillation/physiopathology , Atrial Fibrillation/pathology , Algorithms
13.
Ann Biomed Eng ; 52(6): 1554-1567, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38589731

ABSTRACT

Catheter reaction forces during transcatheter valve replacement (TAVR) may result in injury to the vessel or plaque rupture, triggering distal embolization or thrombosis. In vitro test methods represent the arterial wall using synthetic proxies to determine catheter reaction forces during tracking, but whether they can account for reaction forces within the compliant aortic wall tissue in vivo is unknown. Moreover, the role of plaque inclusions is not well understood. Computational approaches have predicted the impact of TAVR positioning, migration, and leaflet distortion, but have not yet been applied to investigate aortic wall reaction forces and stresses during catheter tracking. In this study, we investigate the role that catheter design and aorta and plaque mechanical properties have on the risk of plaque rupture during TAVR catheter delivery. We report that, for trackability testing, a rigid test model provides a reasonable estimation of the peak reaction forces experienced during catheter tracking within compliant vessels. We investigated the risk of rupture of both the aortic tissue and calcified plaques. We report that there was no risk of diseased aortic tissue rupture based on an accepted aortic tissue stress threshold (4.2 MPa). However, we report that both the aortic and plaque tissue exceed a rupture stress threshold (300 kPa) with and without the presence of stiff and soft plaque inclusions. We also highlight the potential risks associated with shorter catheter tips during catheter tracking and demonstrate that increasing the contact surface will reduce peak contact pressures experienced in the tissue.


Subject(s)
Models, Cardiovascular , Transcatheter Aortic Valve Replacement , Transcatheter Aortic Valve Replacement/adverse effects , Humans , Aorta , Catheters/adverse effects , Plaque, Atherosclerotic
14.
J Biomech Eng ; 146(10)2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38652582

ABSTRACT

Penn State University is developing a pediatric total artificial heart (TAH) as a bridge-to-transplant device that supports infants and small children with single ventricle anomalies or biventricular heart failure to address high waitlist mortality rates for pediatric patients with severe congenital heart disease (CHD). Two issues with mechanical circulatory support devices are thrombus formation and thromboembolic events. This in vitro study characterizes flow within Penn State's pediatric total artificial heart under physiological operating conditions. Particle image velocimetry (PIV) is used to quantify flow within the pump and to calculate wall shear rates (WSRs) along the internal pump surface to identify potential thrombogenic regions. Results show that the diastolic inflow jets produce sufficient wall shear rates to reduce thrombus deposition potential along the inlet side of the left and right pumps. The inlet jet transitions to rotational flow, which promotes wall washing along the apex of the pumps, prevents flow stasis, and aligns flow with the outlet valve prior to systolic ejection. However, inconsistent high wall shear rates near the pump apex cause increased thrombogenic potential. Strong systolic outflow jets produce high wall shear rates near the outlet valve to reduce thrombus deposition risk. The right pump, which has a modified outlet port angle to improve anatomical fit, produces lower wall shear rates and higher thrombus susceptibility potential (TSP) compared to the left pump. In summary, this study provides a fluid dynamic understanding of a new pediatric total artificial heart and indicates thrombus susceptibility is primarily confined to the apex, consistent with similar pulsatile heart pumps.


Subject(s)
Heart, Artificial , Hydrodynamics , Humans , Rheology , Child , Thrombosis , Models, Cardiovascular
15.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 351-359, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38686417

ABSTRACT

In this work, we investigated the influence of the bifurcation geometry of the iliac artery on the propagation properties of the pulse wave, and applied software to establish the straight bifurcation and curved bifurcation bi-directional fluid-solid coupling finite element analysis models based on the iliac artery, and compared and analyzed the influence of the bifurcation angle of the blood vessel on the propagation characteristics of the pulse wave. It was found that the bifurcation geometry had a significant effect on the pulse wave propagation in the iliac arteries, and the pressure and velocity pulse wave amplitudes predicted by these two models had a good agreement with that before the vessel bifurcation in a cardiac cycle. The curvilinear bifurcation model predicted the pulse wave amplitude to be lower and the pressure drop to be smaller after the bifurcation, which was more in line with the actual situation of the human body. In addition, the bifurcation point is accompanied by the stress concentration phenomenon in the vessel wall, and there is a transient increase in the velocity pulse waveform amplitude, which was consistent with the fact that the bifurcation site is prone to phenomena such as arterial stenosis and hardening. The preliminary results of this paper will provide some reference for the use of pulse waveforms in the diagnosis of arterial diseases.


