Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.608
Filter
1.
Mol Biol Rep ; 51(1): 716, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824237

ABSTRACT

BACKGROUND: Post kala-azar dermal leishmaniasis (PKDL) is a consequential dermal manifestation of visceral leishmaniasis (VL), serving as a parasite reservoir. The traditional diagnostic approach, which requires an invasive skin biopsy is associated with inherent risks and necessitates skilled healthcare practitioners in sterile settings. There is a critical need for a rapid, less invasive method for Leishmania detection. The main objective of this study was to evaluate and compare the diagnostic efficacy of PCR and qPCR in detecting PKDL, utilizing both skin and blood samples and to assess the utility of blood samples for molecular diagnosis. METHODS AND RESULTS: 73 individuals exhibiting clinical symptoms of PKDL and who had tested positive for rK39 rapid diagnostic test (RDT) were enrolled in this study. For the diagnosis of PKDL, both PCR and real-time quantitative PCR (qPCR), employing SYBR Green and TaqMan assays, were performed on blood and skin matched samples. qPCR results using both TaqMan and SYBR Green assay, indicated higher parasite loads in the skin compared to blood, as evident by the Ct values. Importantly, when blood samples were used for PKDL diagnosis by qPCR, an encouraging sensitivity of 69.35% (TaqMan assay) and 79.36% (SYBR Green) were obtained, compared to 8.2% with conventional PCR. CONCLUSION: The findings of the study suggest the potential utility of blood for molecular diagnosis by qPCR, offering a less invasive alternative to skin biopsies in field setting for the early detection of parasitaemia in PKDL patients and effective management and control of the disease.


Subject(s)
Leishmaniasis, Cutaneous , Leishmaniasis, Visceral , Real-Time Polymerase Chain Reaction , Humans , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/blood , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Cutaneous/diagnosis , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/blood , Leishmaniasis, Cutaneous/genetics , Real-Time Polymerase Chain Reaction/methods , Male , Female , Adult , Adolescent , Skin/parasitology , Skin/pathology , Sensitivity and Specificity , Middle Aged , Parasite Load/methods , Molecular Diagnostic Techniques/methods , Young Adult , Child , DNA, Protozoan/genetics , DNA, Protozoan/blood
2.
Surg Pathol Clin ; 17(2): 307-320, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692813

ABSTRACT

Adoption of molecular testing in lung cancer is increasing. Molecular testing for staging and prediction of response for targeted therapy remain the main indications, and although utilization of blood-based testing for tumor is growing, the use of the diagnostic cytology and tissue specimens is equally important. The pathologist needs to optimize reflex testing, incorporate stage-based algorithms, and understand types of tests for timely and complete assessment in the majority of cases. When tissue is limited, testing should capture the most frequent alterations to maximize the yield of what are largely mutually exclusive alterations, avoiding the need for repeat biopsy.


Subject(s)
Biomarkers, Tumor , Lung Neoplasms , Humans , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/diagnosis , Biomarkers, Tumor/genetics , Molecular Diagnostic Techniques , Neoplasm Staging , Practice Guidelines as Topic , Mutation , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/diagnosis
3.
PLoS Negl Trop Dis ; 18(5): e0011637, 2024 May.
Article in English | MEDLINE | ID: mdl-38713648

ABSTRACT

BACKGROUND: Diagnosis of visceral leishmaniasis (VL) in resource-limited endemic regions is currently based on serological testing with rK39 immunochromatographic tests (ICTs). However, rK39 ICT frequently has suboptimal diagnostic accuracy. Furthermore, treatment monitoring and detection of VL relapses is reliant on insensitive and highly invasive tissue aspirate microscopy. Miniature direct-on-blood PCR nucleic acid lateral flow immunoassay (mini-dbPCR-NALFIA) is an innovative and user-friendly molecular tool which does not require DNA extraction and uses a lateral flow strip for result read-out. This assay could be an interesting candidate for more reliable VL diagnosis and safer test of cure at the point of care. METHODOLOGY/PRINCIPLE FINDINGS: The performance of mini-dbPCR-NALFIA for diagnosis of VL in blood was assessed in a laboratory evaluation and compared with the accuracy of rK39 ICTs Kalazar Detect in Spain and IT LEISH in East Africa. Limit of detection of mini-dbPCR-NALFIA was 650 and 500 parasites per mL of blood for Leishmania donovani and Leishmania infantum, respectively. In 146 blood samples from VL-suspected patients from Spain, mini-dbPCR-NALFIA had a sensitivity of 95.8% and specificity 97.2%, while Kalazar Detect had a sensitivity of 71.2% and specificity of 94.5%, compared to a nested PCR reference. For a sample set from 58 VL patients, 10 malaria patients and 68 healthy controls from Ethiopia and Kenya, mini-dbPCR-NALFIA had a pooled sensitivity of 87.9% and pooled specificity of 100% using quantitative PCR as reference standard. IT LEISH sensitivity and specificity in the East African samples were 87.9% and 97.4%, respectively. CONCLUSIONS/SIGNIFICANCE: Mini-dbPCR-NALFIA is a promising tool for simplified molecular diagnosis of VL and follow-up of treated patients in blood samples. Future studies should evaluate its use in endemic, resource-limited settings, where mini-dbPCR-NALFIA may provide an accurate and versatile alternative to rK39 ICTs and aspirate microscopy.


