Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.390
Filter
1.
Can Vet J ; 65(6): 565-568, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38827603

ABSTRACT

Objective: To describe the copper and selenium statuses of beef calves at weaning. Animal: Calves (n = 1998) were sampled from 106 Canadian cow-calf herds in the fall of 2021. Procedure: Serum samples from calves were tested for copper, selenium, and molybdenum concentrations. Results: Although the percentages of calves classified as selenium deficient (< 0.025 ppm) were relatively low (0.5% western Canada, 3% eastern Canada), 53% of calves from western Canada and 77% of calves from eastern Canada were classified as having less than adequate selenium concentrations (< 0.08 ppm). Copper deficiency (< 0.5 ppm) was common in calves from both western (17%) and eastern (14%) Canada. High molybdenum concentrations (> 0.10 ppm) were identified in 6% of calves from western Canada and 7% of calves from eastern Canada. Conclusion: Selenium concentrations were higher in calves from western Canada than from those in eastern Canada (P < 0.001). Copper and molybdenum concentrations were not significantly different between western and eastern Canada. Less-than-adequate serum copper was the most common deficiency identified in Canadian beef calves at weaning. Clinical relevance: Trace minerals are important for immune system function in calves at weaning. Selenium concentrations in calves at weaning were lower than in cows from the same herds collected at pregnancy testing 2 y earlier. Copper deficiency was also identified, though less frequently than for mature cows. Supplementation programs for calves should be customized based on testing and recognize both regional and age differences in risk.


Concentrations d'oligo-éléments minéraux chez les veaux de boucherie canadiens au sevrage. Objectif: Décrire les statuts en cuivre et en sélénium des veaux de boucherie au sevrage. Animal: Des veaux (n = 1998) ont été échantillonnés dans 106 troupeaux de type vache-veau canadiens à l'automne 2021. Procédure: Des échantillons de sérum de veaux ont été testés pour déterminer les concentrations de cuivre, de sélénium et de molybdène. Résultats: Même si les pourcentages de veaux classés comme déficients en sélénium (< 0,025 ppm) étaient relativement faibles (0,5 % dans l'ouest du Canada, 3 % dans l'est du Canada), 53 % des veaux de l'ouest du Canada et 77 % des veaux de l'est du Canada étaient classés comme ayant moins des concentrations de sélénium moins qu'adéquates (< 0,08 ppm). Une carence en cuivre (< 0,5 ppm) était courante chez les veaux de l'ouest (17 %) et de l'est (14 %) du Canada. Des concentrations élevées de molybdène (> 0,10 ppm) ont été identifiées chez 6 % des veaux de l'ouest du Canada et 7 % des veaux de l'est du Canada. Conclusion: Les concentrations de sélénium étaient plus élevées chez les veaux de l'ouest du Canada que chez ceux de l'est du Canada (P < 0,001). Les concentrations de cuivre et de molybdène n'étaient pas significativement différentes entre l'ouest et l'est du Canada. Un taux de cuivre sérique nettement insuffisamment était la carence la plus courante identifiée chez les veaux de boucherie canadiens au sevrage. Pertinence clinique: Les oligo-éléments sont importants pour le fonctionnement du système immunitaire des veaux au sevrage. Les concentrations de sélénium chez les veaux au sevrage étaient inférieures à celles des vaches des mêmes troupeaux collectées lors des tests de gestation deux ans plus tôt. Des carences en cuivre ont également été identifiées, quoique moins fréquemment que chez les vaches matures. Les programmes de supplémentation pour les veaux doivent être personnalisés en fonction des tests et reconnaître les différences de risque selon la région et l'âge.(Traduit par Dr Serge Messier).


Subject(s)
Copper , Molybdenum , Selenium , Trace Elements , Weaning , Animals , Cattle/blood , Canada , Selenium/blood , Selenium/deficiency , Molybdenum/blood , Copper/blood , Trace Elements/blood , Female , Male , Animals, Newborn/blood
2.
Cancer Med ; 13(11): e7291, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38826119

