Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.232
Filter
1.
Carbohydr Polym ; 339: 122257, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823923

ABSTRACT

Traditional solid phase extraction (SPE) suffers from a lack of specific adsorption. To overcome this problem, a combination of adsorption method and molecular imprinting technology by polydopamine modification was proposed to realize specific recognition of target compounds in SPE, which is of great significance to improve the separation efficiency of SPE. Cellulose hydrogel beads were prepared by dual cross-linking curing method and modified with polydopamine to make them hydrophilic and biocompatible. Subsequently, cellulose hydrogel-based molecularly imprinted beads (MIBs) were synthesized by surface molecular imprinting technology and used as novel column fillers in SPE to achieve efficient adsorption (34.16 mg·g-1) with specific selectivity towards camptothecin (CPT) in 120 min. The simulation and NMR analysis revealed that recognition mechanism of MIBs involved hydrogen bond interactions and Van der Waals effect. The MIBs were successful used in separating CPT from Camptotheca acuminata fruits, exhibiting impressive adsorption capacity (1.19 mg·g-1) and efficient recovery of CPT (81.54 %). Thus, an environmentally friendly column filler for SPE was developed, offering a promising avenue for utilizing cellulose-based materials in the selective separation of natural products.


Subject(s)
Camptothecin , Cellulose , Hydrogels , Molecular Imprinting , Solid Phase Extraction , Camptothecin/chemistry , Camptothecin/isolation & purification , Cellulose/chemistry , Adsorption , Molecular Imprinting/methods , Hydrogels/chemistry , Solid Phase Extraction/methods , Camptotheca/chemistry , Polymers/chemistry , Hydrophobic and Hydrophilic Interactions , Indoles/chemistry , Fruit/chemistry
2.
J Chromatogr A ; 1726: 464977, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38735117

ABSTRACT

A magnetic molecularly imprinted polymer (MMIP) adsorbent incorporating amino-functionalized magnetite nanoparticles, nitrogen-doped graphene quantum dots and mesoporous carbon (MIP@MPC@N-GQDs@Fe3O4NH2) was fabricated to extract triazine herbicides from fruit juice. The embedded magnetite nanoparticles simplified the isolation of the adsorbent from the sample solution. The N-GQDs and MPC enhanced adsorption by affinity binding with triazines. The MIP layer provided highly specific recognition sites for the selective adsorption of three target triazines. The extracted triazines were determined by high-performance liquid chromatography (HPLC) coupled with diode-array detection (DAD). The developed method exhibited linearity from 1.5 to 100.0 µg L-1 with a detection limit of 0.5 µg L-1. Recoveries from spiked fruit juice samples were in the range of 80.1- 108.4 %, with a relative standard deviation of less than 6.0 %. The developed MMIP adsorbent demonstrated good selectivity, high extraction efficiency, ease of fabrication and use, and good stability.


Subject(s)
Carbon , Fruit and Vegetable Juices , Herbicides , Limit of Detection , Molecularly Imprinted Polymers , Quantum Dots , Triazines , Quantum Dots/chemistry , Triazines/chemistry , Triazines/analysis , Triazines/isolation & purification , Herbicides/analysis , Herbicides/isolation & purification , Herbicides/chemistry , Fruit and Vegetable Juices/analysis , Adsorption , Molecularly Imprinted Polymers/chemistry , Carbon/chemistry , Chromatography, High Pressure Liquid/methods , Magnetite Nanoparticles/chemistry , Solid Phase Microextraction/methods , Molecular Imprinting/methods , Porosity , Graphite/chemistry
3.
Anal Methods ; 16(20): 3240-3248, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38726550

ABSTRACT

Currently, Nernstian-response-based polymeric membrane potentiometric sensors using molecularly imprinted polymers (MIPs) as receptors have been successfully developed for determination of organic ionic species. However, the preparation of these MIP receptors usually involves tedious and time-consuming template-removal procedures. Herein, a template-removal-free MIP is proposed and used as a receptor for fabrication of a potentiometric sensor. The proposed methodology not only significantly shortens the preparation time of MIP-based potentiometric sensors but also improves the batch-to-batch reproducibility of these sensors. By using antibiotic vancomycin as a model, the new concept offers a linear concentration range of 1.0 × 10-7 to 1.0 × 10-4 mol L-1 with a detection limit of 2.51 × 10-8 mol L-1. It can be expected that the template-removal-free MIP-based sensing strategy could lay the foundation for simple fabrication of electrochemical sensors without the need for template removal such as potentiometric and capacitive sensors and ion-sensitive field-effect transistors.


