Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.145
Filter
1.
Hum Genomics ; 18(1): 46, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730490

ABSTRACT

BACKGROUND: Current clinical diagnosis pathway for lysosomal storage disorders (LSDs) involves sequential biochemical enzymatic tests followed by DNA sequencing, which is iterative, has low diagnostic yield and is costly due to overlapping clinical presentations. Here, we describe a novel low-cost and high-throughput sequencing assay using single-molecule molecular inversion probes (smMIPs) to screen for causative single nucleotide variants (SNVs) and copy number variants (CNVs) in genes associated with 29 common LSDs in India. RESULTS: 903 smMIPs were designed to target exon and exon-intron boundaries of targeted genes (n = 23; 53.7 kb of the human genome) and were equimolarly pooled to create a sequencing library. After extensive validation in a cohort of 50 patients, we screened 300 patients with either biochemical diagnosis (n = 187) or clinical suspicion (n = 113) of LSDs. A diagnostic yield of 83.4% was observed in patients with prior biochemical diagnosis of LSD. Furthermore, diagnostic yield of 73.9% (n = 54/73) was observed in patients with high clinical suspicion of LSD in contrast with 2.4% (n = 1/40) in patients with low clinical suspicion of LSD. In addition to detecting SNVs, the assay could detect single and multi-exon copy number variants with high confidence. Critically, Niemann-Pick disease type C and neuronal ceroid lipofuscinosis-6 diseases for which biochemical testing is unavailable, could be diagnosed using our assay. Lastly, we observed a non-inferior performance of the assay in DNA extracted from dried blood spots in comparison with whole blood. CONCLUSION: We developed a flexible and scalable assay to reliably detect genetic causes of 29 common LSDs in India. The assay consolidates the detection of multiple variant types in multiple sample types while having improved diagnostic yield at same or lower cost compared to current clinical paradigm.


Subject(s)
DNA Copy Number Variations , Genetic Testing , High-Throughput Nucleotide Sequencing , Lysosomal Storage Diseases , Humans , Lysosomal Storage Diseases/genetics , Lysosomal Storage Diseases/diagnosis , India , DNA Copy Number Variations/genetics , Genetic Testing/methods , High-Throughput Nucleotide Sequencing/methods , Polymorphism, Single Nucleotide/genetics , Female , Male , Molecular Probes/genetics
2.
Plant Genome ; 16(1): e20270, 2023 03.
Article in English | MEDLINE | ID: mdl-36411593

ABSTRACT

Increasing rate of genetic gain for key agronomic traits through genomic selection requires the development of new molecular methods to run genome-wide single-nucleotide polymorphisms (SNPs). The main limitation of current methods is the cost is too high to screen breeding populations. Molecular inversion probes (MIPs) are a targeted genotyping-by-sequencing (GBS) method that could be used for soybean [Glycine max (L.) Merr.] that is both cost-effective, high-throughput, and provides high data quality to screen breeder's germplasm for genomic selection. A 1K MIP SNP set was developed for soybean with uniformly distributed markers across the genome. The SNPs were selected to maximize the number of informative markers in germplasm being tested in soybean breeding programs located in the northern-central and middle-southern regions of the United States. The 1K SNP MIP set was tested on diverse germplasm and a recombinant inbred line (RIL) population. Targeted sequencing with MIPs obtained an 85% enrichment for the targeted SNPs. The MIP genotyping accuracy was 93% overall, whereas homozygous call accuracy was 98% with <10% missing data. The accuracy of MIPs combined with its low per-sample cost makes it a powerful tool to enable genomic selection within soybean breeding programs.


Subject(s)
Genome, Plant , Genomics , Genotyping Techniques , Glycine max , Molecular Probe Techniques , Molecular Probes , Selection, Genetic , Glycine max/genetics , Genotyping Techniques/economics , Genotyping Techniques/methods , Molecular Probes/genetics , Molecular Probe Techniques/economics , Heterozygote , Workflow , Data Analysis , Polymorphism, Single Nucleotide/genetics , Plant Breeding , Sequence Alignment , Genotype , Reproducibility of Results , United States
4.
Methods Mol Biol ; 2327: 119-137, 2021.
Article in English | MEDLINE | ID: mdl-34410643