Subject(s)
Leishmania donovani , Leishmaniasis, Visceral , Sensitivity and Specificity , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/parasitology , Humans , Leishmania donovani/genetics , Leishmania donovani/isolation & purification , Immunoassay/methods , Leishmania infantum/genetics , Leishmania infantum/isolation & purification , Polymerase Chain Reaction/methods , Spain , Molecular Diagnostic Techniques/methods , Female , Male , Adult , Adolescent , Child , Young Adult , Middle Aged , Africa, Eastern , DNA, Protozoan/genetics , DNA, Protozoan/blood , Child, Preschool
4.
Mycopathologia ; 189(3): 38, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704795

ABSTRACT

OBJECTIVES: To describe the epidemiology of Pneumocystis jirovecii pneumonia and colonization diagnosed by next-generation sequencing (NGS) and explore the usefulness of the number of P. jirovecii sequence reads for the diagnosis of P. jirovecii pneumonia. METHODS: We examined the NGS results for P. jirovecii in respiratory samples collected from patients and analysed their clinical, radiological and microbiological characteristics. RESULTS: Among 285 respiratory samples collected over a 12-month period (January to December 2022), P. jirovecii sequences were detected in 56 samples from 53 patients. Fifty (94.3%) of the 53 patients were HIV-negative. Following our case definitions, 37 (69.8%) and 16 (30.2%) of the 53 patients had P. jirovecii infection and colonization respectively. P. jirovecii infection was associated with presence of underlying disease with immunosuppression (94.6% vs 18.8%, P < 0.05), positive serum 1,3-ß-D-glucan (41.2% vs 0%, P < 0.01) and higher number of P. jirovecii sequence reads (P < 0.005). In contrast, P. jirovecii colonization was associated with the male sex (93.8% vs 54.1%, P < 0.01), another definitive infectious disease diagnosis of the respiratory tract (43.8% vs 2.7%, P < 0.001) and higher survival (100% vs 67.6%, P < 0.01). Although P. jirovecii pneumonia was associated with higher number of P. jirovecii reads in respiratory samples, only a sensitivity of 82.14% and a specificity of 68.75% could be achieved. CONCLUSION: Detection of P. jirovecii sequences in respiratory samples has to be interpreted discreetly. A combination of clinical, radiological and laboratory findings is still the most crucial in determining whether a particular case is genuine P. jirovecii pneumonia.


Subject(s)
High-Throughput Nucleotide Sequencing , Pneumocystis carinii , Pneumonia, Pneumocystis , Humans , Pneumonia, Pneumocystis/diagnosis , Pneumonia, Pneumocystis/microbiology , Male , Pneumocystis carinii/genetics , Pneumocystis carinii/isolation & purification , Female , Middle Aged , Aged , Adult , Aged, 80 and over , Respiratory System/microbiology , Young Adult , Molecular Diagnostic Techniques/methods
5.
J Virol Methods ; 327: 114947, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703833

ABSTRACT

Rubella virus infection during early pregnancy sometimes causes severe birth defects termed congenital rubella syndrome. Although there are safe and effective live-attenuated vaccines, rubella has only been certified as eliminated in the Americas within the six World Health Organization regions. Rubella remains an endemic disease in many regions, and outbreaks occur wherever population immunity is insufficient. There are two main methods for diagnosis of rubella: detection of anti-rubella IgM antibodies by enzyme immunoassay and detection of the viral genome by real-time RT-PCR. Both of these methods require substantial time and effort. In the present study, a rapid rubella detection assay using real-time fluorescent reverse transcription loop-mediated isothermal amplification with quenching primers was developed. The time required for the new assay was one-half that required for a real-time RT-PCR assay. The assay had 93.6% positive percent agreement and 100% negative percent agreement for clinical specimens compared with the real-time RT-PCR assay. The new assay is considered useful for diagnosis of rubella in areas where rubella is endemic.