Subject(s)
Anti-Bacterial Agents , Molecularly Imprinted Polymers , Potentiometry , Vancomycin , Potentiometry/methods , Potentiometry/instrumentation , Anti-Bacterial Agents/analysis , Molecularly Imprinted Polymers/chemistry , Vancomycin/chemistry , Vancomycin/analysis , Membranes, Artificial , Molecular Imprinting/methods , Limit of Detection , Polymers/chemistry , Reproducibility of Results
4.
Sci Rep ; 14(1): 10293, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38704412

ABSTRACT

In this study, a sensitive and selective fluorescent chemosensor was developed for the determination of pirimicarb pesticide by adopting the surface molecular imprinting approach. The magnetic molecularly imprinted polymer (MIP) nanocomposite was prepared using pirimicarb as the template molecule, CuFe2O4 nanoparticles, and graphene quantum dots as a fluorophore (MIP-CuFe2O4/GQDs). It was then characterized using X-ray diffraction (XRD) technique, Fourier transforms infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), and transmission electron microscopy (TEM). The response surface methodology (RSM) was also employed to optimize and estimate the effective parameters of pirimicarb adsorption by this polymer. According to the experimental results, the average particle size and imprinting factor (IF) of this polymer are 53.61 nm and 2.48, respectively. Moreover, this polymer has an excellent ability to adsorb pirimicarb with a removal percentage of 99.92 at pH = 7.54, initial pirimicarb concentration = 10.17 mg/L, polymer dosage = 840 mg/L, and contact time = 6.15 min. The detection of pirimicarb was performed by fluorescence spectroscopy at a concentration range of 0-50 mg/L, and a sensitivity of 15.808 a.u/mg and a limit of detection of 1.79 mg/L were obtained. Real samples with RSD less than 2 were measured using this chemosensor. Besides, the proposed chemosensor demonstrated remarkable selectivity by checking some other insecticides with similar and different molecular structures to pirimicarb, such as diazinon, deltamethrin, and chlorpyrifos.


Subject(s)
Pesticides , Pyrimidines , Pesticides/analysis , Carbamates/analysis , Carbamates/chemistry , Quantum Dots/chemistry , Molecularly Imprinted Polymers/chemistry , Polymers/chemistry , Spectrometry, Fluorescence/methods , Graphite/chemistry , Molecular Imprinting/methods , Adsorption , Limit of Detection , Spectroscopy, Fourier Transform Infrared , Nanocomposites/chemistry , Nanocomposites/ultrastructure
5.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731823

ABSTRACT

This study presents the initial attempt at introducing a magnetic molecularly imprinted polymer (MIP) designed specifically for lamotrigine with the purpose of functioning as a drug carrier. First, the composition of the magnetic polymer underwent optimization based on bulk polymer adsorption studies and theoretical analyses. The magnetic MIP was synthesized from itaconic acid and ethylene glycol dimethacrylate exhibiting a drug loading capacity of 3.4 ± 0.9 µg g-1. Structural characterization was performed using powder X-ray diffraction analysis, vibrating sample magnetometry, and Fourier transform infrared spectroscopy. The resulting MIP demonstrated controlled drug released characteristics without a burst effect in the phospahe buffer saline at pH 5 and 8. These findings hold promise for the potential nasal administration of lamotrigine in future applications.


Subject(s)
Drug Carriers , Lamotrigine , Molecularly Imprinted Polymers , Lamotrigine/chemistry , Drug Carriers/chemistry , Molecularly Imprinted Polymers/chemistry , Molecularly Imprinted Polymers/chemical synthesis , Molecular Imprinting/methods , Spectroscopy, Fourier Transform Infrared , Drug Liberation , X-Ray Diffraction , Adsorption , Hydrogen-Ion Concentration
6.
Biosens Bioelectron ; 259: 116384, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38768536

ABSTRACT

A novel ratiometric Molecularly Imprinted Electrochemical sensor for the specific marker of Glycyrrhiza glabra L. was developed in this work. To achieve simultaneous detection of two analytes on one sensor, we constructed a double template molecular imprinted electrochemical sensor with glabridin (GLA) and isoliquiritin (ISL) as templates. Further, Ferrocene/ZIF-8 (Fc/ZIF-8) composites were prepared via a one-pot solvothermal reaction and coated on the surface of a glassy carbon electrode (GCE), and the oxidation of Fc was presented as the internal reference signal. Nitrogen-doped carbon (NOC) with high conductivity was further loaded on the modified GCE. Based on theoretical exploration and computer directional simulation of density functional theory (DFT), the optimal functional monomer and the best ratio of double template molecules to functional monomer were screened. Under optimal conditions, the sensor produced electrochemical curves when exposed to a solution containing GLA and ISL. As the concentration of GLA and ISL increased, the peak current intensity of GLA and ISL (IGLA and IISL) also increased, while the peak current intensity of Fc (as a reference signal) remained relatively constant. The values of IGLA/IFc and IISL/IFc showed excellent linear relationships with GLA and ISL concentrations in the range of 0.1-160 µM and 0.5-150 µM, respectively. The detection limits were 0.052 µM and 0.27 µM (S/N = 3), respectively. Due to the imprinting effect of MIP and the existence of a reference signal, the sensor exhibited excellent selectivity and anti-interference ability and was successfully applied to the quality evaluation of Glycyrrhiza glabra L.