Subject(s)
Finite Element Analysis , Iliac Artery , Models, Cardiovascular , Pulse Wave Analysis , Humans , Iliac Artery/physiology , Blood Pressure/physiology , Pulsatile Flow/physiology , Blood Flow Velocity/physiology , Computer Simulation
16.
Physiol Meas ; 45(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38599228

ABSTRACT

Objective.Significant aortic regurgitation is a common complication following left ventricular assist device (LVAD) intervention, and existing studies have not attempted to monitor regurgitation signals and undertake preventive measures during full support. Regurgitation is an adverse event that can lead to inadequate left ventricular unloading, insufficient peripheral perfusion, and repeated episodes of heart failure. Moreover, regurgitation occurring during full support due to pump position offset cannot be directly controlled through control algorithms. Therefore, accurate estimation of regurgitation during percutaneous left ventricular assist device (PLVAD) full support is critical for clinical management and patient safety.Approach.An estimation system based on the regurgitation model is built in this paper, and the unscented Kalman filter estimator (UKF) is introduced as an estimation approach. Three offset degrees and three heart failure states are considered in the investigation. Using the mock circulatory loop experimental platform, compare the regurgitation estimated by the UKF algorithm with the actual measured regurgitation; the errors are analyzed using standard confidence intervals of ±2 SDs, and the effectiveness of the mentioned algorithms is thus assessed. The generalization ability of the proposed algorithm is verified by setting different heart failure conditions and different rotational speeds. The root mean square error and correlation coefficient between the estimated and actual values are quantified and the statistical significance of accuracy differences in estimation is illustrated using one-way analysis of variance (One-Way ANOVA), which in turn assessed the accuracy and stability of the UKF algorithm.Main results.The research findings demonstrate that the regurgitation estimation system based on the regurgitation model and UKF can relatively accurately estimate the regurgitation status of patients during PLVAD full support, but the effect of myocardial contractility on the estimation accuracy still needs to be taken into account.Significance.The proposed estimation method in this study provides essential reference information for clinical practitioners, enabling them to promptly manage potential complications arising from regurgitation. By sensitively detecting LVAD adverse events, valuable insights into the performance and reliability of the LVAD device can be obtained, offering crucial feedback and data support for device improvement and optimization.


Subject(s)
Algorithms , Aortic Valve Insufficiency , Heart-Assist Devices , Aortic Valve Insufficiency/physiopathology , Humans , Heart Failure/physiopathology , Heart Failure/therapy , Time Factors , Models, Cardiovascular
17.
J Physiol ; 602(9): 1953-1966, 2024 May.
Article in English | MEDLINE | ID: mdl-38630963

ABSTRACT

Dynamic cerebral autoregulation (dCA) is the mechanism that describes how the brain maintains cerebral blood flow approximately constant in response to short-term changes in arterial blood pressure. This is known to be impaired in many different pathological conditions, including ischaemic and haemorrhagic stroke, dementia and traumatic brain injury. Many different approaches have thus been used both to analyse and to quantify this mechanism in a range of healthy and diseased subjects, including data-driven models (in both the time and the frequency domain) and biophysical models. However, despite the substantial body of work on both biophysical models and data-driven models of dCA, there remains little work that links the two together. One of the reasons for this is proposed to be the discrepancies between the time constants that govern dCA in models and in experimental data. In this study, the processes that govern dCA are examined and it is proposed that the application of biophysical models remains limited due to a lack of understanding about the physical processes that are being modelled, partly due to the specific model formulation that has been most widely used (the equivalent electrical circuit). Based on the analysis presented here, it is proposed that the two most important time constants are arterial transit time and feedback time constant. It is therefore time to revisit equivalent electrical circuit models of dCA and to develop a more physiologically realistic alternative, one that can more easily be related to experimental data. KEY POINTS: Dynamic cerebral autoregulation is governed by two time constants. The first time constant is the arterial transit time, rather than the traditional 'RC' time constant widely used in previous models. This arterial transit time is approximately 1 s in the brain. The second time constant is the feedback time constant, which is less accurately known, although it is somewhat larger than the arterial transit time. The equivalent electrical circuit model of dynamic cerebral autoregulation should be replaced with a more physiologically representative model.