Subject(s)
DNA Primers , Nucleic Acid Amplification Techniques , Rubella virus , Rubella , Rubella virus/genetics , Rubella virus/isolation & purification , Rubella/diagnosis , Rubella/virology , Humans , Nucleic Acid Amplification Techniques/methods , DNA Primers/genetics , Sensitivity and Specificity , Molecular Diagnostic Techniques/methods , Time Factors , Female
6.
Viruses ; 16(5)2024 05 13.
Article in English | MEDLINE | ID: mdl-38793653

ABSTRACT

BACKGROUND: Several screening strategies for identifying congenital CMV (cCMV) have been proposed; however, the optimal solution has yet to be determined. We aimed to determine the prevalence of cCMV by universal screening with saliva pool testing and to identify the clinical variables associated with a higher risk of cCMV to optimize an expanded screening strategy. METHODS: We carried out a prospective universal cCMV screening (September/2022 to August/2023) of 2186 newborns, analyzing saliva samples in pools of five (Alethia-LAMP-CMV®) and then performed confirmatory urine CMV RT-PCR. Infants with risk factors (small for gestational age, failed hearing screening, HIV-exposed, born to immunosuppressed mothers, or <1000 g birth weight) underwent expanded screening. Multivariate analyses were used to assess the association with maternal/neonatal variables. RESULTS: We identified 10 infants with cCMV (prevalence: 0.46%, 95% CI 0.22-0.84), with significantly higher rates (2.1%, 95% CI 0.58-5.3) in the high-risk group (p = 0.04). False positives occurred in 0.09% of cases. No significant differences in maternal/neonatal characteristics were observed, except for a higher prevalence among infants born to non-Chilean mothers (p = 0.034), notably those born to Haitian mothers (1.5%, 95% CI 0.31-4.34), who had higher odds of cCMV (OR 6.82, 95% CI 1.23-37.9, p = 0.04). Incorporating maternal nationality improved predictive accuracy (AUC: 0.65 to 0.83). CONCLUSIONS: For low-prevalence diseases such as cCMV, universal screening with pool testing in saliva represents an optimal and cost-effective approach to enhance diagnosis in asymptomatic patients. An expanded screening strategy considering maternal nationality could be beneficial in resource-limited settings.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Developing Countries , Neonatal Screening , Saliva , Humans , Saliva/virology , Cytomegalovirus Infections/diagnosis , Cytomegalovirus Infections/congenital , Cytomegalovirus Infections/epidemiology , Cytomegalovirus Infections/virology , Infant, Newborn , Female , Cytomegalovirus/genetics , Cytomegalovirus/isolation & purification , Prospective Studies , Neonatal Screening/methods , Male , Molecular Diagnostic Techniques/methods , Prevalence , Mass Screening/methods , Sensitivity and Specificity , Pregnancy , Risk Factors
7.
Acta Trop ; 255: 107249, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38740319

ABSTRACT

BACKGROUND: Natural human infections by Plasmodium cynomolgi and P. inui have been reported recently and gain the substantial attention from Southeast Asian countries. Zoonotic transmission of non-human malaria parasites to humans from macaque monkeys occurred through the bites of the infected mosquitoes. The objective of this study is to establish real-time fluorescence loop-mediated isothermal amplification (LAMP) assays for the detection of zoonotic malaria parasites by combining real-time fluorescent technology with the isothermal amplification technique. METHODS: By using 18S rRNA as the target gene, the primers for P. cynomolgi, P. coatneyi and P. inui were newly designed in the present study. Four novel real-time fluorescence LAMP assays were developed for the detection of P. cynomolgi, P. coatneyi, P. inui and P. knowlesi. The entire amplification process was completed in 60 min, with the assays performed at 65 °C. By using SYTO-9 as the nucleic acid intercalating dye, the reaction was monitored via real-time fluorescence signal. RESULTS: There was no observed cross-reactivity among the primers from different species. All 70 field-collected monkey samples were successfully amplified by real-time fluorescence LAMP assays. The detection limit for P. cynomolgi, P. coatneyi and P. knowlesi was 5 × 109 copies/µL. Meanwhile, the detection limit of P. inui was 5 × 1010 copies/µL. CONCLUSION: This is the first report of the detection of four zoonotic malaria parasites by real-time fluorescence LAMP approaches. It is an effective, rapid and simple-to-use technique. This presented platform exhibits considerable potential as an alternative detection for zoonotic malaria parasites.