Subject(s)
Biosensing Techniques , Carbon , Electrochemical Techniques , Molecular Imprinting , Nitrogen , Biosensing Techniques/methods , Carbon/chemistry , Electrochemical Techniques/methods , Nitrogen/chemistry , Molecular Imprinting/methods , Limit of Detection , Electric Conductivity , Glycyrrhiza/chemistry , Electrodes
7.
Anal Methods ; 16(21): 3413-3429, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38766762

ABSTRACT

The research study describes the development of a hybrid nanocomposite called nitro-doped carbon nanodots/polyaniline/molecularly imprinted polymer (N-CNDs/PAni/MIP). This composite is specifically engineered to function as a durable and flexible dual-response sensor to detect and analyze pharmaceutical organic contaminants (POCs). Powder X-Ray diffraction (PXRD), Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) were employed to perform an exhaustive structural and morphological analysis of N-CNDs/PAni/MIP. N-CNDs/PAni/MIP emitted blue luminescence under ultraviolet irradiation and exhibited typical excitation-dependent emission properties. It can act as fluorescent probe for the detection of CIPRO with high selectivity and sensitivity with an IF value of 4.2. Furthermore, N-CNDs/PAni/MIP exhibited high peroxidase-like catalytic behavior. After adding CIPRO to the N-CNDs/PAni/MIP/TMB/H2O2 system, the blue color of the solution faded due to the reduction of blue ox-TMB to colorless TMB. Based on these two phenomena, with CIPRO as the target analyte, the N-CNDs/PAni/MIP dual sensor showed a minimal detection limit of 70 pM for the fluorescent signaling platform and 3.5 nM for the colorimetric probe with a linear range of 0.038-200 nM. The fluorometric and colorimetric assays based on N-CNDs/PAni/MIP for CIPRO detection were then successfully applied to lentic water as well as to tap water samples, demonstrating the sensitivity and dependability of the instrument. Furthermore, the synthesized PVA (N-CNDs/PAni/MIP) films enable the recognition of CIPRO, and these films have the potential to be integrated into portable sensing devices, providing a practical solution for rapid and on-site detection of CIPRO in various samples.


Subject(s)
Aniline Compounds , Ciprofloxacin , Molecularly Imprinted Polymers , Molecularly Imprinted Polymers/chemistry , Aniline Compounds/chemistry , Ciprofloxacin/analysis , Ciprofloxacin/chemistry , Water Pollutants, Chemical/analysis , Limit of Detection , Molecular Imprinting/methods , Nanocomposites/chemistry , Polymers/chemistry
8.
Int J Mol Sci ; 25(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38791542

ABSTRACT

Molecularly imprinted polymers (MIPs) are established artificial molecular recognition platforms with tailored selectivity towards a target molecule, whose synthesis and functionality are highly influenced by the nature of the solvent employed in their synthesis. Steps towards the "greenification" of molecular imprinting technology (MIT) has already been initiated by the elaboration of green MIT principles; developing MIPs in a solvent-free environment may not only offer an eco-friendly alternative, but could also significantly influence the affinity and expected selectivity of the resulting binding sites. In the current study the first solvent-free mechanochemical synthesis of MIPs via liquid-assisted grinding (LAG) is reported. The successful synthesis of the imprinted polymer was functionally demonstrated by measuring its template rebinding capacity and the selectivity of the molecular recognition process in comparison with the ones obtained by the conventional, non-covalent molecular imprinting process in liquid media. The results demonstrated similar binding capacities towards the template molecule and superior chemoselectivity compared to the solution-based MIP synthesis method. The adoption of green chemistry principles with all their inherent advantages in the synthesis of MIPs may not only be able to alleviate the potential environmental and health concerns associated with their analytical (e.g., selective adsorbents) and biomedical (e.g., drug carriers or reservoirs) applications, but might also offer a conceptual change in molecular imprinting technology.


