Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.959
Filter
2.
Nanotheranostics ; 8(3): 401-426, 2024.
Article in English | MEDLINE | ID: mdl-38751937

ABSTRACT

The integration of preclinical magnetic resonance imaging (MRI) and computed tomography (CT) methods has significantly enhanced the area of therapy and imaging of targeted nanomedicine. Nanotheranostics, which make use of nanoparticles, are a significant advancement in MRI and CT imaging. In addition to giving high-resolution anatomical features and functional information simultaneously, these multifunctional agents improve contrast when used. In addition to enabling early disease detection, precise localization, and personalised therapy monitoring, they also enable early disease detection. Fusion of MRI and CT enables precise in vivo tracking of drug-loaded nanoparticles. MRI, which provides real-time monitoring of nanoparticle distribution, accumulation, and release at the cellular and tissue levels, can be used to assess the efficacy of drug delivery systems. The precise localization of nanoparticles within the body is achievable through the use of CT imaging. This technique enhances the capabilities of MRI by providing high-resolution anatomical information. CT also allows for quantitative measurements of nanoparticle concentration, which is essential for evaluating the pharmacokinetics and biodistribution of nanomedicine. In this article, we emphasize the integration of preclinical MRI and CT into molecular imaging and therapy for advanced diseases.


Subject(s)
Magnetic Resonance Imaging , Tomography, X-Ray Computed , Magnetic Resonance Imaging/methods , Humans , Tomography, X-Ray Computed/methods , Animals , Molecular Imaging/methods , Nanoparticles/chemistry , Theranostic Nanomedicine/methods
3.
Cancer J ; 30(3): 142-152, 2024.
Article in English | MEDLINE | ID: mdl-38753748

ABSTRACT

ABSTRACT: Steroid receptors regulate gene expression for many important physiologic functions and pathologic processes. Receptors for estrogen, progesterone, and androgen have been extensively studied in breast cancer, and their expression provides prognostic information as well as targets for therapy. Noninvasive imaging utilizing positron emission tomography and radiolabeled ligands targeting these receptors can provide valuable insight into predicting treatment efficacy, staging whole-body disease burden, and identifying heterogeneity in receptor expression across different metastatic sites. This review provides an overview of steroid receptor imaging with a focus on breast cancer and radioligands for estrogen, progesterone, and androgen receptors.


Subject(s)
Breast Neoplasms , Molecular Imaging , Positron-Emission Tomography , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Breast Neoplasms/diagnosis , Female , Molecular Imaging/methods , Positron-Emission Tomography/methods , Receptors, Steroid/metabolism , Receptors, Progesterone/metabolism , Receptors, Estrogen/metabolism , Radiopharmaceuticals/metabolism , Receptors, Androgen/metabolism
4.
Cancer J ; 30(3): 194-201, 2024.
Article in English | MEDLINE | ID: mdl-38753754

ABSTRACT

ABSTRACT: Differentiated thyroid carcinoma (DTC) has been increasing in incidence in the United States over the last several decades, although mortality rates have remained low. Radioactive iodine therapy (RAI-T) has been a mainstay of treatment for DTC since the 1940s. Imaging of DTC before and after RAI-T primarily focuses on molecular imaging of the sodium iodide symporter. The expanding understanding of the molecular profile of DTC has increased available treatment options. Incorporation of risk stratification to treatment approaches has led to deintensification of both surgical and nonsurgical treatments, leading to decreased morbidity without compromising disease control.


Subject(s)
Iodine Radioisotopes , Molecular Imaging , Thyroid Neoplasms , Humans , Thyroid Neoplasms/therapy , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/pathology , Thyroid Neoplasms/diagnostic imaging , Molecular Imaging/methods , Iodine Radioisotopes/therapeutic use , Adult , Symporters/genetics , Symporters/metabolism
5.
Cancer J ; 30(3): 170-175, 2024.
Article in English | MEDLINE | ID: mdl-38753751