Subject(s)
Malaria , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Plasmodium , RNA, Ribosomal, 18S , Sensitivity and Specificity , Zoonoses , Animals , Nucleic Acid Amplification Techniques/methods , Malaria/diagnosis , Malaria/parasitology , Malaria/veterinary , RNA, Ribosomal, 18S/genetics , Molecular Diagnostic Techniques/methods , Plasmodium/genetics , Plasmodium/isolation & purification , Plasmodium/classification , Zoonoses/parasitology , Zoonoses/diagnosis , Humans , DNA Primers/genetics , Fluorescence , Macaca/parasitology , Monkey Diseases/parasitology , Monkey Diseases/diagnosis
8.
Biosensors (Basel) ; 14(5)2024 May 04.
Article in English | MEDLINE | ID: mdl-38785702

ABSTRACT

Legionella pneumophila has been pinpointed by the World Health Organization as the highest health burden of all waterborne pathogens in the European Union and is responsible for many disease outbreaks around the globe. Today, standard analysis methods (based on bacteria culturing onto agar plates) need several days (~12) in specialized analytical laboratories to yield results, not allowing for timely actions to prevent outbreaks. Over the last decades, great efforts have been made to develop more efficient waterborne pathogen diagnostics and faster analysis methods, requiring further advancement of microfluidics and sensors for simple, rapid, accurate, inexpensive, real-time, and on-site methods. Herein, a lab-on-a-chip device integrating sample preparation by accommodating bacteria capture, lysis, and DNA isothermal amplification with fast (less than 3 h) and highly sensitive, colorimetric end-point detection of L. pneumophila in water samples is presented, for use at the point of need. The method is based on the selective capture of viable bacteria on on-chip-immobilized and -lyophilized antibodies, lysis, the loop-mediated amplification (LAMP) of DNA, and end-point detection by a color change, observable by the naked eye and semiquantified by computational image analysis. Competitive advantages are demonstrated, such as low reagent consumption, portability and disposability, color change, storage at RT, and compliance with current legislation.


Subject(s)
Colorimetry , Lab-On-A-Chip Devices , Legionella pneumophila , Nucleic Acid Amplification Techniques , Legionella pneumophila/isolation & purification , Humans , Water Microbiology , DNA, Bacterial/analysis , Biosensing Techniques , Molecular Diagnostic Techniques
9.
Biosensors (Basel) ; 14(5)2024 May 17.
Article in English | MEDLINE | ID: mdl-38785731

ABSTRACT

Loop-mediated isothermal amplification (LAMP) technology is extensively utilized for the detection of infectious diseases owing to its rapid processing and high sensitivity. Nevertheless, conventional LAMP signaling methods frequently suffer from a lack of sequence specificity. This study integrates a triplex-forming oligonucleotide (TFO) probe into the LAMP process to enhance sequence specificity. This TFO-LAMP technique was applied for the detection of Group B Streptococcus (GBS). The TFO probe is designed to recognize a specific DNA sequence, termed the TFO targeting sequence (TTS), within the amplified product, facilitating detection via fluorescent instrumentation or lateral flow biosensors. A screening method was developed to identify TFO sequences with high affinity to integrate TFO into LAMP, subsequently incorporating a selected TTS into an LAMP primer. In the TFO-LAMP assay, a FAM-labeled TFO is added to target the TTS. This TFO can be captured by an anti-FAM antibody on lateral flow test strips, thus creating a nucleic acid testing biosensor. The efficacy of the TFO-LAMP assay was confirmed through experiments with specimens spiked with varying concentrations of GBS, demonstrating 85% sensitivity at 300 copies and 100% sensitivity at 30,000 copies. In conclusion, this study has successfully developed a TFO-LAMP technology that offers applicability in lateral flow biosensors and potentially other biosensor platforms.


Subject(s)
Biosensing Techniques , Nucleic Acid Amplification Techniques , Oligonucleotides , Streptococcus/genetics , Streptococcus/isolation & purification , Humans , DNA, Bacterial/analysis , Molecular Diagnostic Techniques
10.
Cells ; 13(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38786028

ABSTRACT

Zika (ZIKV) and Chikungunya (CHIKV) viruses are mosquito-transmitted infections, or vector-borne pathogens, that emerged a few years ago. Reliable diagnostic tools for ZIKV and CHIKV-inexpensive, multiplexed, rapid, highly sensitive, and specific point-of-care (POC) systems-are vital for appropriate risk management and therapy. We recently studied a detection system with great success in Mexico (Villahermosa, state of Tabasco), working with human sera from patients infected with those viruses. The research conducted in Mexico validated the efficacy of a novel two-step rapid isothermal amplification technique (RAMP). This approach, which encompasses recombinase polymerase amplification (RPA) followed by loop-mediated isothermal amplification (LAMP), had been previously established in the lab using lab-derived Zika (ZIKV) and Chikungunya (CHIKV) viruses. Crucially, our findings confirmed that this technique is also effective when applied to human sera samples collected from locally infected individuals in Mexico.