Subject(s)
Molecular Imprinting , Molecularly Imprinted Polymers , Molecularly Imprinted Polymers/chemistry , Molecularly Imprinted Polymers/chemical synthesis , Molecular Imprinting/methods , Solid-Phase Synthesis Techniques/methods , Polymers/chemistry , Polymers/chemical synthesis , Solvents/chemistry
9.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 100-110, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38814229

ABSTRACT

Molecularly imprinted polymers (MIPs) are pivotal in medicine, mimicking biological receptors with enhanced specificity and affinity. Comprising templates, functional monomers, and cross-linkers, MIPs form stable three-dimensional polymer networks. Synthetic templates like glycan and aptamers improve efficiency, guiding the molecular imprinting process. Cross-linking determines MIPs' morphology and mechanical stability, with printable hydrogels offering biocompatibility and customizable properties, mimicking native extracellular matrix (ECM) microenvironments. Their versatility finds applications in tissue engineering, soft robotics, regenerative medicine, and wastewater treatment. In cancer research, MIPs excel in both detection and therapy. MIP-based detection systems exhibit superior sensitivity and selectivity for cancer biomarkers. They target nucleic acids, proteins, and exosomes, providing stability, sensitivity, and adaptability. In therapy, MIPs offer solutions to challenges like multidrug resistance, excelling in drug delivery, photodynamic therapy, photothermal therapy, and biological activity regulation. In microbiology, MIPs serve as adsorbents in solid-phase extraction (SPE), efficiently separating and enriching antibiotics during sample preparation. They contribute to bacterial identification, selectively capturing specific strains or species. MIPs aid in detecting antibiotic residues using fluorescent nanostructures and developing sensors for sulfadiazine detection in food samples. In summary, MIPs play a pivotal role in advancing medical technologies with enhanced sensitivity, selectivity, and versatility. Applications range from biomarker detection to innovative cancer therapies, making MIPs indispensable for the accurate determination and monitoring of diverse biological and environmental samples.


Subject(s)
Anti-Bacterial Agents , Molecularly Imprinted Polymers , Neoplasms , Humans , Molecularly Imprinted Polymers/chemistry , Neoplasms/diagnosis , Anti-Bacterial Agents/analysis , Precision Medicine/methods , Molecular Imprinting/methods , Biomarkers, Tumor
10.
Int J Biol Macromol ; 270(Pt 1): 132193, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723816

ABSTRACT

Developing a sorbent for the removal of La3+ ions from wastewater offers significant environmental and economic advantages. This study employed an ion-imprinting process to integrate La3+ ions into a newly developed derivative of aminoguanidine-chitosan (AGCS), synthesized via an innovative method. The process initiated with the modification of chitosan by attaching cyanoacetyl groups through amide bonds, yielding cyanoacetyl chitosan (CAC). This derivative underwent further modification with aminoguanidine to produce the chelating AGCS biopolymer. The binding of La3+ ions to AGCS occurred through imprinting and cross-linking with epichlorohydrin (ECH), followed by the extraction of La3+, resulting in the La3+ ion-imprinted sorbent (La-AGCS). Structural confirmation of these chitosan derivatives was established through elemental analysis, FTIR, and NMR. SEM analysis revealed that La-AGCS exhibited a more porous structure compared to the smoother non-imprinted polymer (NIP). La-AGCS demonstrated superior La3+ capture capability, with a maximum capacity of 286 ± 1 mg/g. The adsorption process, fitting the Langmuir and pseudo-second-order models, indicated a primary chemisorption mechanism. Moreover, La-AGCS displayed excellent selectivity for La3+, exhibiting selectivity coefficients ranging from 4 to 13 against other metals. This study underscores a strategic approach in designing advanced materials tailored for La3+ removal, capitalizing on specific chelator properties and ion-imprinting technology.


Subject(s)
Chitosan , Guanidines , Lanthanum , Molecular Imprinting , Wastewater , Water Pollutants, Chemical , Chitosan/chemistry , Lanthanum/chemistry , Wastewater/chemistry , Adsorption , Guanidines/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Molecular Imprinting/methods , Water Purification/methods , Ions , Kinetics
11.
J Pharm Biomed Anal ; 246: 116209, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38759322