ABSTRACT

Outbreak analysis and transmission surveillance of viruses can be performed via whole-genome sequencing after viral isolation. Such techniques have recently been applied to characterize and monitor SARS-CoV-2 , the etiological agent of the COVID-19 pandemic. However, the isolation and culture of SARS-CoV-2 is time consuming and requires biosafety level 3 containment, which is not ideal for many resource-constrained settings. An alternate method, bait capture allows target enrichment and sequencing of the entire SARS-CoV-2 genome eliminating the need for viral culture. This method uses a set of hybridization probes known as "baits" that span the genome and provide sensitive, accurate, and minimal off-target hybridization. Baits can be designed to detect any known virus or bacteria in a wide variety of specimen types, including oral secretions. The bait capture method presented herein allows the whole genome of SARS-CoV-2 in saliva to be sequenced without the need to culture and provides an outline of bait design and bioinformatic analysis to guide a bioinformatician.


Subject(s)
Genome, Viral , SARS-CoV-2/genetics , Saliva/virology , Whole Genome Sequencing/methods , Computational Biology , DNA, Complementary/genetics , Humans , Molecular Probes/genetics , Polymerase Chain Reaction/methods , SARS-CoV-2/isolation & purification , Specimen Handling/methods , Streptavidin , Whole Genome Sequencing/instrumentation
5.
Sci Rep ; 11(1): 6140, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33731748

ABSTRACT

Enzymes are the cornerstone of modern biotechnology. Achromopeptidase (ACP) is a well-known enzyme that hydrolyzes a number of proteins, notably proteins on the surface of Gram-positive bacteria. It is therefore used for sample preparation in nucleic acid tests. However, ACP inhibits DNA amplification which makes its integration difficult. Heat is commonly used to inactivate ACP, but it can be challenging to integrate heating into point-of-care devices. Here, we use recombinase polymerase amplification (RPA) together with ACP, and show that when ACP is immobilized on nitrocellulose paper, it retains its enzymatic function and can easily and rapidly be activated using agitation. The nitrocellulose-bound ACP does, however, not leak into the solution, preventing the need for deactivation through heat or by other means. Nitrocellulose-bound ACP thus opens new possibilities for paper-based Point-of-Care (POC) devices.


Subject(s)
Nucleic Acid Amplification Techniques/methods , Point-of-Care Testing , Staphylococcal Infections , Staphylococcus epidermidis/isolation & purification , Humans , Molecular Probes/genetics , Serine Endopeptidases/chemistry , Staphylococcal Infections/diagnosis , Staphylococcal Infections/microbiology
6.
J Immunol Methods ; 492: 113001, 2021 05.
Article in English | MEDLINE | ID: mdl-33621564

ABSTRACT

Complement C1q is a multifunctional protein able to sense pathogens and immune molecules such as immunoglobulins and pentraxins, and to trigger the classical complement pathway through activation of its two associated proteases, C1r and C1s. C1q is a multimeric protein composed of three homologous yet distinct polypeptide chains A, B, and C, each composed of an N-terminal collagen-like sequence and a C-terminal globular gC1q module, that assemble into six heterotrimeric (A-B-C) subunits. This hexameric structure exhibits the characteristic shape of a bouquet of flowers, comprising six collagen-like triple helices, each terminating in a trimeric C-terminal globular head. We have produced previously functional recombinant full-length C1q in stably transfected HEK 293-F cells, with a FLAG tag inserted at the C-terminal end of C1qC chain. We report here the generation of additional recombinant C1q proteins, with a FLAG tag fused to the C-terminus of C1qA or C1qB chains, or to the N-terminus of the C1qC chain. Two other variants harboring a Myc or a 6-His tag at the C-terminal end of C1qC were also produced. We show that all C1q variants, except for the His-tagged protein, can be produced at comparable yields and are able to bind with similar affinities to either IgM, a ligand of the globular regions, or to the C1r2-C1s2 tetramer, and to trigger IgM-mediated serum complement activation. These new recombinant C1q variants provide additional tools to investigate the multiple functions of C1q.