Subject(s)
Chikungunya virus , Nucleic Acid Amplification Techniques , Zika Virus Infection , Zika Virus , Humans , Zika Virus/genetics , Zika Virus/isolation & purification , Nucleic Acid Amplification Techniques/methods , Chikungunya virus/genetics , Chikungunya virus/isolation & purification , Zika Virus Infection/diagnosis , Zika Virus Infection/virology , Zika Virus Infection/blood , Chikungunya Fever/diagnosis , Chikungunya Fever/virology , Chikungunya Fever/blood , Molecular Diagnostic Techniques/methods , RNA, Viral/genetics , RNA, Viral/blood , Mexico , Sensitivity and Specificity , RNA Viruses/genetics , RNA Viruses/isolation & purification
11.
Int J Mycobacteriol ; 13(1): 22-27, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38771275

ABSTRACT

BACKGROUND: Although Zimbabwe has transitioned out of the 30 high-burden countries, it still remained in the 30 high multidrug-resistant (MDR)/rifampicin-resistant tuberculosis (TB) burden. Rapid detection of rifampicin (RIF) and isoniazid (INH) is essential for the diagnosis of MDR-TB. The World Health Organization has recommended the use of molecular WHO-recommended rapid diagnostic (mWRD) for TB and DR-TB. STANDARD™ M10 MDR-TB assay is a new molecular rapid diagnostic assay developed by SD Biosensor for the detection of Mycobacterium tuberculosis (MTB) and RIF and INF resistance. This study aims to determine the diagnostic accuracy of STANDARD™ M10 MDR-TB assay. METHODS: The study was conducted on 214 samples with different MTB and RIF and INH resistance status. The STANDARD™ M10 MDR-TB assay was performed according to the manufacturer's instructions. Xpert MTB/RIF Ultra, MGIT culture, and phenotypic drug susceptibility testing are used as comparative methods. RESULTS: The sensitivity and specificity of STANDARD™ M10 MDR-TB assay for the detection of MTB are 99% and 97.9%, respectively. The sensitivity and specificity of the assay for detection of MDR-TB were 97.8% and 100%, respectively. CONCLUSION: The STANDARD™ M10 MDR-TB assay demonstrated high diagnostic accuracy in the detection of MTB and RIF and INH resistance. This molecular assay can also be used as an alternative to other mWRD assays.


Subject(s)
Antitubercular Agents , Isoniazid , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Rifampin , Sensitivity and Specificity , Tuberculosis, Multidrug-Resistant , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Rifampin/pharmacology , Zimbabwe , Humans , Isoniazid/pharmacology , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis, Multidrug-Resistant/diagnosis , Antitubercular Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Molecular Diagnostic Techniques/methods
12.
Int J Mycobacteriol ; 13(1): 91-95, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38771285

ABSTRACT

BACKGROUND: Rapid detection of tuberculosis (TB) and its resistance are essential for the prompt initiation of correct drug therapy and for stopping the spread of drug-resistant TB. There is an urgent need for increased use of rapid diagnostic tests to control the threat of increased TB and multidrug-resistant TB (MDR-TB). METHODS: EMPE Diagnostics has developed a multiplex molecular diagnostic platform called mfloDx™ by combining nucleotide-specific padlock probe-dependent rolling circle amplification with sensitive lateral flow biosensors, providing visual signals, similar to a COVID-19 test. The first test kit of this platform, mfloDx™ MDR-TB can identify Mycobacterium tuberculosis (MTB) complex and its clinically significant mutations in the rpoB and katG genes and in the inhA promotor contributing resistance to rifampicin (RIF) and isoniazid (INH), causing MDR-TB. RESULTS: We have evaluated the performance of the mfloDx™ MDR-TB test on 210 sputum samples (110 from suspected TB cases and 100 from TB-negative controls) received from a tertiary care center in India. The clinical sensitivity for detecting MTB compared to acid-fast microscopy and mycobacteria growth indicator tube (MGIT) cultures was 86.4% and 84.9%, respectively. All the 100 control samples were negative indicating excellent specificity. In smear-positive sputum samples, the mfloDx™ MDR-TB test showed a sensitivity of 92.5% and 86.4% against MGIT culture and Xpert MTB/RIF, respectively. The clinical sensitivity for the detection of RIF and INH resistance in comparison with MGIT drug susceptibility testing was 100% and 84.6%, respectively, while the clinical specificity was 100%. CONCLUSION: From the above evaluation, we find mfloDx™ MDR-TB to be a rapid and efficient test to detect TB and its multidrug resistance in 3 h at a low cost making it suitable for resource-limited laboratories.