ABSTRACT

In this study, the first nanomaterial-supported molecularly imprinted polymer (MIP)-based electrochemical approach was proposed to achieve the successful detection of cefdinir (CFD). Here, p-amino benzoic acid (p-ABA) was used as the monomer and the photopolymerization method was chosen to form MIP on a glassy carbon electrode (GCE). ZnO nanoparticles (ZnO NPs) were added to the MIP sensor to increase sensitivity and create high porosity. Through the use of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), characterization investigations confirmed the alterations at each stage of the MIP production process. Electrochemical (cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS)) and scanning electron microscopy (SEM) methods were used for study the characterization studies of the MIP-based nanocomposite sensor. The measurement of MIP parameters, such as the addition of nanoparticles, the removal procedure, the rebinding period, the monomer ratio, etc., was done using the differential pulse voltammetry (DPV). The findings showed that when ZnO NPs were added, the signal was three times higher than when MIPs were used alone. Under the optimized conditions, CFD/4-ABA@ZnONPs/MIP/GCE showed a linear response in the concentration range between 7.5 pM and 100 pM with LOD and LOQ values of 2.06 pM and 6.86 pM, respectively. Anions, cations, and substances including uric acid, ascorbic acid, paracetamol, and dopamine were all used in the selectivity test. In addition, the imprinting factor (IF) study was carried out using compounds such as cefuroxime, cefazolin, cefixime, ceftazidime, and ceftriaxone, which have structural similarities with CFD, as well as impurities such as thiazolylacetyl glycine oxime (IMP-A), thiazolylacetyl glycine oxime acetal (IMP-B), and cefdinir lactone (IMP-E). The results showed that the proposed sensor was selective for CFD, as evidenced by the relative IF values of these impurities. The recovery studies of CFD were successfully applied to tablet dosage form samples, and the developed sensor demonstrated significant sensitivity and selectivity for rapid detection of CFD in tablet dosage form.


Subject(s)
Anti-Bacterial Agents , Cefdinir , Electrochemical Techniques , Limit of Detection , Molecularly Imprinted Polymers , Molecularly Imprinted Polymers/chemistry , Electrochemical Techniques/methods , Anti-Bacterial Agents/analysis , Molecular Imprinting/methods , Zinc Oxide/chemistry , Electrodes , Nanocomposites/chemistry , Nanoparticles/chemistry , Reproducibility of Results , Polymers/chemistry , Tablets , Nanostructures/chemistry
12.
Analyst ; 149(12): 3363-3371, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38712505

ABSTRACT

Specific detection of glycoproteins such as transferrin (TRF) related to neurological diseases, hepatoma and other diseases always plays an important role in the field of disease diagnosis. We designed an antibody-free immunoassay sensing method based on molecularly imprinted polymers (MIPs) formed by the polymerization of multiple functional monomers for the sensitive and selective detection of TRF in human serum. In the sandwich surface-enhanced Raman spectroscopy (SERS) sensor, the TRF-oriented magnetic MIP nanoparticles (Fe3O4@SiO2-MIPs) served as capture units to specifically recognize TRF and 4-mercaptophenylboronic acid-functionalized gold nanorods (MPBA-Au NRs) served as SERS probes to label the targets. In order to achieve stronger interaction between the recognition cavities of the prepared MIPs and the different amino acid fragments that make up TRF, Fe3O4@SiO2-MIPs were obtained through polycondensation reactions between more silylating reagents, enhancing the specific recognition of the entire TRF protein and achieving high IF. This sensing method exhibited a good linear response to TRF within the TRF concentration range of 0.01 ng mL-1 to 1 mg mL-1 (R2 = 0.9974), and the LOD was 0.00407 ng mL-1 (S/N = 3). The good stability, reproducibility and specificity of the resulting MIP based SERS sensor were demonstrated. The determination of TRF in human serum confirmed the feasibility of the method in practical applications.


Subject(s)
Gold , Molecularly Imprinted Polymers , Silicon Dioxide , Spectrum Analysis, Raman , Transferrin , Humans , Spectrum Analysis, Raman/methods , Transferrin/analysis , Transferrin/chemistry , Gold/chemistry , Molecularly Imprinted Polymers/chemistry , Silicon Dioxide/chemistry , Limit of Detection , Nanotubes/chemistry , Magnetite Nanoparticles/chemistry , Molecular Imprinting/methods , Boronic Acids/chemistry , Polymers/chemistry , Sulfhydryl Compounds
13.
J Chromatogr A ; 1728: 465029, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38810572