Subject(s)
Complement C1q/isolation & purification , Molecular Probes/genetics , Amino Acid Sequence , Complement Activation , Complement C1q/genetics , Complement C1q/metabolism , HEK293 Cells , Humans , Immunoassay/methods , Protein Multimerization , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Transfection
7.
ACS Synth Biol ; 10(2): 379-390, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33534552

ABSTRACT

Generating and characterizing immunoreagents to enable studies of novel emerging viruses is an area where ensembles of synthetic genes, recombinant antibody pipelines, and modular antibody-reporter fusion proteins can respond rapidly. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread through the global population causing widespread morbidity, mortality, and socioeconomic chaos. Using SARS-CoV-2 as our model and starting with a gBlocks encoded nucleocapsid (N) gene, we purified recombinant protein from E. coli, to serve as bait for selecting semisynthetic nanobodies from our Nomad single-pot library. Clones were isolated in days and first fused to Gaussia luciferase to determine EC50 in the tens of nM range, and second fused to the ascorbate peroxidase derivative APEX2 for sensitive detection of SARS-CoV-2 infected cells. To generate inherently fluorescent immunoreagents, we introduce novel periplasmic sdAb fusions made with mNeonGreen and mScarlet-I, which were produced at milligram amounts. The fluorescent fusion proteins enabled concise visualization of SARS-CoV-2 N in the cytoplasm but not in the nucleus 24 h post infection, akin to the distribution of SARS-CoV N, thereby validating these useful imaging tools. SdAb reactivity appeared specific to SARS-CoV-2 with very much weaker binding to SARS-CoV, and no noticeable cross-reactivity to a panel of overexpressed human codon optimized N proteins from other CoV. High periplasmic expression levels and in silico immortalization of the nanobody constructs guarantees a cost-effective and reliable source of SARS-CoV-2 immunoreagents. Our proof-of-principle study should be applicable to known and newly emerging CoV to broaden the tools available for their analysis and help safeguard human health in a more proactive than reactive manner.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Coronavirus Nucleocapsid Proteins/genetics , Molecular Probes/genetics , Pandemics , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Antibodies, Viral/genetics , Antibody Specificity/genetics , COVID-19/immunology , Communicable Diseases, Emerging/virology , Coronavirus Nucleocapsid Proteins/immunology , Escherichia coli/genetics , Fluorescent Antibody Technique , Genes, Synthetic , Genes, Viral , HEK293 Cells , Humans , Molecular Probes/immunology , Pandemics/prevention & control , Peptide Library , Phosphoproteins/genetics , Phosphoproteins/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , SARS-CoV-2/pathogenicity , Single-Domain Antibodies/genetics , Synthetic Biology
8.
Nat Chem Biol ; 17(5): 531-539, 2021 05.
Article in English | MEDLINE | ID: mdl-33526893

ABSTRACT

Splitting bioactive proteins into conditionally reconstituting fragments is a powerful strategy for building tools to study and control biological systems. However, split proteins often exhibit a high propensity to reconstitute, even without the conditional trigger, limiting their utility. Current approaches for tuning reconstitution propensity are laborious, context-specific or often ineffective. Here, we report a computational design strategy grounded in fundamental protein biophysics to guide experimental evaluation of a sparse set of mutants to identify an optimal functional window. We hypothesized that testing a limited set of mutants would direct subsequent mutagenesis efforts by predicting desirable mutant combinations from a vast mutational landscape. This strategy varies the degree of interfacial destabilization while preserving stability and catalytic activity. We validate our method by solving two distinct split protein design challenges, generating both design and mechanistic insights. This new technology will streamline the generation and use of split protein systems for diverse applications.


Subject(s)
Molecular Probes/chemistry , Protein Engineering/methods , Transcription Factors/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Endopeptidases/chemistry , Endopeptidases/metabolism , Genes, Reporter , HEK293 Cells , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Molecular Probes/genetics , Molecular Probes/metabolism , Mutation , Protein Multimerization , Proteolysis , Sirolimus/metabolism , Sirolimus/pharmacology , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism , Transcription Factors/metabolism , Transcriptional Activation
9.
Nat Commun ; 12(1): 717, 2021 01 29.
Article in English | MEDLINE | ID: mdl-33514717