ABSTRACT

ABSTRACT: Positron emission tomography (PET) is an established tool for molecular imaging of cancers, and its role in diagnosis, staging, and phenotyping continues to evolve and expand rapidly. PET imaging of increased glucose utilization with 18F-fluorodeoxyglucose is now entrenched in clinical oncology practice for improving prognostication and treatment response assessment. Additional critical processes for cancer cell survival can also be imaged by PET, helping to inform individualized treatment selections for patients by improving our understanding of cell survival mechanisms and identifying relevant active mechanisms in each patient. The critical importance of quantifying cell proliferation and DNA repair pathways for prognosis and treatment selection is highlighted by the nearly ubiquitous use of the Ki-67 index, an established histological quantitative measure of cell proliferation, and BRCA mutation testing for treatment selection. This review focuses on PET advances in imaging and quantifying cell proliferation and poly(ADP-ribose)polymerase expression that can be used to complement cancer phenotyping approaches that will identify the most effective treatments for each individual patient.


Subject(s)
Cell Proliferation , DNA Repair , Neoplasms , Positron-Emission Tomography , Humans , Positron-Emission Tomography/methods , Neoplasms/diagnostic imaging , Neoplasms/pathology , Neoplasms/genetics , Neoplasms/diagnosis , Neoplasms/metabolism , Fluorodeoxyglucose F18 , Radiopharmaceuticals , Molecular Imaging/methods
6.
Methods Mol Biol ; 2800: 67-74, 2024.
Article in English | MEDLINE | ID: mdl-38709478

ABSTRACT

The study of cell signaling within tissues can be enhanced using highly multiplexed immunohistochemistry to localize the presence and spatial distribution of numerous pathways of interest simultaneously. Additional data can also be gained by placing the identified proteins into the context of adjacent structures, stroma, and interacting partners. Here, we outline a protocol for using the recently described IBEX method on tissues. This is an open and simple cyclic immunohistochemistry approach suited to this application. We describe a simplified protocol and provide guidance on the method, using a 12-marker panel on human retina to demonstrate the approach.


Subject(s)
Immunohistochemistry , Retina , Signal Transduction , Humans , Immunohistochemistry/methods , Retina/metabolism , Retina/cytology , Biomarkers , Molecular Imaging/methods
9.
Methods Mol Biol ; 2807: 93-110, 2024.
Article in English | MEDLINE | ID: mdl-38743223

ABSTRACT

Correlative light-electron microscopy (CLEM) has evolved in the last decades, especially after significant developments in sample preparation, imaging acquisition, software, spatial resolution, and equipment, including confocal, live-cell, super-resolution, and electron microscopy (scanning, transmission, focused ion beam, and cryo-electron microscopy). However, the recent evolution of different laser-related techniques, such as mass spectrometry imaging (MSI) and laser capture microdissection, could further expand spatial imaging capabilities into high-resolution OMIC approaches such as proteomic, lipidomics, small molecule, and drug discovery. Here, we will describe a protocol to integrate the detection of rare viral reservoirs with imaging mass spectrometry.


Subject(s)
HIV Infections , Humans , HIV Infections/virology , HIV-1/physiology , Mass Spectrometry/methods , Microscopy, Electron/methods , Molecular Imaging/methods , Disease Reservoirs/virology
10.
J Mass Spectrom ; 59(5): e5029, 2024 May.
Article in English | MEDLINE | ID: mdl-38656528

ABSTRACT

Over the past three decades, mass spectrometry imaging (MSI) has emerged as a valuable tool for the spatial localization of drugs and metabolites directly from tissue surfaces without the need for labels. MSI offers molecular specificity, making it increasingly popular in the pharmaceutical industry compared to conventional imaging techniques like quantitative whole-body autoradiography (QWBA) and immunohistochemistry, which are unable to distinguish parent drugs from metabolites. Across the industry, there has been a consistent uptake in the utilization of MSI to investigate drug and metabolite distribution patterns, and the integration of MSI with omics technologies in preclinical investigations. To continue the further adoption of MSI in drug discovery and development, we believe there are two key areas that need to be addressed. First, there is a need for accurate quantification of analytes from MSI distribution studies. Second, there is a need for increased interactions with regulatory agencies for guidance on the utility and incorporation of MSI techniques in regulatory filings. Ongoing efforts are being made to address these areas, and it is hoped that MSI will gain broader utilization within the industry, thereby becoming a critical ingredient in driving drug discovery and development.