ABSTRACT

Sulfonate esters, one class of genotoxic impurities (GTIs), have gained significant attention in recent years due to their potential to cause genetic mutations and cancer. In the current study, we employed the dummy template molecular imprinting technology with a dummy template molecule replacing the target molecule to establish a pretreatment method for samples containing p-toluene sulfonate esters. Through computer simulation and ultraviolet-visible spectroscopy analysis, the optimal functional monomer acrylamide and polymerization solvent chloroform were selected. Subsequently, a dummy template molecularly imprinted polymer (DMIP) was prepared by the precipitation polymerization method, and the polymer was characterized in morphology, particle size, and composition. The results of the adsorption and enrichment study demonstrated that the DMIP has high adsorption capability (Q = 7.88 mg/g) and favorable imprinting effects (IF = 1.37); Further, it could simultaneously adsorb three p-toluene sulfonate esters. The optimal adsorption conditions were obtained by conditional optimization of solid-phase extraction (SPE). A pH 7 solution was selected as the loading condition, the methanol/1 % phosphoric acid solution (20:80, v/v) was selected as the washing solution, and acetonitrile containing 10 % acetic acid in 6 mL was selected as the elution solvent. Finally, we determined methyl p-toluene sulfonate alkyl esters, ethyl p-toluene sulfonate alkyl esters, and isopropyl p-toluene sulfonate alkyl esters in tosufloxacin toluene sulfonate and capecitabine at the 10 ppm level (relative to 1 mg/mL active pharmaceutical ingredient (API) samples) by using DMIP-based SPE coupled with HPLC. This approach facilitated the selective enrichment of p-toluene sulfonate esters GTIs from complex API samples.


Subject(s)
Mutagens , Solid Phase Extraction , Solid Phase Extraction/methods , Adsorption , Mutagens/analysis , Mutagens/chemistry , Mutagens/isolation & purification , Molecularly Imprinted Polymers/chemistry , Esters/chemistry , Molecular Imprinting/methods , Chromatography, High Pressure Liquid/methods , Toluene/chemistry , Toluene/analogs & derivatives , Drug Contamination , Benzenesulfonates
14.
Nat Commun ; 15(1): 3731, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702306

ABSTRACT

Molecular recognition of proteins is key to their biological functions and processes such as protein-protein interactions (PPIs). The large binding interface involved and an often relatively flat binding surface make the development of selective protein-binding materials extremely challenging. A general method is reported in this work to construct protein-binding polymeric nanoparticles from cross-linked surfactant micelles. Preparation involves first dynamic covalent chemistry that encodes signature surface lysines on a protein template. A double molecular imprinting procedure fixes the binding groups on the nanoparticle for these lysine groups, meanwhile creating a binding interface complementary to the protein in size, shape, and distribution of acidic groups on the surface. These water-soluble nanoparticles possess excellent specificities for target proteins and sufficient affinities to inhibit natural PPIs such as those between cytochrome c (Cytc) and cytochrome c oxidase (CcO). With the ability to enter cells through a combination of energy-dependent and -independent pathways, they intervene apoptosis by inhibiting the PPI between Cytc and the apoptotic protease activating factor-1 (APAF1). Generality of the preparation and the excellent molecular recognition of the materials have the potential to make them powerful tools to probe protein functions in vitro and in cellulo.


Subject(s)
Cytochromes c , Electron Transport Complex IV , Nanoparticles , Polymers , Nanoparticles/chemistry , Cytochromes c/metabolism , Cytochromes c/chemistry , Humans , Polymers/chemistry , Polymers/metabolism , Electron Transport Complex IV/metabolism , Electron Transport Complex IV/chemistry , Molecular Imprinting/methods , Protein Binding , Apoptosis , Micelles , HeLa Cells , Animals
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124357, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38692110

ABSTRACT

This study described the preparation of an azide covalent organic framework-embedded molecularly imprinted polymers (COFs(azide)@MIPs) platform for urea adsorption and indirect ethyl carbamate (EC) removal from Chinese yellow rice wine (Huangjiu). By modifying the pore surface of COFs using the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction, COFs(azide) with a high fluorescence quantum yield and particular recognition ability were inventively produced. In order to selectively trap urea, the COFs(azide) were encased in an imprinted shell layer via imprinting technology. With a detection limit (LOD) of 0.016 µg L-1 (R2 = 0.9874), the COFs(azides)@MIPs demonstrated a good linear relationship with urea in the linear range of 0-5 µg L-1. Using real Huangjiu samples, the spiking recovery trials showed the viability of this sensing platform with recoveries ranging from 88.44 % to 109.26 % and an RSD of less than 3.40 %. The Huangjiu processing model system achieved 38.93 % EC reduction by COFs(azides)@MIPs. This research will open up new avenues for the treatment of health problems associated with fermented alcoholic beverages, particularly Huangjiu, while also capturing and removing hazards coming from food.