ABSTRACT

The Neisseria meningitidis protein FrpC contains a self-processing module (SPM) undergoing autoproteolysis via an aspartic anhydride. Herein, we establish NeissLock, using a binding protein genetically fused to SPM. Upon calcium triggering of SPM, the anhydride at the C-terminus of the binding protein allows nucleophilic attack by its target protein, ligating the complex. We establish a computational tool to search the Protein Data Bank, assessing proximity of amines to C-termini. We optimize NeissLock using the Ornithine Decarboxylase/Antizyme complex. Various sites on the target (α-amine or ε-amines) react with the anhydride, but reaction is blocked if the partner does not dock. Ligation is efficient at pH 7.0, with half-time less than 2 min. We arm Transforming Growth Factor-α with SPM, enabling specific covalent coupling to Epidermal Growth Factor Receptor at the cell-surface. NeissLock harnesses distinctive protein chemistry for high-yield covalent targeting of endogenous proteins, advancing the possibilities for molecular engineering.


Subject(s)
Bacterial Proteins/genetics , Membrane Proteins/genetics , Molecular Probes/metabolism , Protein Engineering/methods , Recombinant Fusion Proteins/metabolism , Staining and Labeling/methods , Anhydrides/metabolism , Animals , Molecular Imaging/methods , Molecular Probes/chemistry , Molecular Probes/genetics , Proteolysis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics
10.
J Appl Microbiol ; 130(2): 493-503, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32738017

ABSTRACT

AIMS: Diagnosis of Staphylococcus aureus is important in various diseases from hospital-acquired infections to foodborne diseases. This work reports two new luminescent affiprobes for specific detection of S. aureus. METHODS AND RESULTS: To develop advanced luminescent affiprobes, enhanced green fluorescent protein (EGFP) was flanked by single and double repeats of ZpA963 affibody using molecular biology studies. The recombinant proteins including fluorescent monomeric affibody (fA1 ) and fluorescent dimeric affibody (fA2 ) were expressed in the bacterial expression system, purified and used to identify the S. aureus. Fluorescence microscope and flow cytometry results demonstrated that the treated samples with fA1 and fA2 had relatively high fluorescent mean intensities in comparison to the untreated S. aureus cells. Moreover, it was revealed that 'fA2 ' affiprobe had lower dissociation constant value (about 25-fold) and was more effective for detection of S. aureus than the 'fA1 ' affiprobe. In addition, the binding of the affiprobes for some other pathogenic bacteria i.e. Escherichia coli, Bacillus cereus, Enterococcus faecalis and Staphylococcus saprophyticus was examined. Expectedly, no cross-reaction was observed for binding the constructed affiprobes to these bacteria, eliminating possibilities for false positive results. CONCLUSIONS: The results show that 'fA1 ' affiprobe and 'fA2 ' affiprobe are two new efficient luminescent affiprobes for detecting S. aureus. SIGNIFICANCE AND IMPACT OF THE STUDY: We developed a new approach for detection of Staphylococcus aureus in a simple one-step process and in low concentrations of probes. In the best of our knowledge, this is the first study to direct detection of bacterial cells by affiprobes and may be used to develop new diagnostic kits.


Subject(s)
Bacteriological Techniques/methods , Flow Cytometry/methods , Molecular Probes/metabolism , Staphylococcus aureus/isolation & purification , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/isolation & purification , Green Fluorescent Proteins/metabolism , Humans , Luminescence , Molecular Probes/genetics , Molecular Probes/isolation & purification , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Species Specificity , Staphylococcal Infections/diagnosis , Staphylococcal Infections/microbiology , Staphylococcus aureus/cytology , Staphylococcus aureus/metabolism
11.
STAR Protoc ; 1(3): 100217, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33377110

ABSTRACT

Photoconversion enables real-time labeling of protein sub-populations inside living cells, which can then be tracked with submicrometer resolution. Here, we detail the protocol of comparing protein dynamics inside membraneless organelles in live HEK293T cells using a CRISPR-Cas9 PABPC1-Dendra2 marker of stress granules. Measuring internal dynamics of membraneless organelles provides insight into their functional state, physical properties, and composition. Photoconversion has the advantage over other imaging techniques in that it is less phototoxic and allows for dual color tracking of proteins. For complete details on the use and execution of this protocol, please refer to Amen and Kaganovich (2020).


