Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 274
Filter
1.
Int J Mol Sci ; 24(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36835501

ABSTRACT

A class of chaperones dubbed heat shock protein 70 (Hsp70) possesses high relevance in cancer diseases due to its cooperative activity with the well-established anticancer target Hsp90. However, Hsp70 is closely connected with a smaller heat shock protein, Hsp40, forming a formidable Hsp70-Hsp40 axis in various cancers, which serves as a suitable target for anticancer drug design. This review summarizes the current state and the recent developments in the field of (semi-)synthetic small molecule inhibitors directed against Hsp70 and Hsp40. The medicinal chemistry and anticancer potential of pertinent inhibitors are discussed. Since Hsp90 inhibitors have entered clinical trials but have exhibited severe adverse effects and drug resistance formation, potent Hsp70 and Hsp40 inhibitors may play a significant role in overcoming the drawbacks of Hsp90 inhibitors and other approved anticancer drugs.


Subject(s)
Antineoplastic Agents , HSP40 Heat-Shock Proteins , HSP70 Heat-Shock Proteins , Molecular Chaperones , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , HSP40 Heat-Shock Proteins/antagonists & inhibitors , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/antagonists & inhibitors , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Molecular Chaperones/antagonists & inhibitors , Molecular Chaperones/metabolism , Humans , Drug Design
2.
J Mol Biol ; 434(17): 167468, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35101454

ABSTRACT

Herein we examine the determinants of the allosteric inhibition of the mitochondrial chaperone TRAP1 by a small molecule ligand. The knowledge generated is harnessed into the design of novel derivatives with interesting biological properties. TRAP1 is a member of the Hsp90 family of proteins, which work through sequential steps of ATP processing coupled to client-protein remodeling. Isoform selective inhibition of TRAP1 can provide novel information on the biomolecular mechanisms of molecular chaperones, as well as new insights into the development of small molecules with therapeutic potential. Our analysis of the interactions between an active first-generation allosteric ligand and TRAP1 shows how the small molecule induces long-range perturbations that influence the attainment of reactive poses in the active site. At the same time, the dynamic adaptation of the allosteric binding pocket to the presence of the first-generation compound sets the stage for the design of a set of second-generation ligands: the characterization of the formation/disappearance of pockets around the allosteric site that is used to guide optimize the ligands' fit for the allosteric site and improve inhibitory activities. The effects of the newly designed molecules are validated experimentally in vitro and in vivo. We discuss the implications of our approach as a promising strategy towards understanding the molecular determinants of allosteric regulation in chemical and molecular biology, and towards speeding up the design of allosteric small molecule modulators.


Subject(s)
Drug Design , HSP90 Heat-Shock Proteins , Molecular Chaperones , Small Molecule Libraries , Allosteric Regulation , Allosteric Site , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/chemistry , Humans , Ligands , Molecular Chaperones/antagonists & inhibitors , Molecular Chaperones/chemistry , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
3.
Biomed Pharmacother ; 143: 112225, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34649353

ABSTRACT

Heat shock protein beta-1 (HSPB1) is a multifaceted protein that controls cellular stress, modulates cell differentiation and development, and inhibits apoptosis of cancer cells. Increased HSPB1 expression is highly associated with poor outcomes in lung cancer by enhancing cell migration and invasion; therefore, targeting HSPB1 may be a promising therapeutic for lung cancer and fibrosis. Although the HSPB1 inhibitor J2 has been reported to exhibit potent antifibrotic effects, it remains unclear whether and how J2 directly modulates inflammatory immune responses in pulmonary fibrosis. In this study, we found that J2 potently attenuated irradiation or bleomycin-induced pulmonary fibrosis by significantly inhibiting the infiltration and activation of T cells and macrophages. J2 inhibited T-cell proliferation and subsequently suppressed T helper cell development. Although there was no significant effect of J2 on cell proliferation of M1 and M2 macrophages, J2 specifically increased the expression of Ym1 in M2 macrophages without affecting the expression of other M2 markers. Interestingly, J2 increased lysosomal degradation of HSPB1 and inhibited HSPB1-induced repression of signal transducer and activator of transcription 6 (STAT6), which simultaneously increased STAT6 and Ym1 expression. Ym1 production and secretion by J2-treated M2 macrophages substantially decreased IL-8 production by airway epithelial cells in vitro and in vivo, resulting in attenuation of airway inflammation. Taken together, we suggest that J2 has potential as a therapeutic agent for pulmonary fibrosis with increased HSPB1 expression through direct immune suppression by Ym1 production by M2 macrophages as well as T-cell suppression.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antifibrotic Agents/pharmacology , Heat-Shock Proteins/antagonists & inhibitors , Lectins/metabolism , Lung/drug effects , Molecular Chaperones/antagonists & inhibitors , Paracrine Communication , Pneumonia/prevention & control , Pulmonary Fibrosis/prevention & control , beta-N-Acetylhexosaminidases/metabolism , Animals , Bleomycin , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , HEK293 Cells , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Lung/immunology , Lung/metabolism , Lymphocyte Activation/drug effects , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Pneumonia/etiology , Pneumonia/immunology , Pneumonia/metabolism , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/metabolism , RAW 264.7 Cells , Radiation Dosage , Signal Transduction
4.
J Cell Biol ; 220(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34264272