Subject(s)
Drug Discovery , Mass Spectrometry , Drug Discovery/methods , Mass Spectrometry/methods , Humans , Animals , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/metabolism , Pharmaceutical Preparations/chemistry , Drug Development/methods , Molecular Imaging/methods
11.
Int J Cardiol ; 406: 132044, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38614364

ABSTRACT

INTRODUCTION: Tissue Fibroblast Activation Protein alpha (FAP) is overexpressed in various types of acute and chronic cardiovascular disease. A soluble form of FAP has been detected in human plasma, and low circulating FAP concentrations are associated with increased risk of death in patients with acute coronary syndrome. However, little is known about the regulation and release of FAP from fibroblasts, and whether circulating FAP concentration is associated with tissue FAP expression. This study characterizes the release of FAP in human cardiac fibroblasts (CF) and analyzes the association of circulating FAP concentrations with in vivo tissue FAP expression in patients with acute (ST-segment elevation myocardial infarction, STEMI) and chronic (severe aortic stenosis, AS) myocardial FAP expression. METHODS AND RESULTS: FAP was released from CF in a time- and concentration-dependent manner. FAP concentration was higher in supernatant of TGFß-stimulated CF, and correlated with cellular FAP concentration. Inhibition of metallo- and serine-proteases diminished FAP release in vitro. Median FAP concentrations of patients with acute (77 ng/mL) and chronic (75 ng/mL, p = 0.50 vs. STEMI) myocardial FAP expression did not correlate with myocardial nor extra-myocardial nor total FAP volume (P ≥ 0.61 in all cases) measured by whole-body FAP-targeted positron emission tomography. CONCLUSION: We describe a time- and concentration dependent, protease-mediated release of FAP from cardiac fibroblasts. Circulating FAP concentrations were not associated with increased in vivo tissue FAP expression determined by molecular imaging in patients with both chronic and acute myocardial FAP expression. These data suggest that circulating FAP and tissue FAP expression provide complementary, non-interchangeable information.


Subject(s)
Endopeptidases , Gelatinases , Membrane Proteins , Molecular Imaging , Myocardium , Serine Endopeptidases , Humans , Serine Endopeptidases/metabolism , Serine Endopeptidases/blood , Serine Endopeptidases/biosynthesis , Endopeptidases/metabolism , Membrane Proteins/metabolism , Membrane Proteins/biosynthesis , Membrane Proteins/blood , Male , Gelatinases/metabolism , Gelatinases/biosynthesis , Gelatinases/blood , Female , Aged , Middle Aged , Myocardium/metabolism , Myocardium/pathology , Molecular Imaging/methods , Fibroblasts/metabolism , Cells, Cultured , ST Elevation Myocardial Infarction/blood , ST Elevation Myocardial Infarction/metabolism , ST Elevation Myocardial Infarction/diagnostic imaging , Biomarkers/blood , Biomarkers/metabolism
12.
Biochem Soc Trans ; 52(2): 923-935, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38629725

ABSTRACT

Serine proteases are one of the largest mechanistic classes of proteases. They regulate a plethora of biochemical pathways inside and outside the cell. Aberrant serine protease activity leads to a wide variety of human diseases. Reagents to visualize these activities can be used to gain insight into the biological roles of serine proteases. Moreover, they may find future use for the detection of serine proteases as biomarkers. In this review, we discuss small molecule tools to image serine protease activity. Specifically, we outline different covalent activity-based probes and their selectivity against various serine protease targets. We also describe their application in several imaging methods.


Subject(s)
Serine Proteases , Serine Proteases/metabolism , Humans , Molecular Probes/chemistry , Molecular Probes/metabolism , Animals , Molecular Imaging/methods
13.
Phys Med Biol ; 69(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38593815