ABSTRACT

BACKGROUND: We previously reported that metastases are generally characterized by a core program of gene expression that activates tissue remodeling/vascularization, alters ion homeostasis, induces the oxidative metabolism, and silences extracellular matrix interactions. This core program distinguishes metastases from their originating primary tumors as well as from their destination host tissues. Therefore, the gene products involved are potential targets for anti-metastasis drug treatment. METHODS: Because the silencing of extracellular matrix interactions predisposes to anoiks in the absence of active survival mechanisms, we tested inhibitors against the other three components. RESULTS: Individually, the low-specificity VEGFR blocker pazopanib (in vivo combined with marimastat), the antioxidant dimethyl sulfoxide (or the substitute atovaquone, which is approved for internal administration), and the ionic modulators bumetanide and tetrathiomolybdate inhibited soft agar colony formation by breast and pancreatic cancer cell lines. The individual candidate agents have a record of use in humans (with limited efficacy when administered individually) and are available for repurposing. In combination, the effects of these drugs were additive or synergistic. In two mouse models of cancer (utilizing 4T1 cells or B16-F10 cells), the combination treatment with these medications, applied immediately (to prevent metastasis formation) or after a delay (to suppress established metastases), dramatically reduced the occurrence of disseminated foci. CONCLUSIONS: The combination of tissue remodeling inhibitors, suppressors of the oxidative metabolism, and ion homeostasis modulators has very strong promise for the treatment of metastases by multiple cancers.


Subject(s)
Indazoles , Pyrimidines , Sulfonamides , Animals , Humans , Mice , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Sulfonamides/administration & dosage , Cell Line, Tumor , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Pyrimidines/administration & dosage , Female , Indazoles/pharmacology , Indazoles/therapeutic use , Indazoles/administration & dosage , Neoplasm Metastasis , Molybdenum/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Xenograft Model Antitumor Assays
3.
Inorg Chem ; 63(20): 9058-9065, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38720438

ABSTRACT

Nitrofurans are important synthetic broad-spectrum antibacterial drugs with the basic structure of 5-nitrofuran. Due to their toxicity, it is essential to develop a sensitive sensor with strong anti-interference capabilities for their detection. In this work, two {P4Mo6O31}12--based compounds, [H4(HPTTP)]2{CuI[Mo12O24(OH)6(PO4)3(HPO4)(H2PO4)4]}·xH2O (x = 13 for (1), 7 for (2); HPTTP = 4,4',4″,4‴-(1H-pyrrole-2,3,4,5-tetrayl)tetrapyridine), exhibiting similar coordination but distinct stacking modes. Both compounds were synthesized and used for the electrochemical detection of nitrofuran antibiotics. The tetrapyridine-based ligand was generated in situ during assembly, and its potential mechanism was discussed. Composite electrode materials, formed by mixing graphite powder with compounds 1-2 and physically grinding them, proved to be highly effective in the electrochemical trace detection of furazolidone (FZD) and furaltadone hydrochloride (FTD·HCl) under optimal conditions. Besides, the possible electrochemical detection mechanisms of two nitro-antibiotics were studied.


Subject(s)
Anti-Bacterial Agents , Coordination Complexes , Copper , Nitrofurans , Polymers , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/analysis , Ligands , Nitrofurans/analysis , Nitrofurans/chemistry , Copper/chemistry , Copper/analysis , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Polymers/chemistry , Molybdenum/chemistry , Pyridines/chemistry , Molecular Structure , Electrochemical Techniques , Models, Molecular
4.
Sci Rep ; 14(1): 11206, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755178

ABSTRACT

Contamination of soils by Molybdenum (Mo) has raised increasing concern worldwide. Both fulvic acid (FA) and humic acid (HA) possess numerous positive properties, such as large specific surface areas and microporous structure that facilitates the immobilization of the heavy metal in soils. Despite these characteristics, there have been few studies on the microbiology effects of FA and HA. Therefore, this study aimed to assess the Mo immobilization effects of FA and HA, as well as the associated changes in microbial community in Mo-contaminated soils (with application rates of 0%, 0.5% and 1.0%). The result of the incubation demonstrated a decrease in soil pH (from 8.23 ~ 8.94 to 8.05 ~ 8.77). Importantly, both FA and HA reduced the exchangeable fraction and reducible fraction of Mo in the soil, thereby transforming Mo into a more stable form. Furthermore, the application of FA and HA led to an increase in the relative abundance of Actinobacteriota and Firmicutes, resulting in alterations to the microbial community structure. However, it is worth noting that due to the differing structures and properties of FA and HA, these outcomes were not entirely consistent. In summary, the aging of FA and HA in soil enhanced their capacity to immobilization Mo as a soil amendment. This suggests that they have the potential to serve as effective amendments for the remediation of Mo-contaminated soils.