ABSTRACT

Talin is a mechanosensitive adapter protein that couples integrins to the cytoskeleton. Talin rod domain-containing protein 1 (TLNRD1) shares 22% homology with the talin R7R8 rod domains, and is highly conserved throughout vertebrate evolution, although little is known about its function. Here we show that TLNRD1 is an α-helical protein structurally homologous to talin R7R8. Like talin R7R8, TLNRD1 binds F-actin, but because it forms a novel antiparallel dimer, it also bundles F-actin. In addition, it binds the same LD motif-containing proteins, RIAM and KANK, as talin R7R8. In cells, TLNRD1 localizes to actin bundles as well as to filopodia. Increasing TLNRD1 expression enhances filopodia formation and cell migration on 2D substrates, while TLNRD1 down-regulation has the opposite effect. Together, our results suggest that TLNRD1 has retained the diverse interactions of talin R7R8, but has developed distinct functionality as an actin-bundling protein that promotes filopodia assembly.


Subject(s)
Actin Cytoskeleton/metabolism , Actins/metabolism , Molecular Chaperones/metabolism , Pseudopodia/metabolism , Talin/metabolism , Actin Cytoskeleton/ultrastructure , Actins/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Binding Sites , Cell Line, Tumor , Cell Movement , Cloning, Molecular , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Gene Expression Regulation , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Models, Molecular , Molecular Chaperones/antagonists & inhibitors , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Osteoblasts/cytology , Osteoblasts/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Multimerization , Pseudopodia/ultrastructure , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction , Talin/genetics
5.
Cancer Res ; 81(18): 4794-4807, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34193441

ABSTRACT

HSP90 is secreted by cancer cells into the extracellular milieu, where it exerts protumoral activities by activating extracellular substrate proteins and triggering autocrine signals through cancer cell surface receptors. Emerging evidence indicates that HSP90 co-chaperones are also secreted and may direct HSP90 extracellular activities. In this study, we found that the HSP90 co-chaperone Morgana is released by cancer cells and, in association with HSP90, induces cancer cell migration through TLR2, TLR4, and LRP1. In syngeneic cancer mouse models, a mAb targeting Morgana extracellular activity reduced primary tumor growth via macrophage-dependent recruitment of CD8+ T lymphocytes, blocked cancer cell migration, and inhibited metastatic spreading. Overall, these data define Morgana as a new player in the HSP90 extracellular interactome and suggest that Morgana may regulate HSP90 activity to promote cancer cell migration and suppress antitumor immunity. SIGNIFICANCE: This work suggests the potential therapeutic value of targeting the extracellular HSP90 co-chaperone Morgana to inhibit metastasis formation and enhance the CD8+ T-cell-mediated antitumor immune response.


Subject(s)
Cell Movement/drug effects , HSP90 Heat-Shock Proteins/metabolism , Immunity/drug effects , Molecular Chaperones/antagonists & inhibitors , Molecular Chaperones/metabolism , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Coculture Techniques , Cytotoxicity, Immunologic , Disease Models, Animal , Extracellular Space/metabolism , Heterografts , Humans , Macrophages/immunology , Macrophages/metabolism , Mice , Signal Transduction , Toll-Like Receptors/metabolism , Xenograft Model Antitumor Assays
6.
Metallomics ; 13(7)2021 07 12.
Article in English | MEDLINE | ID: mdl-34185060