Subject(s)
Molecularly Imprinted Polymers , Urea , Urethane , Wine , Urethane/analysis , Urethane/chemistry , Molecularly Imprinted Polymers/chemistry , Urea/analysis , Urea/chemistry , Wine/analysis , Spectrometry, Fluorescence/methods , Azides/chemistry , Limit of Detection , Adsorption , Metal-Organic Frameworks/chemistry , Molecular Imprinting/methods
16.
J Chromatogr A ; 1722: 464859, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38604056

ABSTRACT

In this study, molecularly imprinted polymers (MIPs) were prepared for the specific recognition of organophosphorus pesticides and a rapid, efficient and simple method was established for the detection of dimethoate (DIT) in food samples. Fe3O4 magnetic nanoparticles were synthesized by co-precipitation, and Fe3O4/ZIF-8 complexes were prepared by a modified in-situ polymerization method, and then magnetic molecularly imprinted polymers (MMIPs) were prepared and synthetic route was optimized by applying density functional theory (DFT). The morphological characterization showed that the MMIPs were coarse porous spheres with an average particle size of 50 nm. The synthesized materials are highly selective for the organophosphorus pesticide dimethoate with an adsorption capacity of 461.50 mg·g-1 and are effective resistance to matrix effects. A novel method for the determination of DIT in cabbage was developed using the prepared MMIPs in combination with HPLC. The practical results showed that the method can meet the requirements for the determination of DIT in cabbage with recoveries of 85.6-121.1 % and detection limits of 0.033 µg·kg-1.


Subject(s)
Brassica , Dimethoate , Limit of Detection , Molecularly Imprinted Polymers , Dimethoate/analysis , Brassica/chemistry , Molecularly Imprinted Polymers/chemistry , Adsorption , Chromatography, High Pressure Liquid/methods , Molecular Imprinting/methods , Magnetite Nanoparticles/chemistry , Solid Phase Extraction/methods , Food Contamination/analysis
17.
Anal Methods ; 16(18): 2878-2887, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38639924

ABSTRACT

Shikimic acid (SA) is one of the most effective drugs against the A (H1N1) virus and has high medicinal value. Additionally, it has the ability to generate non-toxic herbicides and antimicrobial medications. The extraction from plants has proven to be the main route of production of SA with economic benefits and environmental efficiency. Therefore, it is necessary to perform purification of SA from these herbal medicines before quantifying it. In this study, researchers employed a boronate affinity-based controlled oriented surface imprinting technique to produce molecularly imprinted polymers (MIPs) as highly effective solid phase extraction (SPE) adsorbents for the isolation and purification of SA. 3-Fluoro-4-formylphenylboronic acid functionalized silica nanoparticles were used as supporting materials for immobilizing SA. Poly(2-anilinoethanol) with a higher hydrophilic domain can be used as an effective imprinting coating. The prepared SA-imprinted silica nanoparticles exhibited several significant results, such as good specificity, high binding capacity (39.06 ± 2.24 mg g-1), moderate binding constant (6.61 × 10-4 M-1), fast kinetics (8 min) and low binding pH (pH 5.0) toward SA. The replication of SA-imprinted silica nanoparticles was deemed satisfactory. The SA-imprinted silica nanoparticles could be still reused after seven adsorption-desorption cycles, which indicated high chemical stability. In addition, the recoveries of the proposed method for SA at three spiked level analysis in star aniseed and meadow cranesbill were 96.2% to 109.0% and 91.6% to 103.5%, respectively. The SA-imprinted silica nanoparticles that have been prepared are capable of identifying the target SA in real herbal medicines. Our approach makes sample pre-preparation simple, fast, selective and efficient.


Subject(s)
Boronic Acids , Molecular Imprinting , Nanoparticles , Shikimic Acid , Silicon Dioxide , Solid Phase Extraction , Silicon Dioxide/chemistry , Nanoparticles/chemistry , Molecular Imprinting/methods , Shikimic Acid/chemistry , Shikimic Acid/isolation & purification , Boronic Acids/chemistry , Solid Phase Extraction/methods , Molecularly Imprinted Polymers/chemistry , Adsorption , Herbal Medicine/methods
18.
Mikrochim Acta ; 191(5): 238, 2024 04 04.
Article in English | MEDLINE | ID: mdl-38570401