Subject(s)
Humic Substances , Metals, Heavy , Soil Microbiology , Soil Pollutants , Humic Substances/analysis , Soil Pollutants/chemistry , Benzopyrans/chemistry , Benzopyrans/pharmacology , Molybdenum/chemistry , Soil/chemistry , Hydrogen-Ion Concentration , Bacteria/drug effects , Microbiota/drug effects
5.
Ecotoxicol Environ Saf ; 278: 116400, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38718725

ABSTRACT

Evidence increasingly suggests molybdenum exposure at environmental levels is still associated with adverse human health, emphasizing the necessity to establish a more protective reference dose (RfD). Herein, we conducted a study measuring 15 urinary metals and 30 clinical health indicators in 2267 participants residing near chemical enterprises across 11 Chinese provinces to investigate their relationships. The kidney and cystatin-C emerged as the most sensitive organ and critical effect indicator of molybdenum exposure, respectively. Odds of cystatin-C-defined chronic kidney disease (CKD) in the highest quantile of molybdenum exposure significantly increased by 133.5% (odds ratio [OR]: 2.34, 95% CI: 1.78, 3.11) and 75.8% (OR: 1.76, 95% CI: 1.24, 2.49) before and after adjusting for urinary 14 metals, respectively. Intriguingly, cystatin-C significantly mediated 15.9-89.5% of molybdenum's impacts on liver and lung function, suggesting nephrotoxicity from molybdenum exposure may trigger hepatotoxicity and pulmonary toxicity. We derived a new RfD for molybdenum exposure (0.87 µg/kg-day) based on cystatin-C-defined estimated glomerular filtration rate by employing Bayesian Benchmark Dose modeling analysis. This RfD is significantly lower than current exposure guidance values (5-30 µg/kg-day). Remarkably, >90% of participants exceeded the new RfD, underscoring the significant health impacts of environmental molybdenum exposure on populations in industrial regions of China.


Subject(s)
Molybdenum , Molybdenum/urine , Molybdenum/toxicity , Molybdenum/analysis , Humans , China/epidemiology , Female , Male , Adult , Middle Aged , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Cystatin C , Risk Assessment , Environmental Pollutants/urine , Environmental Pollutants/analysis , Young Adult , Bayes Theorem , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/chemically induced , Aged , Chemical Industry , Kidney/drug effects , Glomerular Filtration Rate/drug effects
6.
J Mater Chem B ; 12(21): 5024-5038, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38712810

ABSTRACT

Composite materials can take advantages of the functional benefits of multiple pure nanomaterials to a greater degree than single nanomaterials alone. The UCNPs-MoS2 composite is a nano-application platform that combines upconversion luminescence and photothermal properties. Upconversion nanoparticles (UCNPs) are inorganic nanomaterials with long-wavelength excitation and short-wavelength tunable emission capabilities, and are able to effectively convert near-infrared (NIR) light into visible light for increased photostability. However, UCNPs have a low capacity for absorbing visible light, whereas MoS2 shows better absorption in the ultraviolet and visible regions. By integrating the benefits of UCNPs and MoS2, UCNPs-MoS2 nanocomposites can convert NIR light with a higher depth of detection into visible light for application with MoS2 through fluorescence resonance energy transfer (FRET), which compensates for the issues of MoS2's low tissue penetration light-absorbing wavelengths and expands its potential biological applications. Therefore, starting from the construction of UCNPs-MoS2 nanoplatforms, herein, we review the research progress in biological applications, including biosensing, phototherapy, bioimaging, and targeted drug delivery. Additionally, the current challenges and future development trends of UCNPs-MoS2 nanocomposites for biological applications are also discussed.


Subject(s)
Disulfides , Molybdenum , Nanocomposites , Molybdenum/chemistry , Disulfides/chemistry , Nanocomposites/chemistry , Humans , Biosensing Techniques , Animals , Phototherapy/methods , Drug Delivery Systems
7.
Bioresour Technol ; 401: 130761, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692370

ABSTRACT

Cr (VI) is a common heavy metal pollutant in electroplating wastewater. This study introduces the liquid-phase product from the hydrothermal reaction of coffee grounds (CGHCL) into the synthesis process of molybdenum disulfide, assisting in the fabrication of an intercalated, expanded core-shell structured molybdenum disulfide adsorbent (C-MoS2), designed for the adsorption and reduction of Cr (VI) from electroplating wastewater. The addition of CGHCL significantly enhances the adsorption performance of MoS2. Furthermore, C-MoS2 exhibits exceedingly high removal efficiency and excellent regenerative capability for Cr (VI)-containing electroplating wastewater. The core-shell structure effectively minimizes molybdenum leaching to the greatest extent, while the oleophobic interface is unaffected by oily substances in water, and the expanded interlayer structure ensures the long-term stability of C-MoS2 in air (90 days). This study provides a viable pathway for the resource utilization of biomass and the application of molybdenum disulfide-based materials in wastewater treatment.