Subject(s)
Molecular Probe Techniques/instrumentation , Optical Imaging/methods , Stress Granules/metabolism , Benzothiazoles/chemistry , Biomolecular Condensates/metabolism , Biomolecular Condensates/physiology , HEK293 Cells , Humans , Molecular Dynamics Simulation , Molecular Probes/chemistry , Molecular Probes/genetics , Organelles/metabolism , Proteins/metabolism , Stress Granules/physiology
12.
Front Immunol ; 11: 583013, 2020.
Article in English | MEDLINE | ID: mdl-33324401

ABSTRACT

The killer-cell immunoglobulin-like receptor (KIR) proteins evolve to fight viruses and mediate the body's reaction to pregnancy. These roles provide selection pressure for variation at both the structural/haplotype and base/allele levels. At the same time, the genes have evolved relatively recently by tandem duplication and therefore exhibit very high sequence similarity over thousands of bases. These variation-homology patterns make it impossible to interpret KIR haplotypes from abundant short-read genome sequencing data at population scale using existing methods. Here, we developed an efficient computational approach for in silico KIR probe interpretation (KPI) to accurately interpret individual's KIR genes and haplotype-pairs from KIR sequencing reads. We designed synthetic 25-base sequence probes by analyzing previously reported haplotype sequences, and we developed a bioinformatics pipeline to interpret the probes in the context of 16 KIR genes and 16 haplotype structures. We demonstrated its accuracy on a synthetic data set as well as a real whole genome sequences from 748 individuals from The Genome of the Netherlands (GoNL). The GoNL predictions were compared with predictions from SNP-based predictions. Our results show 100% accuracy rate for the synthetic tests and a 99.6% family-consistency rate in the GoNL tests. Agreement with the SNP-based calls on KIR genes ranges from 72%-100% with a mean of 92%; most differences occur in genes KIR2DS2, KIR2DL2, KIR2DS3, and KIR2DL5 where KPI predicts presence and the SNP-based interpretation predicts absence. Overall, the evidence suggests that KPI's accuracy is 97% or greater for both KIR gene and haplotype-pair predictions, and the presence/absence genotyping leads to ambiguous haplotype-pair predictions with 16 reference KIR haplotype structures. KPI is free, open, and easily executable as a Nextflow workflow supported by a Docker environment at https://github.com/droeatumn/kpi.


Subject(s)
Genotype , Killer Cells, Natural/physiology , Molecular Probes/genetics , Algorithms , Alleles , Chromosome Mapping , Evolution, Molecular , Haplotypes , Humans , Netherlands , Receptors, KIR/genetics , Whole Genome Sequencing
13.
PLoS One ; 15(9): e0229475, 2020.
Article in English | MEDLINE | ID: mdl-32915783

ABSTRACT

The importance of glial cells in the modulation of neuronal processes is now generally accepted. In particular, enormous progress in our understanding of astrocytes and microglia physiology in the central nervous system (CNS) has been made in recent years, due to the development of genetic and molecular toolkits. However, the roles of satellite glial cells (SGCs) and macrophages-the peripheral counterparts of astrocytes and microglia-remain poorly studied despite their involvement in debilitating conditions, such as pain. Here, we characterized in dorsal root ganglia (DRGs), different genetically-modified mouse lines previously used for studying astrocytes and microglia, with the goal to implement them for investigating DRG SGC and macrophage functions. Although SGCs and astrocytes share some molecular properties, most tested transgenic lines were found to not be suitable for studying selectively a large number of SGCs within DRGs. Nevertheless, we identified and validated two mouse lines: (i) a CreERT2 recombinase-based mouse line allowing transgene expression almost exclusively in SGCs and in the vast majority of SGCs, and (ii) a GFP-expressing line allowing the selective visualization of macrophages. In conclusion, among the tools available for exploring astrocyte functions, a few can be used for studying selectively a great proportion of SGCs. Thus, efforts remain to be made to characterize other available mouse lines as well as to develop, rigorously characterize and validate new molecular tools to investigate the roles of DRG SGCs, but also macrophages, in health and disease.