Subject(s)
Antitubercular Agents , Isoniazid , Mycobacterium tuberculosis , Rifampin , Sensitivity and Specificity , Tuberculosis, Multidrug-Resistant , Rifampin/pharmacology , Humans , Isoniazid/pharmacology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis, Multidrug-Resistant/diagnosis , Antitubercular Agents/pharmacology , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/genetics , Sputum/microbiology , Bacterial Proteins/genetics , India , Molecular Diagnostic Techniques/methods , Catalase , Oxidoreductases
13.
J Med Virol ; 96(5): e29686, 2024 May.
Article in English | MEDLINE | ID: mdl-38767142

ABSTRACT

Comparison of diagnostic accuracy for commercial hepatitis C virus (HCV) genotyping (Abbott RealTime HCV Genotyping II, Roche Cobas Genotyping) and investigational Abbott HCV Genotype plus RUO assays designed to discriminate genotype (GT)-1a, 1b or 6 in cases of ambiguous GT from the Abbott commercial assay remains limited. 743 HCV-viremic samples were subjected to analysis using Abbott and Roche commercial as well as Abbott HCV Genotype plus RUO assays. Next-generation sequencing (NGS) targeting core region was employed as the reference standard. Diagnostic accuracy was reported as the number of participants (percentages) along with 95% confidence intervals (CIs). Using NGS, 741 samples (99.7%) yielded valid genotyping results. The diagnostic accuracies were 97.6% (95% CI: 96.1%-98.5%) and 95.3% (95% CI: 93.4%-96.6%) using Abbott and Roche commercial assays (p = 0.0174). Abbott commercial assay accurately diagnosed HCV GT-6a and 6w, whereas Roche commercial assay accurately diagnosed HCV GT-6a. Both assays demonstrated low accuracies for HCV GT-6b, 6e, 6g, and 6n. Abbott HCV Genotype plus RUO assay discriminated 13 of the 14 samples (92.9%; 95% CI: 64.2%-99.6%) that yielded ambiguous GT. Both assays were capable of diagnosing mixed HCV infections when the minor genotype comprised >8.4% of the viral load. The diagnostic performance of commercial HCV genotyping assays is commendable. Abbott assay demonstrated superior performance compared to Roche assay in diagnosing HCV GT-6. Abbott HCV Genotype plus RUO assay aids in discriminating ambiguous GT. Both commercial assays are proficient in diagnosing mixed HCV infections at a cut-off viral load of 8.4% in minor genotype.


Subject(s)
Genotype , Genotyping Techniques , Hepacivirus , Hepatitis C , High-Throughput Nucleotide Sequencing , Humans , Hepacivirus/genetics , Hepacivirus/classification , Hepacivirus/isolation & purification , Genotyping Techniques/methods , High-Throughput Nucleotide Sequencing/methods , Hepatitis C/diagnosis , Hepatitis C/virology , Molecular Diagnostic Techniques/methods , Sensitivity and Specificity , Reagent Kits, Diagnostic/standards , Female , Male , Middle Aged , Adult
14.
Expert Rev Mol Diagn ; 24(5): 423-438, 2024 May.
Article in English | MEDLINE | ID: mdl-38747017

ABSTRACT

INTRODUCTION: Diagnostics are an essential, undervalued part of the health-care system. For many diseases, molecular diagnostics are the gold standard, but are not easy to implement in Low- and Middle-Income Countries (LMIC). Sample-to-result (S2R) platforms combining all procedures in a closed system could offer a solution. In this paper, we investigated their suitability for implementation in LMIC. AREAS COVERED: A scorecard was used to evaluate different platforms on a range of parameters. Most platforms scored fairly on the platform itself, ease-of-use and test consumables; however, shortcomings were identified in cost, distribution and test panels tailored to LMIC needs. The diagnostic coverage for common infectious diseases was found to have a wider coverage in high-income countries (HIC) than LMIC. A literature study showed that in LMIC, these platforms are mainly used as diagnostic tools or evaluation of diagnostic performance, with a minority assessing the operational characteristics or the clinical utility. In this narrative review, we identified various points for adaptation of S2R platforms to LMIC conditions. EXPERT OPINION: For S2R platforms to be suitable for implementation in LMIC some modifications by the manufacturers could be considered. Furthermore, strengthening health systems and digitalization are vital; as are smaller, cheaper, faster, and sustainable technologies.


Subject(s)
Communicable Diseases , Developing Countries , Molecular Diagnostic Techniques , Humans , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Molecular Diagnostic Techniques/economics , Communicable Diseases/diagnosis
15.
Expert Rev Mol Diagn ; 24(5): 393-408, 2024 May.
Article in English | MEDLINE | ID: mdl-38752560

ABSTRACT

INTRODUCTION: Advances in precision medicine have expanded access to targeted therapies and demand for molecular profiling of cholangiocarcinoma (CCA) patients in routine clinical practice. However, pathologists face challenges in establishing a definitive intrahepatic CCA (iCCA) diagnosis while preserving sufficient tissue for molecular profiling. Additionally, they frequently face challenges in optimal tissue handling to preserve nucleic acid integrity. AREAS COVERED: This article first identifies the challenges in establishing a definitive diagnosis of iCCA in a lesional liver biopsy while preserving sufficient tissue for molecular profiling. Then, the authors explore the clinical value of molecular profiling, the basic principles of single gene and next-generation sequencing (NGS) techniques, and the challenges in tissue sampling for genomic testing. They also propose an algorithm for best practice in tissue management for molecular profiling of CCA. EXPERT OPINION: Several practical challenges face pathologists during tissue sampling and processing for molecular profiling. Optimized tissue processing, careful tissue handling, and selection of appropriate approaches to molecular testing are essential to ensure that the highest possible quality of diagnostic information is provided in the greatest proportion of cases.