Subject(s)
Biomass , Chromium , Disulfides , Molybdenum , Wastewater , Water Purification , Molybdenum/chemistry , Disulfides/chemistry , Adsorption , Wastewater/chemistry , Water Purification/methods , Chromium/chemistry , Electroplating , Water Pollutants, Chemical , Solutions
8.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732078

ABSTRACT

This study aimed to synthesize molybdenum complexes coordinated with an aroyl hydrazone-type ligand (H2L), which was generated through the condensation of 2-hydroxy-5-nitrobenzaldehyde with benzhydrazide. The synthesis yielded two types of mononuclear complexes, specifically [MoO2(L)(MeOH)] and [MoO2(L)(H2O)], as well as a bipyridine-bridged dinuclear complex, [(MoO2(L))2(4,4'-bpy)]. Those entities were thoroughly characterized using a suite of analytical techniques, including attenuated total reflectance infrared spectroscopy (IR-ATR), elemental analysis (EA), thermogravimetric analysis (TGA), and single-crystal X-ray diffraction (SCXRD). Additionally, solid-state impedance spectroscopy (SS-IS) was employed to investigate the electrical properties of these complexes. The mononuclear complexes were tested as catalysts in the epoxidation of cyclooctene and the oxidation of linalool. Among these, the water-coordinated mononuclear complex, [MoO2(L)(H2O)], demonstrated superior electrical and catalytic properties. A novel contribution of this research lies in establishing a correlation between the electrical properties, structural features, and the catalytic efficiency of the complexes, marking this work as one of the pioneering studies in this area for molybdenum coordination complexes, to the best of our knowledge.


Subject(s)
Benzaldehydes , Coordination Complexes , Molybdenum , Oxidation-Reduction , Molybdenum/chemistry , Catalysis , Coordination Complexes/chemistry , Benzaldehydes/chemistry , Semiconductors
9.
Anal Methods ; 16(20): 3278-3286, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38738557

ABSTRACT

Dextromethorphan (DXM) is a widely utilized central antitussive agent, which is frequently abused by individuals seeking its recreational effect. But DXM overdose can cause some adverse effects, including brain damage, loss of consciousness, and cardiac arrhythmias, and hence its detection is significant. Herein, an electrochemical sensor based on a Cu-coordinated molecularly imprinted polymer (Cu-MIP) was fabricated for its detection. For constructing the sensor, nitrogen-doped carbon nanosheets (CCNs) were prepared through calcining chitin under an argon atmosphere, and molybdenum disulfide (MoS2) was allowed to grow on their surface. Subsequently, the obtained MoS2/CCNs composite was employed to modify a glassy carbon electrode (GCE), and the Cu-MIP was electrodeposited on the electrode in a Cu-1,10-phenanthroline (Cu-Phen) solution containing DXM, where Cu2+ played a role in facilitating electron transfer and binding DXM. Due to the large specific surface area, good electrocatalytic properties and recognition of the resulting composite, the resulting Cu-MIP/MoS2/CCNs/GCE showed high selectivity and sensitivity. Under optimized experimental conditions, the peak current of DXM and its concentration exhibited a good linear relationship over the concentration range of 0.1-100 µM, and the limit of detection (S/N = 3) was 0.02 µM. Furthermore, the electrochemical sensor presented good stability, and it was successfully used for the determination of DXM in pharmaceutical, human serum and urine samples.


Subject(s)
Carbon , Copper , Dextromethorphan , Disulfides , Electrochemical Techniques , Molecularly Imprinted Polymers , Molybdenum , Molybdenum/chemistry , Disulfides/chemistry , Dextromethorphan/analysis , Dextromethorphan/chemistry , Dextromethorphan/urine , Copper/chemistry , Electrochemical Techniques/methods , Carbon/chemistry , Molecularly Imprinted Polymers/chemistry , Chitin/chemistry , Humans , Limit of Detection , Electrodes , Antitussive Agents/chemistry , Antitussive Agents/analysis , Antitussive Agents/urine
10.
Chemosphere ; 358: 142237, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705406

ABSTRACT

In this study, a novel Ce2MgMoO6/CNFs (cerium magnesium molybdite double perovskite decorated on carbon nanofibers) nanocomposite was developed for selective and ultra-sensitive detection of ciprofloxacin (CFX). Physical characterization and analytical techniques were used to explore the morphology, structure, and electrocatalytic characteristics of the Ce2MgMoO6/CNFs nanocomposite. The sensor has a wide linear range (0.005-7.71 µM and 9.75-77.71 µM), a low limit of detection (0.012 µM), high sensitivity (0.807 µA µM-1 cm-2 nM), remarkable repeatability, and an appreciable storage stability. Here, we used density functional theory to investigate CFX and oxidized CFX as well as the locations of the energy levels and electron transfer sites. Furthermore, the Ce2MgMoO6/CNFs-modified electrode was successfully tested in food samples (milk and honey), indicating an acceptable response with a recovery percentage and relative standard deviation of less than 4%, which is comparable to that of GC-MS. Finally, the developed sensor exhibited high selectivity and stability for CFX detection.