Subject(s)
Cerebrovascular Circulation , Homeostasis , Homeostasis/physiology , Cerebrovascular Circulation/physiology , Humans , Feedback, Physiological , Models, Cardiovascular , Brain/physiology , Brain/blood supply , Animals
18.
PLoS Comput Biol ; 20(4): e1012013, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38635856

ABSTRACT

Cardiovascular diseases are the leading cause of death globally, making the development of non-invasive and simple-to-use tools that bring insights into the state of the cardiovascular system of utmost importance. We investigated the possibility of using peripheral pulse wave recordings to estimate stroke volume (SV) and subject-specific parameters describing the selected properties of the cardiovascular system. Peripheral pressure waveforms were recorded in the radial artery using applanation tonometry (SphygmoCor) in 35 hemodialysis (HD) patients and 14 healthy subjects. The pressure waveforms were then used to estimate subject-specific parameters of a mathematical model of pulse wave propagation coupled with the elastance-based model of the left ventricle. Bioimpedance cardiography measurements (PhysioFlow) were performed to validate the model-estimated SV. Mean absolute percentage error between the simulated and measured pressure waveforms was 4.0% and 2.8% for the HD and control group, respectively. We obtained a moderate correlation between the model-estimated and bioimpedance-based SV (r = 0.57, p<0.05, and r = 0.58, p<0.001, for the control group and HD patients, respectively). We also observed a correlation between the estimated end-systolic elastance of the left ventricle and the peripheral systolic pressure in both HD patients (r = 0.84, p<0.001) and the control group (r = 0.70, p<0.01). These preliminary results suggest that, after additional validation and possibly further refinement to increase accuracy, the proposed methodology could support non-invasive assessment of stroke volume and selected heart function parameters and vascular properties. Importantly, the proposed method could be potentially implemented in the existing devices measuring peripheral pressure waveforms.


Subject(s)
Blood Pressure , Models, Cardiovascular , Pulse Wave Analysis , Stroke Volume , Humans , Stroke Volume/physiology , Male , Female , Middle Aged , Blood Pressure/physiology , Pulse Wave Analysis/methods , Adult , Aged , Renal Dialysis , Cardiography, Impedance/methods
19.
J Biomech ; 168: 112059, 2024 May.
Article in English | MEDLINE | ID: mdl-38631187

ABSTRACT

The progression of cardiovascular disease is intricately influenced by a complex interplay between physiological pathways, biochemical processes, and physical mechanisms. This study aimed to develop an in-silico physics-based approach to comprehensively model the multifaceted vascular pathophysiological adaptations. This approach focused on capturing the progression of proximal pulmonary arterial hypertension, which is significantly associated with the irreversible degradation of arterial walls and compensatory stress-induced growth and remodeling. This study incorporated critical characteristics related to the distinct time scales for the deformation, thus reflecting the impact of mean pressure on artery growth and tissue damage. The in-silico simulation of the progression of pulmonary hypertension was realized based on computational code combined with the finite element method (FEM) for the simulation of disease progression. The parametric studies further explored the consequences of these irreversible processes. This computational modeling approach may advance our understanding of pulmonary hypertension and its progression.


Subject(s)
Computer Simulation , Disease Progression , Hypertension, Pulmonary , Models, Cardiovascular , Pulmonary Artery , Humans , Hypertension, Pulmonary/physiopathology , Pulmonary Artery/physiopathology , Finite Element Analysis
20.
Arterioscler Thromb Vasc Biol ; 44(5): 1065-1085, 2024 May.
Article in English | MEDLINE | ID: mdl-38572650

ABSTRACT

Blood vessels are subjected to complex biomechanical loads, primarily from pressure-driven blood flow. Abnormal loading associated with vascular grafts, arising from altered hemodynamics or wall mechanics, can cause acute and progressive vascular failure and end-organ dysfunction. Perturbations to mechanobiological stimuli experienced by vascular cells contribute to remodeling of the vascular wall via activation of mechanosensitive signaling pathways and subsequent changes in gene expression and associated turnover of cells and extracellular matrix. In this review, we outline experimental and computational tools used to quantify metrics of biomechanical loading in vascular grafts and highlight those that show potential in predicting graft failure for diverse disease contexts. We include metrics derived from both fluid and solid mechanics that drive feedback loops between mechanobiological processes and changes in the biomechanical state that govern the natural history of vascular grafts. As illustrative examples, we consider application-specific coronary artery bypass grafts, peripheral vascular grafts, and tissue-engineered vascular grafts for congenital heart surgery as each of these involves unique circulatory environments, loading magnitudes, and graft materials.


Subject(s)
Blood Vessel Prosthesis , Hemodynamics , Humans , Animals , Models, Cardiovascular , Prosthesis Failure , Stress, Mechanical , Biomechanical Phenomena , Mechanotransduction, Cellular , Blood Vessel Prosthesis Implantation/adverse effects , Prosthesis Design , Graft Occlusion, Vascular/physiopathology , Graft Occlusion, Vascular/etiology , Vascular Remodeling
SELECTION OF CITATIONS
SEARCH DETAIL
...