ABSTRACT

Surface-enhanced Raman scattering (SERS) is a powerful method for detecting breast cancer-specific biomarkers due to its extraordinary enhancement effects obtained by localized surface plasmon resonance (LSPR) in metallic nanostructures at hotspots. In this research, gold nanostars (AuNSs) were used as SERS probes to detect a cancer biomarker at very low concentrations. To this end, we combined molecularly imprinted polymers (MIPs) as a detection layer with SERS for the detection of the biomarker CA 15-3 in point-of-care (PoC) analysis. This required two main steps: (i) the deposition of MIPs on a gold electrode, followed by a second step (ii) antibody binding with AuNSs containing a suitable Raman reporter to enhance Raman signaling (SERS). The MPan sensor was prepared by electropolymerization of the monomer aniline in the presence of CA 15-3. The template molecule was then extracted from the polymer using sodium dodecyl sulfate (SDS). In parallel, a control material was prepared in the absence of the protein (NPan). Surface modification for the control was performed using electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The performance of the sensor was evaluated using the SERS technique, in which the MPan sensor is first incubated with the protein and then exposed to the SERS probe. Under optimized conditions, the device showed a linear response to CA 15-3 concentrations from 0.016 to 248.51 U mL-1 in a PBS buffer at pH 7.4 in 1000-fold diluted serum. Overall, this approach demonstrates the potential of SERS as an optical reader and opens a new avenue for biosensing applications.


Subject(s)
Biosensing Techniques , Molecular Imprinting , Neoplasms , Biomarkers, Tumor , Molecular Imprinting/methods , Biosensing Techniques/methods , Antibodies , Gold/chemistry
19.
Anal Bioanal Chem ; 416(14): 3335-3347, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38661944

ABSTRACT

Stanozolol, a synthetic derivative of testosterone, is one of the common doping drugs among athletes and bodybuilders. It is metabolized to a large extent and metabolites are detected in urine for a longer duration than the parent compound. In this study, a novel dummy molecularly imprinted polymer (DMIP) is developed as a sorbent for solid-phase extraction of stanozolol metabolites from spiked human urine samples. The optimized DMIP is composed of stanozolol as the dummy template, methacrylic acid as the functional monomer, and ethylene glycol dimethacrylate as the cross-linker in a ratio of 1:10:80. The extracted analytes were quantitively determined using a newly developed and validated ultrahigh-performance liquid chromatography tandem mass spectrometry method, where the limits of detection and quantitation were 0.91 and 1.81 ng mL-1, respectively, fulfilling the minimum required performance limit decided on by the World Anti-Doping Agency. The mean percentage extraction recoveries for 3'-hydroxystanozolol, 4ß-hydroxystanozolol, and 16ß-hydroxystanozolol are 97.80% ± 13.80, 83.16% ± 7.50, and 69.98% ± 2.02, respectively. As such, the developed DMISPE can serve as an efficient cost-effective tool for doping and regulatory agencies for simultaneous clean-up of the stanozolol metabolites prior to their quantification.


Subject(s)
Doping in Sports , Limit of Detection , Molecularly Imprinted Polymers , Solid Phase Extraction , Stanozolol , Stanozolol/urine , Solid Phase Extraction/methods , Humans , Molecularly Imprinted Polymers/chemistry , Doping in Sports/prevention & control , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Substance Abuse Detection/methods , Anabolic Agents/urine , Anabolic Agents/metabolism , Molecular Imprinting/methods
20.
J Chromatogr A ; 1724: 464910, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38657316

ABSTRACT

A simplified approach for preparation of sandwich type molecularly imprinted polymers (PPDA-MIPs) is proposed for simultaneously identify Low-density lipoprotein (LDL) and dispose "bad cholesterol". Porous polydopamine nanosphere (PPDA) is applied as a matrix for immobilization of LDL, and the imprinted layer is formed by dopamine acting as a functional monomer. Since imprinted cavities exhibit shape memory effects in terms of recognizing selectivity, the PPDA-MIPs exhibit excellent selectivity toward LDL and a substantial binding capacity of 550.3 µg mg-1. Meanwhile, six adsorption/desorption cycles later, the adsorption efficiency of 83.09 % is still achieved, indicating the adequate stability and reusability of PPDA-MIPs. Additionally, over 80 % of cholesterol is recovered, indicating the completeness of "bad cholesterol" removal in LDL. Lastly, as demonstrated by gel electrophoresis, PPDA-MIPs performed satisfactory behavior for the removal of LDL from the goat serum sample.


Subject(s)
Cholesterol , Indoles , Lipoproteins, LDL , Molecularly Imprinted Polymers , Polymers , Lipoproteins, LDL/blood , Lipoproteins, LDL/chemistry , Lipoproteins, LDL/isolation & purification , Adsorption , Polymers/chemistry , Cholesterol/blood , Cholesterol/chemistry , Indoles/chemistry , Animals , Molecularly Imprinted Polymers/chemistry , Dopamine/blood , Dopamine/chemistry , Dopamine/isolation & purification , Dopamine/analysis , Molecular Imprinting/methods , Goats , Nanospheres/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...