ABSTRACT

Copper (Cu) is an essential trace element that plays an important role in maintaining neuronal functions such as the biosynthesis of neurotransmitters. In contrast, exposure to excess Cu results in cell injury. Therefore, intracellular Cu levels are strictly regulated by proteins related to Cu-trafficking, including ATP7A. Parkinson's disease (PD) is a neurodegenerative disorder and is characterized by the loss of dopaminergic neurons in the substantia nigra. Recently, the abnormality of Cu homeostasis was demonstrated to be related to the pathogenesis of PD. However, the association between Cu dyshomeostasis and PD remains unclear. In this study, we examined the effects of 6-hydroxydopamine (6-OHDA), a neurotoxin used for the production of PD model animals, on cellular Cu trafficking in human neuroblastoma SH-SY5Y cells. 6-OHDA reduced the protein levels of the Cu exporter ATP7A and the Cu chaperone Atox1, but not CTR1, a Cu importer; however, it did not affect the expression of ATP7A and Atox1 mRNAs. The decreased levels of ATP7A and Atox1 proteins were restored by the antioxidant N-acetylcysteine and the lysosomal inhibitor bafilomycin A1. This suggests that 6-OHDA-induced oxidative stress facilitates the degradation of these proteins. In addition, the amount of intracellular Cu after exposure to CuCl2 was significantly higher in cells pretreated with 6-OHDA than in untreated cells. Moreover, 6-OHDA reduced the protein levels of the cuproenzyme dopamine ß-hydroxylase that converts dopamine to noradrenaline. Thus, this study suggests that 6-OHDA disrupts Cu homeostasis through the dysregulation of cellular Cu trafficking, resulting in the dysfunction of neuronal cells.


Subject(s)
Copper Transport Proteins/antagonists & inhibitors , Copper-Transporting ATPases/antagonists & inhibitors , Copper/metabolism , Homeostasis , Molecular Chaperones/antagonists & inhibitors , Neuroblastoma/pathology , Oxidative Stress , Oxidopamine/pharmacology , Adrenergic Agents/pharmacology , Cell Death , Humans , Neuroblastoma/metabolism , Reactive Oxygen Species/metabolism , Tumor Cells, Cultured
7.
Neurobiol Dis ; 155: 105369, 2021 07.
Article in English | MEDLINE | ID: mdl-33894367

ABSTRACT

TOR1A-associated dystonia, otherwise known as DYT1 dystonia, is an inherited dystonia caused by a three base-pair deletion in the TOR1A gene (TOR1AΔE). Although the mechanisms underlying the dystonic movements are largely unknown, abnormalities in striatal dopamine and acetylcholine neurotransmission are consistently implicated whereby dopamine release is reduced while cholinergic tone is increased. Because striatal cholinergic neurotransmission mediates dopamine release, it is not known if the dopamine release deficit is mediated indirectly by abnormal acetylcholine neurotransmission or if Tor1a(ΔE) acts directly within dopaminergic neurons to attenuate release. To dissect the microcircuit that governs the deficit in dopamine release, we conditionally expressed Tor1a(ΔE) in either dopamine neurons or cholinergic interneurons in mice and assessed striatal dopamine release using ex vivo fast scan cyclic voltammetry or dopamine efflux using in vivo microdialysis. Conditional expression of Tor1a(ΔE) in cholinergic neurons did not affect striatal dopamine release. In contrast, conditional expression of Tor1a(ΔE) in dopamine neurons reduced dopamine release to 50% of normal, which is comparable to the deficit in Tor1a+/ΔE knockin mice that express the mutation ubiquitously. Despite the deficit in dopamine release, we found that the Tor1a(ΔE) mutation does not cause obvious nerve terminal dysfunction as other presynaptic mechanisms, including electrical excitability, vesicle recycling/refilling, Ca2+ signaling, D2 dopamine autoreceptor function and GABAB receptor function, are intact. Although the mechanistic link between Tor1a(ΔE) and dopamine release is unclear, these results clearly demonstrate that the defect in dopamine release is caused by the action of the Tor1a(ΔE) mutation within dopamine neurons.


Subject(s)
Disease Models, Animal , Dopamine/genetics , Dopamine/metabolism , Dystonia/genetics , Dystonia/metabolism , Molecular Chaperones/genetics , Animals , Corpus Striatum/metabolism , Corpus Striatum/pathology , Dystonia/pathology , Female , Laser Capture Microdissection/methods , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Molecular Chaperones/antagonists & inhibitors , Mutation/physiology
8.
J Biol Chem ; 296: 100211, 2021.
Article in English | MEDLINE | ID: mdl-33837724

ABSTRACT

The importance of molecular chaperones in cancer is well established, yet several chaperone inhibitors have failed in clinical trials due to toxicity. Recent efforts have focused on targeting chaperone function in cancer by either manipulating the "chaperone code" or inhibiting helper cochaperones, such as DNAJA1. Tong et al. identify a novel inhibitor that specifically disrupts DNAJA1's interaction with p53, promoting p53 degradation. This finding highlights specific DNAJA1 interactions with the potential for less toxicity compared to traditional chaperone inhibitors.