Subject(s)
Ganglia, Spinal/physiology , Macrophages/physiology , Models, Animal , Satellite Cells, Perineuronal/physiology , Animals , Astrocytes , Biosensing Techniques/methods , Cells, Cultured , Ganglia, Spinal/cytology , Immunohistochemistry , Intravital Microscopy/methods , Mice , Mice, Transgenic , Molecular Probes/chemistry , Molecular Probes/genetics , Optical Imaging , Photons , Primary Cell Culture
14.
PLoS One ; 15(9): e0238467, 2020.
Article in English | MEDLINE | ID: mdl-32877464

ABSTRACT

Resolving the genetic architecture of painful neuropathy will lead to better disease management strategies. We aimed to develop a reliable method to re-sequence multiple genes in a large cohort of painful neuropathy patients at low cost. In this study, we compared sensitivity, specificity, targeting efficiency, performance and cost effectiveness of Molecular Inversion Probes-Next generation sequencing (MIPs-NGS) and TruSeq® Custom Amplicon-Next generation sequencing (TSCA-NGS). Capture probes were designed to target nine sodium channel genes (SCN3A, SCN8A-SCN11A, and SCN1B-SCN4B). One hundred sixty-six patients with diabetic and idiopathic neuropathy were tested by both methods, 70 patients were validated by Sanger sequencing. Sensitivity, specificity and performance of both techniques were comparable, and in agreement with Sanger sequencing. The average targeted regions coverage for MIPs-NGS was 97.3% versus 93.9% for TSCA-NGS. MIPs-NGS has a more versatile assay design and is more flexible than TSCA-NGS. The cost of MIPs-NGS is >5 times cheaper than TSCA-NGS when 500 or more samples are tested. In conclusion, MIPs-NGS is a reliable, flexible, and relatively inexpensive method to detect genetic variations in a large cohort of patients. In our centers, MIPs-NGS is currently implemented as a routine diagnostic tool for screening of sodium channel genes in painful neuropathy patients.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Molecular Probes/genetics , Sequence Analysis, DNA/methods , Chromosome Inversion/genetics , DNA Probes/genetics , Genetic Testing/methods , Humans , Mutation , Neuralgia/genetics , Sensitivity and Specificity
15.
ACS Synth Biol ; 9(9): 2267-2273, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32810400

ABSTRACT

A streamlined approach toward the rapid fabrication of streptavidin-biotin-based protein microarrays was investigated. First, using our engineered versatile plasmid (pBADcM-tBirA) and an optimal coexpression strategy for biotin ligase and biotin acceptor peptide (BAP) chimeric recombinant protein, an autogeneration system for biotinylated probes was developed. This system permitted an advantageous biotinylation of BAP chimeric recombinant proteins, providing a strategy for the high-throughput synthesis of biotinylated probes. Then, to bypass the conventional rate-limiting steps, we employed an on-chip purification process to immobilize the biotinylated probes with high-throughput recombinant lysates. The integration of the autogeneration of probes and on-chip purification not only contributed to the effective and reliable fabrication of the protein microarray, but also enabled simplification of the process and an automated throughput format. This labor- and cost-effective approach may facilitate the use of protein microarrays for diagnosis, pharmacology, proteomics, and other laboratory initiatives.


Subject(s)
Molecular Probes/metabolism , Protein Array Analysis/methods , Biotin/chemistry , Biotin/metabolism , Biotinylation , Carbon-Nitrogen Ligases/genetics , Carbon-Nitrogen Ligases/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Luminescent Measurements , Molecular Probes/genetics , Peptides/genetics , Peptides/metabolism , Plasmids/genetics , Plasmids/metabolism , Protein Array Analysis/instrumentation , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Streptavidin/chemistry , Streptavidin/metabolism
16.
Mol Vis ; 26: 378-391, 2020.
Article in English | MEDLINE | ID: mdl-32476818