Subject(s)
Bile Duct Neoplasms , Biomarkers, Tumor , Cholangiocarcinoma , High-Throughput Nucleotide Sequencing , Cholangiocarcinoma/diagnosis , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Humans , Bile Duct Neoplasms/diagnosis , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , High-Throughput Nucleotide Sequencing/methods , Biomarkers, Tumor/genetics , Molecular Diagnostic Techniques/standards , Molecular Diagnostic Techniques/methods , Gene Expression Profiling/methods , Precision Medicine/methods , Biopsy
16.
ACS Sens ; 9(5): 2695-2702, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38747895

ABSTRACT

Quantitative nucleic acid amplification tests are of great importance for diagnostics, but current approaches require complex and costly optical setups that limit their nonlaboratory applications. Herein we describe the implementation of a microfluidics platform that can perform binary DNA-amplification-activated droplet sorting. The digital sort-enabled counting (DISCO) platform enables label-free absolute quantification of the nucleic acid. This is achieved by provoking a pH change in droplets through a loop-mediated isothermal amplification (LAMP) reaction, followed by using sorting by interfacial tension (SIFT) to direct positive and negative droplets to different outlets. With the use of on-chip electrodes at both outlets, we demonstrate that the digital electrical counting of target DNA and RNA can be realized. DISCO is a promising approach for realizing sensitive nucleic acid quantification in point-of-care settings.


Subject(s)
Nucleic Acid Amplification Techniques , Nucleic Acid Amplification Techniques/methods , DNA/analysis , DNA/chemistry , Lab-On-A-Chip Devices , RNA/analysis , Electrodes , Electrochemical Techniques/methods , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Molecular Diagnostic Techniques
17.
Sci Rep ; 14(1): 11542, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773154

ABSTRACT

Evidence for seed transmission of phytoplasmas has grown in several pathosystems including coconut (Cocos nucifera). Bogia coconut syndrome (BCS) is a disease associated with the lethal yellowing syndrome associated with the presence of 'Candidatus Phytoplasma noviguineense' that affects coconut, betel nut (Areca catechu) and bananas (Musa spp.) in Papua New Guinea. Coconut and betel nut drupes were sampled from BCS-infected areas in Papua New Guinea, dissected, the extracted nucleic acid was used in polymerase chain reaction (PCR), and loop mediated isothermal amplification (LAMP) used to check for presence of phytoplasma DNA. In a second study, drupes of both plant species were collected from multiple field sites and grown in insect-proof cages. Leaf samples taken at 6 months were also tested with PCR and LAMP. The studies of dissected coconut drupes detected phytoplasma DNA in several tissues including the embryo. Drupes from betel nut tested negative. Among the seedlings, evidence of possible seed transmission was found in both plant species. The results demonstrate the presence of 'Ca. P. noviguineense' in coconut drupes and seedlings, and in seedlings of betel nut; factors that need to be considered in ongoing management and containment efforts.


Subject(s)
Areca , Cocos , Phytoplasma , Plant Diseases , Seedlings , Seeds , Cocos/microbiology , Phytoplasma/genetics , Phytoplasma/isolation & purification , Seeds/microbiology , Plant Diseases/microbiology , Seedlings/microbiology , Nucleic Acid Amplification Techniques/methods , DNA, Bacterial/genetics , Papua New Guinea , Polymerase Chain Reaction , Molecular Diagnostic Techniques
18.
Anal Methods ; 16(20): 3249-3255, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38726641

ABSTRACT

The past and present scenario of COVID-19 has revealed the necessity of simple point-of-care tests. When combined with the great advantages of amplification, lateral flow assay nucleic acid analysis represents a more sensitive molecular diagnostic technique compared to universal protein analysis. Room temperature operation, an enzyme-free nature, and in situ elongation make hybrid chain reaction amplification (HCR) a good candidate for amplified combined lateral flow assays (LFAs). Since dual modes of detection can not only satisfy different application scenarios, but also reduce the false-negative rate, in this paper, visual and fluorescent detection based on labelling with colloidal gold nanoparticles and fluorescence labelling were incorporated into a HCR integrated with a LFA. The detection assay was finished in 30 minutes. The linear relationship between the signal and the concentration of the characteristic segment in the COVID-19 ORF gene was demonstrated. The obtained detection limits of as low as 10 fM (6.02 × 103 copies per mL) and 1 fM (6.02 × 102 copies per mL), respectively, were comparable with those in the literature. The multi-site HCR amplification integrated with LFA of a 1053 bp nucleic acid chain was also preliminarily studied, and tri-site amplification was found to exhibit higher signal intensity than single-site amplification. This study provides a promising strategy for simple, sensitive, and wide-ranging detection of pathogenic bacteria.