Subject(s)
Molecular Chaperones/antagonists & inhibitors , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Humans , Protein Binding , Tumor Suppressor Protein p53/metabolism
9.
Sci Rep ; 11(1): 5429, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33686161

ABSTRACT

Whooping cough is caused by Bordetella pertussis that releases pertussis toxin (PT) which comprises enzyme A-subunit PTS1 and binding/transport B-subunit. After receptor-mediated endocytosis, PT reaches the endoplasmic reticulum from where unfolded PTS1 is transported to the cytosol. PTS1 ADP-ribosylates G-protein α-subunits resulting in increased cAMP signaling. Here, a role of target cell chaperones Hsp90, Hsp70, cyclophilins and FK506-binding proteins for cytosolic PTS1-uptake is demonstrated. PTS1 specifically and directly interacts with chaperones in vitro and in cells. Specific pharmacological chaperone inhibition protects CHO-K1, human primary airway basal cells and a fully differentiated airway epithelium from PT-intoxication by reducing intracellular PTS1-amounts without affecting cell binding or enzyme activity. PT is internalized by human airway epithelium secretory but not ciliated cells and leads to increase of apical surface liquid. Cyclophilin-inhibitors reduced leukocytosis in infant mouse model of pertussis, indicating their promising potential for developing novel therapeutic strategies against whooping cough.


Subject(s)
Bordetella pertussis/enzymology , Drug Delivery Systems , Enzyme Inhibitors/pharmacology , Epithelial Cells/metabolism , Leukocytosis , Molecular Chaperones , Pertussis Toxin/toxicity , Animals , Bordetella pertussis/metabolism , Bordetella pertussis/pathogenicity , CHO Cells , Cricetulus , Epithelial Cells/microbiology , HEK293 Cells , Humans , Leukocytosis/chemically induced , Leukocytosis/drug therapy , Leukocytosis/metabolism , Mice , Molecular Chaperones/antagonists & inhibitors , Molecular Chaperones/genetics , Molecular Chaperones/metabolism
10.
Neurobiol Dis ; 154: 105342, 2021 07.
Article in English | MEDLINE | ID: mdl-33757902

ABSTRACT

Dystonia is a neurological movement disorder characterized by sustained or intermittent muscle contractions, repetitive movement, and sometimes abnormal postures. DYT1 dystonia is one of the most common genetic dystonias, and most patients carry heterozygous DYT1 ∆GAG mutations causing a loss of a glutamic acid of the protein torsinA. Patients can be treated with anticholinergics, such as trihexyphenidyl, suggesting an abnormal cholinergic state. Early work on the cell-autonomous effects of Dyt1 deletion with ChI-specific Dyt1 conditional knockout mice (Dyt1 Ch1KO) revealed abnormal electrophysiological responses of striatal ChIs to muscarine and quinpirole, motor deficits, and no changes in the number or size of the ChIs. However, the Chat-cre line that was used to derive Dyt1 Ch1KO mice contained a neomycin cassette and was reported to have ectopic cre-mediated recombination. In this study, we generated a Dyt1 Ch2KO mouse line by removing the neomycin cassette in Dyt1 Ch1KO mice. The Dyt1 Ch2KO mice showed abnormal paw clenching behavior, motor coordination and balance deficits, impaired motor learning, reduced striatal choline acetyltransferase protein level, and a reduced number of striatal ChIs. Furthermore, the mutant striatal ChIs had a normal muscarinic inhibitory function, impaired quinpirole-mediated inhibition, and altered current density. Our findings demonstrate a cell-autonomous effect of Dyt1 deletion on the striatal ChIs and a critical role for the striatal ChIs and corticostriatal pathway in the pathogenesis of DYT1 dystonia.


Subject(s)
Cholinergic Neurons/metabolism , Molecular Chaperones/antagonists & inhibitors , Molecular Chaperones/genetics , Motor Disorders/genetics , Motor Disorders/metabolism , Animals , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Cholinergic Neurons/pathology , Corpus Striatum/metabolism , Corpus Striatum/pathology , Female , Male , Mice , Mice, Knockout , Mice, Transgenic , Molecular Chaperones/biosynthesis , Motor Disorders/pathology
11.
FEBS J ; 288(7): 2222-2237, 2021 04.
Article in English | MEDLINE | ID: mdl-33058391

ABSTRACT

The formation of ordered Z (Glu342Lys) α1 -antitrypsin polymers in hepatocytes is central to liver disease in α1 -antitrypsin deficiency. In vitro experiments have identified an intermediate conformational state (M*) that precedes polymer formation, but this has yet to be identified in vivo. Moreover, the mechanism of polymer formation and their fate in cells have been incompletely characterised. We have used cell models of disease in conjunction with conformation-selective monoclonal antibodies and a small molecule inhibitor of polymerisation to define the dynamics of polymer formation, accumulation and secretion. Pulse-chase experiments demonstrate that Z α1 -antitrypsin accumulates as short-chain polymers that partition with soluble cellular components and are partially secreted by cells. These precede the formation of larger, insoluble polymers with a longer half-life (10.9 ± 1.7 h and 20.9 ± 7.4 h for soluble and insoluble polymers, respectively). The M* intermediate (or a by-product thereof) was identified in the cells by a conformation-specific monoclonal antibody. This was completely abrogated by treatment with the small molecule, which also blocked the formation of intracellular polymers. These data allow us to conclude that the M* conformation is central to polymerisation of Z α1 -antitrypsin in vivo; preventing its accumulation represents a tractable approach for pharmacological treatment of this condition; polymers are partially secreted; and polymers exist as two distinct populations in cells whose different dynamics have likely consequences for the aetiology of the disease.