ABSTRACT

Purpose: Family-based genetic linkage analysis and genome-wide association studies (GWASs) have identified many genomic loci associated with primary open-angle glaucoma (POAG). Several causative genes of POAG have been intensively analyzed by sequencing in different populations. However, few investigations have been conducted on the identification of variants of coding region in the genes identified in GWASs. Therefore, further research is needed to investigate whether they harbor pathogenically relevant rare coding variants and account for the observed association. Methods: To identify the potentially disease-relevant variants (PDVs) in POAG-associated genes in Chinese patients, we applied molecular inversion probe (MIP)-based panel sequencing to analyze 26 candidate genes in 235 patients with POAG and 241 control subjects. Results: The analysis identified 82 PDVs in 66 individuals across 235 patients with POAG. By comparison, only 18 PDVs in 19 control subjects were found, indicating an enrichment of PDVs in the POAG cohort (28.1% versus 7.9%, p = 8.629e-09). Among 26 candidate genes, the prevalence rate of PDVs in five genes showed a statistically significant difference between patients and controls (33 out of 235 versus 1 out of 241, p = 4.533e-10), including ATXN2 (p = 0.0033), TXNRD2 (p = 0.0190), MYOC (p = 0.0140), FOXC1 (p = 0.0140), and CDKN2B (p = 0.0287). Furthermore, two sisters harboring a stop-loss mutation EFEMP1 p.Ter494Glu were found in the POAG cohort, and further analysis of the family strongly suggested that EFEMP1 p.Ter494Glu was a potentially disease-causing mutation for POAG. A statistically significant difference in age at diagnosis between patients with PDVs and those without PDVs was found, implying that some of the identified PDVs may have a role in promoting the early onset of POAG disease. Conclusions: The results suggest that some of the associations identified in POAG risk loci can be ascribed to rare coding variants with likely functional effects that modify POAG risk.


Subject(s)
Genome-Wide Association Study/methods , Glaucoma, Open-Angle/genetics , Sequence Analysis, DNA/methods , Adolescent , Adult , Aged , Asian People , Ataxin-2/genetics , Cohort Studies , Cyclin-Dependent Kinase Inhibitor p15/genetics , Cytoskeletal Proteins/genetics , Extracellular Matrix Proteins/genetics , Eye Proteins/genetics , Female , Forkhead Transcription Factors/genetics , Genetic Predisposition to Disease , Glaucoma, Open-Angle/pathology , Glycoproteins/genetics , Humans , Male , Middle Aged , Molecular Probes/genetics , Mutation , Protein Domains , Risk Factors , Thioredoxin Reductase 2/genetics
17.
Sci Rep ; 10(1): 5894, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32246002

ABSTRACT

Proteases have been implicated in the development of many pathological conditions, including cancer. Detection of protease activity in diseased tissues could therefore be useful for diagnosis, prognosis, and the development of novel therapeutic approaches. Due to tight post-translational regulation, determination of the expression level of proteases alone may not be indicative of protease activities, and new methods for measuring protease activity in biological samples such as tumor biopsies are needed. Here we report a novel zymography-based technique, called the IHZTM assay, for the detection of specific protease activities in situ. The IHZ assay involves imaging the binding of a protease-activated monoclonal antibody prodrug, called a Probody® therapeutic, to tissue. Probody therapeutics are fully recombinant, masked antibodies that can only bind target antigen after removal of the mask by a selected protease. A fluorescently labeled Probody molecule is incubated with a biological tissue, thereby enabling its activation by tissue endogenous proteases. Protease activity is measured by imaging the activated Probody molecule binding to antigen present in the sample. The method was evaluated in xenograft tumor samples using protease specific substrates and inhibitors, and the measurements correlated with efficacy of the respective Probody therapeutics. Using this technique, a diverse profile of MMP and serine protease activities was characterized in breast cancer patient tumor samples. The IHZ assay represents a new type of in situ zymography technique that can be used for the screening of disease-associated proteases in patient samples from multiple pathological conditions.


Subject(s)
Molecular Imaging/methods , Molecular Probes/metabolism , Neoplasms/diagnosis , Peptide Hydrolases/analysis , Prodrugs/metabolism , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal/pharmacology , Cell Line, Tumor , Female , Humans , Mice , Microscopy, Fluorescence , Molecular Probes/genetics , Molecular Probes/pharmacology , Neoplasms/pathology , Peptide Hydrolases/metabolism , Prodrugs/pharmacology , Protein Processing, Post-Translational , Proteolysis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Xenograft Model Antitumor Assays
18.
FEBS Open Bio ; 10(6): 1056-1064, 2020 06.
Article in English | MEDLINE | ID: mdl-32237061