ABSTRACT

Objective. The primary objective of this study is to address the reconstruction time challenge in magnetic particle imaging (MPI) by introducing a novel approach named SNR-peak-based frequency selection (SPFS). The focus is on improving spatial resolution without compromising reconstruction speed, thereby enhancing the clinical potential of MPI for real-time imaging.Approach. To overcome the trade-off between reconstruction time and spatial resolution in MPI, the researchers propose SPFS as an innovative frequency selection method. Unlike conventional SNR-based selection, SPFS prioritizes frequencies with signal-to-noise ratio (SNR) peaks that capture crucial system matrix information. This adaptability to varying quantities of selected frequencies enhances versatility in the reconstruction process. The study compares the spatial resolution of MPI reconstruction using both SNR-based and SPFS frequency selection methods, utilizing simulated and real device data.Main results.The research findings demonstrate that the SPFS approach substantially improves image resolution in MPI, especially when dealing with a limited number of frequency components. By focusing on SNR peaks associated with critical system matrix information, SPFS mitigates the spatial resolution degradation observed in conventional SNR-based selection methods. The study validates the effectiveness of SPFS through the assessment of MPI reconstruction spatial resolution using both simulated and real device data, highlighting its potential to address a critical limitation in the field.Significance.The introduction of SPFS represents a significant breakthrough in MPI technology. The method not only accelerates reconstruction time but also enhances spatial resolution, thus expanding the clinical potential of MPI for various applications. The improved real-time imaging capabilities of MPI, facilitated by SPFS, hold promise for advancements in drug delivery, plaque assessment, tumor treatment, cerebral perfusion evaluation, immunotherapy guidance, andin vivocell tracking.


Subject(s)
Image Processing, Computer-Assisted , Signal-To-Noise Ratio , Image Processing, Computer-Assisted/methods , Time Factors , Phantoms, Imaging , Molecular Imaging/methods
14.
Semin Nucl Med ; 54(3): 438-455, 2024 May.
Article in English | MEDLINE | ID: mdl-38688770

ABSTRACT

Molecular imaging has emerged as an integral part of oncologic imaging. Given the physiologic changes that precede anatomic changes, molecular imaging can enable early detection of disease and monitoring of response. [18F] Fluorodeoxyglucose (FDG) Positron emission tomography (PET) is the predominant molecular imaging modality used in oncologic assessment and can be performed using PET/CT or PET/MR. In pediatric patients, PET/MRI imaging is generally preferred due to low radiation exposure and PET/MRI is particularly advantageous for imaging musculoskeletal (MSK) diseases, as MRI provides superior characterization of tissue changes as compared to CT. In this article, we provide an overview of the typical role of PET CT/MRI in assessment of some common pediatric malignancies and benign MSK diseases with case examples. We also discuss the relative advantages of PET/MRI compared to PET/CT, and review published data with a primary focus on the use of PET/MR.


Subject(s)
Magnetic Resonance Imaging , Musculoskeletal Diseases , Positron Emission Tomography Computed Tomography , Humans , Magnetic Resonance Imaging/methods , Musculoskeletal Diseases/diagnostic imaging , Positron Emission Tomography Computed Tomography/methods , Child , Multimodal Imaging/methods , Molecular Imaging/methods
15.
J Med Chem ; 67(8): 6207-6217, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38607332

ABSTRACT

Sigma-1 receptor (σ1R) is an intracellular protein implicated in a spectrum of neurodegenerative conditions, notably Alzheimer's disease (AD). Positron emission tomography (PET) imaging of brain σ1R could provide a powerful tool for better understanding the underlying pathomechanism of σ1R in AD. In this study, we successfully developed a 18F-labeled σ1R radiotracer [18F]CNY-05 via an innovative ruthenium (Ru)-mediated 18F-deoxyfluorination method. [18F]CNY-05 exhibited preferable brain uptake, high specific binding, and slightly reversible pharmacokinetics within the PET scanning time window. PET imaging of [18F]CNY-05 in nonhuman primates (NHP) indicated brain permeability, metabolic stability, and safety. Moreover, autoradiography and PET studies of [18F]CNY-05 in the AD mouse model found a significantly decreased brain uptake compared to that in wild-type mice. Collectively, we have provided a novel 18F-radiolabeled σ1R PET probe, which enables visualizing brain σ1R in health and neurological diseases.