Subject(s)
Molecular Chaperones/genetics , Protein Conformation/drug effects , alpha 1-Antitrypsin Deficiency/drug therapy , alpha 1-Antitrypsin/genetics , Antibodies, Monoclonal/pharmacology , Hepatocytes/drug effects , Humans , Molecular Chaperones/antagonists & inhibitors , Molecular Chaperones/chemistry , Molecular Chaperones/ultrastructure , Polymers/chemistry , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , alpha 1-Antitrypsin/chemistry , alpha 1-Antitrypsin/drug effects , alpha 1-Antitrypsin/ultrastructure , alpha 1-Antitrypsin Deficiency/genetics
12.
Cell Mol Gastroenterol Hepatol ; 11(2): 449-464, 2021.
Article in English | MEDLINE | ID: mdl-33130332

ABSTRACT

The incidence of esophageal adenocarcinoma (EAC) and other gastrointestinal (GI) cancers have risen dramatically, thus defining the oncogenic drivers to develop effective therapies are necessary. Patients with Barrett's Esophagus (BE), have an elevated risk of developing EAC. Around 70%-80% of BE cases that progress to dysplasia and cancer have detectable TP53 mutations. Similarly, in other GI cancers higher rates of TP53 mutation are reported, which provide a significant survival advantage to dysplastic/cancer cells. Targeting molecular chaperones that mediate mutant p53 stability may effectively induce mutant p53 degradation and improve cancer outcomes. Statins can achieve this via disrupting the interaction between mutant p53 and the chaperone DNAJA1, promoting CHIP-mediated degradation of mutant p53, and statins are reported to significantly reduce the risk of BE progression to EAC. However, statins demonstrated sub-optimal efficacy depending on cancer types and TP53 mutation specificity. Besides the well-established role of MDM2 in p53 stability, we reported that individual isoforms of the E3 ubiquitin ligase GRAIL (RNF128) are critical, tissue-specific regulators of mutant p53 stability in BE progression to EAC, and targeting the interaction of mutant p53 with these isoforms may help mitigate EAC development. In this review, we discuss the critical ubiquitin-proteasome and chaperone regulation of mutant p53 stability in EAC and other GI cancers with future insights as to how to affect mutant p53 stability, further noting how the precise p53 mutation may influence the efficacy of treatment strategies and identifying necessary directions for further research in this field.


Subject(s)
Antineoplastic Agents/pharmacology , Gastrointestinal Neoplasms/genetics , Molecular Chaperones/metabolism , Tumor Suppressor Protein p53/genetics , Ubiquitin-Protein Ligases/metabolism , Antineoplastic Agents/therapeutic use , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/pathology , Humans , Molecular Chaperones/antagonists & inhibitors , Molecular Targeted Therapy/methods , Mutation , Protein Stability/drug effects , Proteolysis/drug effects , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors
13.
Biochemistry (Mosc) ; 85(9): 1064-1081, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33050853

ABSTRACT

Tn antigen is a tumor-associated antigen that appears on cancer cells as a result of aberrant O-glycosylation. The most studied form of Tn antigen is found in mucins, in particular, in mucin 1 (MUC1). Antibodies against this form of Tn antigen are used to diagnose tumors, as well as to generate T-killers with a chimeric receptor. Some carcinomas do not carry MUC1 and antibodies of a different specificity are required to detect Tn antigen on these cells. In our work, we searched for anti-Tn antibodies without preliminary assumptions about the proteins that may be carriers of the Tn antigen. For this purpose, we obtained several pairs of isogenic cell lines with the wild type and knockout of the Cosmc gene, which is essential for correct protein O-glycosylation. Using the created lines as immunogens, we generated a monoclonal antibody AKC3, which reacted with the Cosmc-deficient A549 lung adenocarcinoma cells and did not bind to the wild-type cells. Using mass spectrometry, as well as co-immunoprecipitation, it was shown that the AKC3 antibody recognized the Tn antigen in the context of CD44 protein - a protein important for tumor growth. The AKC3 antibody can be used for tumor diagnosis, and to generate T cells with a chimeric receptor for treatment of tumors that do not express mucins.