ABSTRACT

The recombinant N-terminal domain of BC2L-C lectin (rBC2LCN) is useful for detecting not only human pluripotent stem cells but also some cancers. However, the cancer types and stages that can be detected by rBC2LCN remain unclear. In this study, we identified the human breast carcinoma subtypes and stages that can be detected by rBC2LCN. Compared with rBC2LCN-negative breast carcinoma cell lines, the rBC2LCN-positive cells expressed higher levels of human epidermal growth factor receptor 2 (HER2) and epithelial marker genes. Importantly, rBC2LCN histochemical staining of human breast carcinoma tissues demonstrated the utility of rBC2LCN in detecting breast carcinoma types that express HER2 and have not spread much in the early phase of growth. We conclude that rBC2LCN may have potential as a detection probe and a drug delivery vehicle to identify and treat early-stage HER2-positive breast carcinoma.


Subject(s)
Bacterial Proteins/chemistry , Breast Neoplasms/diagnosis , Lectins/chemistry , Molecular Probes/chemistry , Antineoplastic Agents/administration & dosage , Bacterial Proteins/genetics , Breast/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Burkholderia cenocepacia , Drug Carriers/chemistry , Feasibility Studies , Female , Humans , Lectins/genetics , MCF-7 Cells , Molecular Probes/genetics , Neoplasm Staging , Receptor, ErbB-2/analysis , Receptor, ErbB-2/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Tissue Array Analysis/methods
19.
Nano Lett ; 20(2): 1117-1123, 2020 02 12.
Article in English | MEDLINE | ID: mdl-32003222

ABSTRACT

Endosomal escape is a key step for intracellular drug delivery of nucleic acids, but reliable and sensitive methods for its quantitation remain an unmet need. In order to rationally optimize the mRNA transfection efficiency of a library of polymeric materials, we designed a deactivated Renilla luciferase-derived molecular probe whose activity can be restored only in the cytosol. This probe can be coencapsulated with mRNA in the same delivery vehicle, thereby accurately measuring its endosomal escape efficiency. We examined a library of poly(amine-co-ester) (PACE) polymers with different end groups using this probe and observed a strong correlation between endosomal escape and transfection efficiency (R2 = 0.9334). In addition, we found that mRNA encapsulation efficiency and endosomal escape, but not uptake, were determinant factors for transfection efficiency. The polymers with high endosomal escape/transfection efficiency in vitro also showed good transfection efficiency in vivo, and mRNA expression was primarily observed in spleens after intravenous delivery. Together, our study suggests that the luciferase probe can be used as an effective tool to quantitate endosomal escape, which is essential for rational optimization of intracellular drug delivery systems.


Subject(s)
Gene Transfer Techniques , Luciferases, Renilla/genetics , Molecular Probes/genetics , RNA, Messenger/genetics , Cytosol/chemistry , Cytosol/drug effects , Gene Expression Regulation/genetics , Humans , Luciferases, Renilla/chemistry , Molecular Probes/chemistry , Nanoparticles/chemistry , Transfection/methods
20.
Methods ; 183: 76-83, 2020 11 01.
Article in English | MEDLINE | ID: mdl-31991194

ABSTRACT

RNA regulation is influenced by the dynamic changes in conformational accessibility on the transcript. Here we discuss the initial validation of a cell-free antisense probing method for structured RNAs, using the Tetrahymena group I intron as a control target. We observe changes in signal that qualitatively match prior traditional DMS footprinting experiments. Importantly, we have shown that application of this technique can elucidate new RNA information given its sensitivity for detecting rare intermediates that are not as readily observed by single-hit kinetics chemical probing techniques. Observing changes in RNA accessibility has broad applications in determining the effect that regulatory elements have on regional structures. We speculate that this method could be useful in quickly observing those interactions, along with other phenomena that influence RNA accessibility including RNA-RNA interactions and small molecules.


Subject(s)
High-Throughput Screening Assays/methods , Molecular Probe Techniques , RNA, Protozoan/chemistry , RNA, Viral/chemistry , Introns/genetics , Molecular Probes/chemistry , Molecular Probes/genetics , Nucleic Acid Conformation , Plasmids/genetics , Protein Biosynthesis , RNA, Antisense/chemistry , RNA, Antisense/genetics , RNA, Protozoan/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , Tetrahymena/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...