Subject(s)
Alzheimer Disease , Brain , Fluorine Radioisotopes , Positron-Emission Tomography , Radiopharmaceuticals , Receptors, sigma , Sigma-1 Receptor , Receptors, sigma/metabolism , Animals , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Brain/metabolism , Brain/diagnostic imaging , Fluorine Radioisotopes/chemistry , Positron-Emission Tomography/methods , Mice , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/chemical synthesis , Male , Molecular Imaging/methods , Halogenation , Tissue Distribution , Humans
16.
Mol Pharm ; 21(4): 1919-1932, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557163

ABSTRACT

HER2 status determination is a necessary step for the proper choice of therapy and selection of patients for the targeted treatment of cancer. Targeted radiotracers such as radiolabeled DARPins provide a noninvasive and effective way for the molecular imaging of HER2 expression. This study aimed to evaluate tumor-targeting properties of three 99mTc-labeled DARPin G3 variants containing Gly-Gly-Gly-Cys (G3C), (Gly-Gly-Gly-Ser)3-Cys ((G3S)3C), or Glu-Glu-Glu-Cys (E3C) amino acid linkers at the C-terminus and conjugated to the HYNIC chelating agent, as well as to compare them with the clinically evaluated DARPin G3 labeled with 99mTc(CO)3 using the (HE)3-tag at the N-terminus. The labeling of DARPin G3-HYNIC variants provided radiochemical yields in the range of 50-80%. Labeled variants bound specifically to human HER2-expressing cancer cell lines with affinities in the range of 0.5-3 nM. There was no substantial influence of the linker and HYNIC chelator on the binding of 99mTc-labeled DARPin G3 variants to HER2 in vitro; however, [99mTc]Tc-G3-(G3S)3C-HYNIC had the highest affinity. Comparative biodistribution of [99mTc]Tc-G3-G3C-HYNIC, [99mTc]Tc-G3-(G3S)3C-HYNIC, [99mTc]Tc-G3-E3C-HYNIC, and [99mTc]Tc-(HE)3-G3 in healthy CD1 mice showed that there was a strong influence of the linkers on uptake in normal tissues. [99mTc]Tc-G3-E3C-HYNIC had an increased retention of activity in the liver and the majority of other organs compared to the other conjugates. The tumor uptake of [99mTc]Tc-G3-(G3S)3C-HYNIC and [99mTc]Tc-(HE)3-G3 in Nu/j mice bearing SKOV-3 xenografts was similar. The specificity of tumor targeting in vivo was demonstrated for both tracers. [99mTc]Tc-G3-(G3S)3C-HYNIC provided comparable, although slightly lower tumor-to-lung, tumor-to spleen and tumor-to-liver ratios than [99mTc]Tc-(HE)3-G3. Radiolabeling of DARPin G3-HYNIC conjugates with 99mTc provided the advantage of a single-step radiolabeling procedure; however, the studied HYNIC conjugates did not improve imaging contrast compared to the 99mTc-tricarbonyl-labeled DARPin G3. At this stage, [99mTc]Tc-(HE)3-G3 remains the most promising candidate for the clinical imaging of HER2-overexpressing cancers.


Subject(s)
Designed Ankyrin Repeat Proteins , Neoplasms , Animals , Humans , Mice , Cell Line, Tumor , Molecular Imaging/methods , Neoplasms/diagnostic imaging , Neoplasms/genetics , Neoplasms/pathology , Tissue Distribution , Receptor, ErbB-2/genetics
17.
Bioconjug Chem ; 35(3): 381-388, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38446033

ABSTRACT

Long noncoding RNA (lncRNA) differentiation antagonizing noncoding RNA (DANCR) is overexpressed in human triple-negative breast cancer (TNBC) and promotes cell migration and proliferation. TNBC is limited in treatment options relative to hormone-receptor-positive breast cancer and is commonly treated with chemotherapy, which is often compromised by acquired resistance. DANCR has been implicated in the development of chemoresistance across multiple cancer types. Here, we applied magnetic resonance molecular imaging (MRMI) with a targeted contrast agent, MT218, specific to extradomain-B fibronectin (EDB-FN), a marker for epithelial-to-mesenchymal transition, to assess the therapeutic efficacy of the combination of paclitaxel and ZD2-PEG-ECO/siDANCR nanoparticles (ZD2-siDANCR-ELNP) to treat TNBC. The treatment of orthotopic MDA-MB-231 TNBC in mice with paclitaxel significantly suppressed tumor growth but with a significant increase of EDB-FN in the tumor, as revealed by MRMI and immunohistochemistry. Combining ZD2-siDANCR-ELNP with paclitaxel further reduced tumor sizes, along with reduced EDB-FN expression. Interestingly, MT218-MRMI revealed a lower reduction of tumor signal enhancement with the combination treatment than that with the siDANCR treatment alone, which was supported by higher cell density in the tumors treated with the combination therapy, as shown by histochemical analysis. MT218-MRMI clearly revealed the changes of the tumor microenvironment in response to various therapies and is effective to noninvasively assess the response of TNBC tumors to the therapies. Regulating oncogenic lncRNA DANCR is an effective strategy for improving the outcomes of chemotherapy in TNBC.