Subject(s)
Adenocarcinoma of Lung/diagnosis , Antibodies, Monoclonal/immunology , Antigens, Tumor-Associated, Carbohydrate/metabolism , Biomarkers, Tumor/metabolism , Hyaluronan Receptors/metabolism , Lung Neoplasms/diagnosis , Molecular Chaperones/metabolism , A549 Cells , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/metabolism , Antigens, Tumor-Associated, Carbohydrate/immunology , CRISPR-Cas Systems , Glycosylation , Humans , Hyaluronan Receptors/immunology , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Molecular Chaperones/antagonists & inhibitors , Molecular Chaperones/genetics
14.
J Biol Chem ; 295(49): 16826-16839, 2020 12 04.
Article in English | MEDLINE | ID: mdl-32989053

ABSTRACT

The Wnt/ß-catenin pathway is one of the major pathways that regulates embryonic development, adult homeostasis, and stem cell self-renewal. In this pathway, transcription factors T-cell factor and lymphoid enhancer factor (TCF/LEF) serve as a key switch to repress or activate Wnt target gene transcription by recruiting repressor molecules or interacting with the ß-catenin effector, respectively. It has become evident that the protein stability of the TCF/LEF family members may play a critical role in controlling the activity of the Wnt/ß-catenin signaling pathway. However, factors that regulate the stability of TCF/LEFs remain largely unknown. Here, we report that pVHL binding protein 1 (VBP1) regulates the Wnt/ß-catenin signaling pathway by controlling the stability of TCF/LEFs. Surprisingly, we found that either overexpression or knockdown of VBP1 decreased Wnt/ß-catenin signaling activity in both cultured cells and zebrafish embryos. Mechanistically, VBP1 directly binds to all four TCF/LEF family members and von Hippel-Lindau tumor-suppressor protein (pVHL). Either overexpression or knockdown of VBP1 increases the association between TCF/LEFs and pVHL and then decreases the protein levels of TCF/LEFs via proteasomal degradation. Together, our results provide mechanistic insights into the roles of VBP1 in controlling TCF/LEFs protein stability and regulating Wnt/ß-catenin signaling pathway activity.


Subject(s)
Cytoskeletal Proteins/metabolism , Molecular Chaperones/metabolism , TCF Transcription Factors/metabolism , Wnt Signaling Pathway , Animals , Cell Line , Cell Proliferation , Cytoskeletal Proteins/antagonists & inhibitors , Cytoskeletal Proteins/genetics , Embryo, Nonmammalian/metabolism , Humans , Molecular Chaperones/antagonists & inhibitors , Molecular Chaperones/genetics , Phosphorylation , RNA Interference , RNA, Small Interfering/metabolism , TCF Transcription Factors/genetics , Transcription Factor 7-Like 1 Protein/genetics , Transcription Factor 7-Like 1 Protein/metabolism , Transcription Factor 7-Like 2 Protein/genetics , Transcription Factor 7-Like 2 Protein/metabolism , Transcriptional Activation , Wnt Proteins/genetics , Wnt Proteins/metabolism , Zebrafish/growth & development , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , beta Catenin/genetics , beta Catenin/metabolism
15.
Sci Rep ; 10(1): 13831, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32796891

ABSTRACT

Heat shock protein 70 (Hsp70) is an important molecular chaperone that regulates oncoprotein stability and tumorigenesis. However, attempts to develop anti-chaperone drugs targeting molecules such as Hsp70 have been hampered by toxicity issues. Hsp70 is regulated by a suite of co-chaperone molecules that bring "clients" to the primary chaperone for efficient folding. Rather than targeting Hsp70 itself, here we have examined the feasibility of inhibiting the Hsp70 co-chaperone DNAJA1 as a novel anticancer strategy. We found DNAJA1 to be upregulated in a variety of cancers, suggesting a role in malignancy. To confirm this role, we screened the NIH Approved Oncology collection for chemical-genetic interactions with loss of DNAJA1 in cancer. 41 compounds showed strong synergy with DNAJA1 loss, whereas 18 dramatically lost potency. Several hits were validated using a DNAJA1 inhibitor (116-9e) in castration-resistant prostate cancer cell (CRPC) and spheroid models. Taken together, these results confirm that DNAJA1 is a hub for anticancer drug resistance and that DNAJA1 inhibition is a potent strategy to sensitize cancer cells to current and future therapeutics. The large change in drug efficacy linked to DNAJA1 suggests a personalized medicine approach where tumor DNAJA1 status may be used to optimize therapeutic strategy.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/genetics , HSP40 Heat-Shock Proteins , HSP70 Heat-Shock Proteins , Molecular Chaperones , Neoplasms/genetics , Neoplasms/pathology , Carcinogenesis/genetics , HSP40 Heat-Shock Proteins/antagonists & inhibitors , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/antagonists & inhibitors , HSP70 Heat-Shock Proteins/metabolism , Humans , Molecular Chaperones/antagonists & inhibitors , Molecular Targeted Therapy , Oncogene Proteins/metabolism , Precision Medicine , Tumor Cells, Cultured
16.
Nat Commun ; 11(1): 3360, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32620763