Subject(s)
COVID-19 , Nucleic Acid Amplification Techniques , SARS-CoV-2 , SARS-CoV-2/genetics , Humans , COVID-19/diagnosis , Nucleic Acid Amplification Techniques/methods , Limit of Detection , Molecular Diagnostic Techniques/methods , COVID-19 Nucleic Acid Testing/methods , COVID-19 Nucleic Acid Testing/instrumentation , Metal Nanoparticles/chemistry , RNA, Viral/analysis , RNA, Viral/genetics
19.
Sci Rep ; 14(1): 10612, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38719936

ABSTRACT

Molecular diagnostics involving nucleic acids (DNA and RNA) are regarded as extremely functional tools. During the 2020 global health crisis, efforts intensified to optimize the production and delivery of molecular diagnostic kits for detecting SARS-CoV-2. During this period, RT-LAMP emerged as a significant focus. However, the thermolability of the reagents used in this technique necessitates special low-temperature infrastructure for transport, storage, and conservation. These requirements limit distribution capacity and necessitate cost-increasing adaptations. Consequently, this report details the development of a lyophilization protocol for reagents in a colorimetric RT-LAMP diagnostic kit to detect SARS-CoV-2, facilitating room-temperature transport and storage. We conducted tests to identify the ideal excipients that maintain the molecular integrity of the reagents and ensure their stability during room-temperature storage and transport. The optimal condition identified involved adding 5% PEG 8000 and 75 mM trehalose to the RT-LAMP reaction, which enabled stability at room temperature for up to 28 days and yielded an analytical and diagnostic sensitivity and specificity of 83.33% and 90%, respectively, for detecting SARS-CoV-2. This study presents the results of a lyophilized colorimetric RT-LAMP COVID-19 detection assay with diagnostic sensitivity and specificity comparable to RT-qPCR, particularly in samples with high viral load.


Subject(s)
COVID-19 , Colorimetry , Freeze Drying , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , RNA, Viral , SARS-CoV-2 , Humans , COVID-19/diagnosis , COVID-19/virology , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , Colorimetry/methods , Nucleic Acid Amplification Techniques/methods , Molecular Diagnostic Techniques/methods , RNA, Viral/analysis , RNA, Viral/genetics , Sensitivity and Specificity , Reagent Kits, Diagnostic/standards , COVID-19 Nucleic Acid Testing/methods
20.
Anal Methods ; 16(19): 3020-3029, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38690766

ABSTRACT

A concise and rapid detection method for Mycoplasma pneumoniae is urgently required due to its severe impact on human health. To meet such a need, this study proposed and constructed an innovative point-of-care testing (POCT) platform that consists of a hydrogen ion-selective loop-mediated isothermal amplification (H+-LAMP) sensor and an electrochemical detection device. The H+-LAMP sensor successfully integrated the working and reference electrodes and converted the H+ generated during the LAMP process into an electrochemical signal. High sensitivity and stability for pathogen detection were also achieved by treating the working electrode with an electrodeposited polyaniline solid contact layer and by using an ion-selective membrane. As a result, the sensor shows a sensitivity of 68.26 mV per pH, a response time of less than 2 s, and a potential drift of less than 5 mV within one hour, which well meets the urgent need. The results also demonstrated that the detection limit for Mycoplasma pneumoniae was lowered to 1 copy per µL, the nucleic acid extraction and detection process could be completed in 30 minutes, and the impact of interfering ions on the sensor was negligible. Validation with 20 clinical samples yielded satisfactory results. More importantly, the storage lifespan of such an electrochemical sensor is over seven days, which is a great advantage for on-site pathogen detection. Therefore, the hydrogen ion-selective sensor constructed in this investigation is particularly suitable as a core component for instant pathogen detection platforms.


Subject(s)
Electrochemical Techniques , Limit of Detection , Mycoplasma pneumoniae , Nucleic Acid Amplification Techniques , Mycoplasma pneumoniae/isolation & purification , Mycoplasma pneumoniae/genetics , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Nucleic Acid Amplification Techniques/methods , Humans , Hydrogen/chemistry , Pneumonia, Mycoplasma/diagnosis , Pneumonia, Mycoplasma/microbiology , Biosensing Techniques/methods , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/instrumentation , Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...