Subject(s)
RNA, Long Noncoding , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/drug therapy , RNA, Long Noncoding/genetics , RNA Interference , Cell Line, Tumor , Paclitaxel/therapeutic use , Magnetic Resonance Spectroscopy , Molecular Imaging/methods , Cell Proliferation , Tumor Microenvironment
18.
Prostate ; 84(8): 717-722, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38450787

ABSTRACT

INTRODUCTION: The Society of Nuclear Medicine and Molecular Imaging (SNMMI) provides appropriate use criteria (AUC) for prostate-specific membrane antigen positron emission tomography/computed tomography (PSMA PET/CT) which include guidance on imaging in newly diagnosed prostate cancer and in patients with biochemically recurrent (BCR) disease. This study aims to examine trends in PSMA implementation and the prevalence and outcomes of scans ordered in scenarios deemed rarely appropriate or not meeting SNMMI AUC. METHODS: We retrospectively identified patients who were diagnosed with presumptive National Comprehensive Cancer Network unfavorable intermediate, high, or very high risk prostate cancer, patients who underwent staging for BCR, and all patients staged with PSMA between July 2021 and March 2023. Positivity was validated by adherence to a predetermined reference standard. RESULTS: The frequency of PSMA use increased in initial staging from 24% to 80% and work-up of BCR from 91% to 99% over our study period. In addition, 5% (17/340) of PSMA scans ordered for initial staging did not meet AUC and 3% (15/557) of posttreatment scans were deemed rarely appropriate. Initial staging orders not meeting SNMMI AUC resulted in no positivity (0/17), while rarely appropriate posttreatment scans were falsely positive in 75% (3/4) of cases. Urologists (53%, 17/32) comprised the largest ordering specialty in rarely appropriate use. CONCLUSION: The frequency of PSMA use rose across the study period. A significant minority of patients received PSMA PET/CT in rarely appropriate scenarios yielding no positivity in initial staging and significant false positivity post-therapy. Further education of providers and electronic medical record-based interventions could help limit the rarely appropriate use of PET imaging.


Subject(s)
Positron Emission Tomography Computed Tomography , Prostatic Neoplasms , Humans , Male , Positron Emission Tomography Computed Tomography/methods , Positron Emission Tomography Computed Tomography/standards , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Retrospective Studies , Aged , Middle Aged , Neoplasm Staging , Nuclear Medicine/methods , Antigens, Surface/analysis , Glutamate Carboxypeptidase II/metabolism , Molecular Imaging/methods , Molecular Imaging/standards
19.
Semin Nucl Med ; 54(3): 332-339, 2024 May.
Article in English | MEDLINE | ID: mdl-38433024

ABSTRACT

Soft tissue sarcomas are a rare and heterogenous group of tumors that account for 2% of all cancer-related deaths. Molecular imaging with FDG PET can offer valuable metabolic information to help inform clinical management of soft tissue sarcomas that is unique and complementary to conventional diagnostic imaging techniques. FDG PET imaging often correlates with tumor grade, can help guide biopsy, and frequently detects additional sites of disease compared to conventional imaging in patients being considered for definitive or salvage therapy. Traditional size-based evaluation of treatment response is often inadequate in soft tissue sarcoma and changes in metabolic activity can add significant value to interim and end of treatment imaging for high-grade sarcomas. FDG PET can be used for detection of recurrence or malignant transformation and thus play a vital role in surveillance. This article reviews the evolving role of FDG PET in initial diagnosis, staging, treatment response assessment, and restaging. Further studies on the use of FDG PET in soft sarcoma are needed, particularly for rare histopathologic subtypes.