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is considered the next major health epidemic with an estimated 25% worldwide prevalence. No drugs have yet been approved and NAFLD remains a major unmet need. Here, we identify MCJ (Methylation-Controlled J protein) as a target for non-alcoholic steatohepatitis (NASH), an advanced phase of NAFLD. MCJ is an endogenous negative regulator of the respiratory chain Complex I that acts to restrain mitochondrial respiration. We show that therapeutic targeting of MCJ in the liver with nanoparticle- and GalNAc-formulated siRNA efficiently reduces liver lipid accumulation and fibrosis in multiple NASH mouse models. Decreasing MCJ expression enhances the capacity of hepatocytes to mediate ß-oxidation of fatty acids and minimizes lipid accumulation, which results in reduced hepatocyte damage and fibrosis. Moreover, MCJ levels in the liver of NAFLD patients are elevated relative to healthy subjects. Thus, inhibition of MCJ emerges as an alternative approach to treat NAFLD.


Subject(s)
Fatty Acids/metabolism , HSP40 Heat-Shock Proteins/metabolism , Liver/pathology , Mitochondria/drug effects , Mitochondrial Proteins/metabolism , Molecular Chaperones/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Adult , Aged , Animals , Datasets as Topic , Diet, High-Fat/adverse effects , Disease Models, Animal , Female , HSP40 Heat-Shock Proteins/antagonists & inhibitors , HSP40 Heat-Shock Proteins/genetics , Hepatocytes/cytology , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Liver/cytology , Liver/drug effects , Male , Middle Aged , Mitochondria/metabolism , Mitochondrial Proteins/antagonists & inhibitors , Mitochondrial Proteins/genetics , Molecular Chaperones/antagonists & inhibitors , Molecular Chaperones/genetics , Nanoparticles/administration & dosage , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Oxidation-Reduction/drug effects , Primary Cell Culture , RNA, Small Interfering/administration & dosage , RNA-Seq
17.
J Clin Invest ; 130(8): 4470-4485, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32427588

ABSTRACT

Dominant mutations in the HSP70 cochaperone DNAJB6 cause a late-onset muscle disease termed limb-girdle muscular dystrophy type D1 (LGMDD1), which is characterized by protein aggregation and vacuolar myopathology. Disease mutations reside within the G/F domain of DNAJB6, but the molecular mechanisms underlying dysfunction are not well understood. Using yeast, cell culture, and mouse models of LGMDD1, we found that the toxicity associated with disease-associated DNAJB6 required its interaction with HSP70 and that abrogating this interaction genetically or with small molecules was protective. In skeletal muscle, DNAJB6 localizes to the Z-disc with HSP70. Whereas HSP70 normally diffused rapidly between the Z-disc and sarcoplasm, the rate of diffusion of HSP70 in LGMDD1 mouse muscle was diminished, probably because it had an unusual affinity for the Z-disc and mutant DNAJB6. Treating LGMDD1 mice with a small-molecule inhibitor of the DNAJ-HSP70 complex remobilized HSP70, improved strength, and corrected myopathology. These data support a model in which LGMDD1 mutations in DNAJB6 are a gain-of-function disease that is, counterintuitively, mediated via HSP70 binding. Thus, therapeutic approaches targeting HSP70-DNAJB6 may be effective in treating this inherited muscular dystrophy.


Subject(s)
Gain of Function Mutation , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Muscle Strength/genetics , Muscular Dystrophies, Limb-Girdle/metabolism , Nerve Tissue Proteins/metabolism , Animals , Disease Models, Animal , HSP40 Heat-Shock Proteins/antagonists & inhibitors , HSP40 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/antagonists & inhibitors , HSP70 Heat-Shock Proteins/genetics , HeLa Cells , Humans , Mice , Molecular Chaperones/antagonists & inhibitors , Molecular Chaperones/genetics , Muscular Dystrophies, Limb-Girdle/drug therapy , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/pathology , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/genetics , Saccharomyces cerevisiae
18.
Development ; 147(12)2020 06 17.
Article in English | MEDLINE | ID: mdl-32467239