Subject(s)
Fluorodeoxyglucose F18 , Positron-Emission Tomography , Sarcoma , Humans , Sarcoma/diagnostic imaging , Sarcoma/pathology , Positron-Emission Tomography/methods , Molecular Imaging/methods
20.
Nucl Med Biol ; 132-133: 108906, 2024.
Article in English | MEDLINE | ID: mdl-38518400

ABSTRACT

BACKGROUND: The C-X-C chemokine receptor type 4 (CXCR4) is overexpressed in many cancers, e.g. multiple myeloma and acute leukemia, yet solely [68Ga]PentixaFor is used for clinical PET imaging. The aim of this study was to develop and assess a second generation Al18F-labeled D-amino acid peptide based on the viral macrophage inflammatory protein II for CXCR4 targeted molecular imaging. METHODS: We designed a library of monomer and multimer constructs and evaluated their binding affinity for human and mouse CXCR4. Based on these results, we selected the best vector molecule for development of an Al18F-labeled ligand, [18F]AlF-NOTA-2xDV1(c11sc12s), which was further evaluated in a cell-based binding assay to assess its binding properties and specificity for CXCR4. Next, pharmacokinetics and tumor uptake of [18F]AlF-NOTA-2xDV1(c11sc12s) were evaluated in naïve mice and mice with xenografts derived from U87.CXCR4 cells. Finally, we performed an imaging study in a non-human primate to assess the in vivo distribution of this novel radioligand in a species closely related to humans. RESULTS: The lead ligand AlF-NOTA-2xDV1(c11sc12s) showed six-fold higher affinity for human CXCR4 compared to Ga-Pentixafor. The corresponding radiotracer was obtained in a good radiochemical yield of 40.1 ± 13.5 % (n = 4) and apparent molar activity of 20.4 ± 3.3 MBq/nmol (n = 4) after optimization. In U87.CD4.CXCR4 cell binding assays, the total bound fraction of [18F]AlF-NOTA-(2×)DV1(c11sc12s) was 32.4 ± 1.8 %. This fraction could be reduced by 82.5 % in the presence of 75 µM AMD3100. In naïve mice, [18F]AlF-NOTA-2xDV1(c11sc12s) accumulated in organs expressing mouse CXCR4, e.g. the liver (SUVmean (mean standardized uptake value) 75 min p.i. 11.7 ± 0.6), which was blockable by co-injecting AMD3100 (5 mg/kg). In U87.CXCR4 xenografted tumor mice, the tumor uptake of [18F]AlF-NOTA-2xDV1(c11sc12s) remained low (SUVmean 0.5 ± 0.1), but was reduced by co-administration of AMD3100. Surprisingly, [18F]AlF-NOTA-2xDV1(c11sc12s) exhibited a similar biodistribution in a non-human primate as in mice indicating off-target binding of [18F]AlF-NOTA-2xDV1(c11sc12s) in liver tissue. We confirmed that [18F]AlF-NOTA-2xDV1(c11sc12s) is taken up by hepatocytes using in vitro studies and that the uptake can be blocked with AMD3100 and rifampicin, a potent organic anion-transporting-polypeptide (OATP)1B1 and OATP1B3 inhibitor. CONCLUSION: The second generation D-peptide AlF-NOTA-2xDV1(c11sc12s) showed high affinity for human CXCR4 and the corresponding radiotracer was produced in good radiochemical yields. However, [18F]AlF-NOTA-2xDV1(c11sc12s) is not specific for CXCR4 and is also a substrate for OATP1B1 and/or OATP1B3, known to mediate hepatic uptake. Therefore, D-amino acid peptides, based on the viral macrophage inflammatory protein II, are not the prefered vector molecule for the development of CXCR4 targeting molecular imaging tools.


Subject(s)
Fluorine Radioisotopes , Receptors, CXCR4 , Receptors, CXCR4/metabolism , Animals , Mice , Humans , Fluorine Radioisotopes/chemistry , Peptides/chemistry , Peptides/pharmacokinetics , Cell Line, Tumor , Tissue Distribution , Isotope Labeling , Molecular Imaging/methods , Positron-Emission Tomography/methods , Radiochemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...