ABSTRACT

Molecular chaperones often work collaboratively with the ubiquitylation-proteasome system (UPS) to facilitate the degradation of misfolded proteins, which typically safeguards cellular differentiation and protects cells from stress. In this study, however, we report that the Hsp70/Hsp90 chaperone machinery and an F-box protein, MEC-15, have opposing effects on neuronal differentiation, and that the chaperones negatively regulate neuronal morphogenesis and functions. Using the touch receptor neurons (TRNs) of Caenorhabditis elegans, we find that mec-15(-) mutants display defects in microtubule formation, neurite growth, synaptic development and neuronal functions, and that these defects can be rescued by the loss of Hsp70/Hsp90 chaperones and co-chaperones. MEC-15 probably functions in a Skp-, Cullin- and F-box- containing complex to degrade DLK-1, which is an Hsp90 client protein stabilized by the chaperones. The abundance of DLK-1, and likely other Hsp90 substrates, is fine-tuned by the antagonism between MEC-15 and the chaperones; this antagonism regulates TRN development, as well as synaptic functions of GABAergic motor neurons. Therefore, a balance between the UPS and the chaperones tightly controls neuronal differentiation.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , F-Box Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Microtubules/metabolism , Neurites/physiology , Animals , Caenorhabditis elegans Proteins/antagonists & inhibitors , Caenorhabditis elegans Proteins/genetics , F-Box Proteins/antagonists & inhibitors , F-Box Proteins/genetics , GABAergic Neurons/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , MAP Kinase Kinase Kinases/metabolism , Molecular Chaperones/antagonists & inhibitors , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Mutagenesis , Neurons, Afferent/metabolism , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , Protein Stability , RNA Interference , RNA, Double-Stranded , Ubiquitin/metabolism , Ubiquitination
19.
Biochemistry ; 59(20): 1946-1960, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32326704

ABSTRACT

The heat-shock factor Hsp70 and other molecular chaperones play a central role in nascent protein folding. Elucidating the task performed by individual chaperones within the complex cellular milieu, however, has been challenging. One strategy for addressing this goal has been to monitor protein biogenesis in the absence and presence of inhibitors of a specific chaperone, followed by analysis of folding outcomes under both conditions. In this way, the role of the chaperone of interest can be discerned. However, development of chaperone inhibitors, including well-known proline-rich antimicrobial peptides, has been fraught with undesirable side effects, including decreased protein expression yields. Here, we introduce KLR-70, a rationally designed cationic inhibitor of the Escherichia coli Hsp70 chaperone (also known as DnaK). KLR-70 is a 14-amino acid peptide bearing naturally occurring residues and engineered to interact with the DnaK substrate-binding domain. The interaction of KLR-70 with DnaK is enantioselective and is characterized by high affinity in a buffered solution. Importantly, KLR-70 does not significantly interact with the DnaJ and GroEL/ES chaperones, and it does not alter nascent protein biosynthesis yields across a wide concentration range. Some attenuation of the anti-DnaK activity of KLR-70, however, has been observed in the complex E. coli cell-free environment. Interestingly, the d enantiomer D-KLR-70, unlike its all-L KLR-70 counterpart, does not bind the DnaK and DnaJ chaperones, yet it strongly inhibits translation. This outcome suggests that the two enantiomers (KLR-70 and D-KLR-70) may serve as orthogonal inhibitors of chaperone binding and translation. In summary, KLR-70 is a novel chaperone inhibitor with high affinity and selectivity for bacterial Hsp70 and with considerable potential to help in parsing out the role of Hsp70 in nascent protein folding.


Subject(s)
Escherichia coli Proteins/antagonists & inhibitors , HSP70 Heat-Shock Proteins/antagonists & inhibitors , Molecular Chaperones/antagonists & inhibitors , Peptides/pharmacology , Escherichia coli Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Models, Molecular , Molecular Chaperones/metabolism , Peptides/chemical synthesis , Peptides/chemistry
20.
Adv Exp Med Biol ; 1243: 87-99, 2020.
Article in English | MEDLINE | ID: mdl-32297213

ABSTRACT

The chaperome is a large family of proteins composed of chaperones, co-chaperones and a multitude of other factors. Elegant studies in yeast and other organisms have paved the road to how we currently understand the complex organization of this large family into protein networks. The goal of this chapter is to provide an overview of chaperome networks in cancer cells, with a focus on two cellular states defined by chaperome network organization. One state characterized by chaperome networks working in isolation and with little overlap, contains global chaperome networks resembling those of normal, non-transformed, cells. We propose that in this state, redundancy in chaperome networks results in a tumor type unamenable for single-agent chaperome therapy. The second state comprises chaperome networks interconnected in response to cellular stress, such as MYC hyperactivation. This is a state where no redundant pathways can be deployed, and is a state of vulnerability, amenable for chaperome therapy. We conclude by proposing a change in how we discover and implement chaperome inhibitor strategies, and suggest an approach to chaperome therapy where the properties of chaperome networks, rather than genetics or client proteins, are used in chaperome inhibitor implementation.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Molecular Chaperones/antagonists & inhibitors , Molecular Chaperones/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Humans , Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...