Subject(s)
Carbon , Ciprofloxacin , Honey , Milk , Nanocomposites , Nanofibers , Oxides , Nanocomposites/chemistry , Ciprofloxacin/analysis , Ciprofloxacin/chemistry , Oxides/chemistry , Milk/chemistry , Nanofibers/chemistry , Animals , Honey/analysis , Carbon/chemistry , Molybdenum/chemistry , Limit of Detection , Calcium Compounds/chemistry , Titanium/chemistry , Density Functional Theory , Electrochemical Techniques/methods , Cerium/chemistry , Food Contamination/analysis , Electrodes , Magnesium/chemistry , Magnesium/analysis
11.
Bioresour Technol ; 402: 130780, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703963

ABSTRACT

Denitrification is fragile to toxic substances, while currently there are few regulation strategies for toxic substance-stressed denitrification. This study proposed a combined bio-promoter composed of basic bio-promoter (cytokinin, biotin, L-cysteine, and flavin adenine dinucleotide) and phosphomolybdic acid (PMo12) to recover cadmium(II) (Cd(II)) stressed denitrification. By inhibiting 58.02% and 48.84% of nitrate reductase and nitrite reductase activities, Cd(II) caused all the influent nitrogen to accumulate as NO3--N and NO2--N. Combined bio-promoter shortened the recovery time by 21 cycles and improved nitrogen removal efficiency by 10% as the synergistic effect of basic bio-promoter and PMo12. Basic bio-promoter enhanced antioxidant enzyme activities for reactive oxygen species clearance and recovered 23.30% of nicotinamide adenine dinucleotide for sufficient electron donors. Meanwhile, PMo12 recovered electron carriers contents, increasing the electron transfer activity by 60.81% compared with self-recovery. Bio-promoters enhanced the abundance of denitrifiers Seminibacterium and Dechloromonas, which was positively correlated with rapid recovery of denitrification performance.


Subject(s)
Cadmium , Denitrification , Electrons , Nitrogen/metabolism , Bacteria/metabolism , Stress, Physiological , Microbiota/physiology , Reactive Oxygen Species/metabolism , Nitrate Reductase/metabolism , Molybdenum/metabolism
12.
Talanta ; 275: 126156, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38692048

ABSTRACT

The development of simple methods for the isolation and quantification of exosomes in biological samples is important. By using the typical two-dimensional (2D) nanomaterials, graphene oxide (GO), the present work first studied the interaction of liposomes with the nanocomposites formed by adsorbing HRP on the GO surface and found the presence of liposomes led to the release of HRP from the GO surface to the solution phase triggering the luminol-H2O2 chemiluminescence (CL) reaction to emit light. Benefiting from the similarity of exosomes to liposomes in both composition and morphology aspects, the GO-HRP nanocomposites with a mass ratio of 120:1 and 160:1 were employed for the quantitative detection of exosomes in 100-fold diluted serum samples. The whole detection process took about 15 min and as low as 3.2 × 102 particles µL-1 of exosomes could be sensitively detected. In addition to GO-HRP nanocomposites, the CL responses of other nanocomposites obtained from adsorbing HRP on other 2D nanomaterials such as layered MoS2 for exosomes were also tested. MoS2-HRP exhibited similar behavior and the LODs for the detection of exosomes were 5.8 × 102 particles µL-1. The proposed assays were a biomarker-independent quantitative method that achieved the quantification of exosomes in serum samples directly without an isolation process.


Subject(s)
Exosomes , Graphite , Horseradish Peroxidase , Luminescent Measurements , Nanostructures , Exosomes/chemistry , Graphite/chemistry , Horseradish Peroxidase/chemistry , Luminescent Measurements/methods , Adsorption , Humans , Nanostructures/chemistry , Luminol/chemistry , Molybdenum/chemistry , Disulfides/chemistry , Hydrogen Peroxide/chemistry , Limit of Detection , Liposomes/chemistry , Nanocomposites/chemistry
13.
J Hazard Mater ; 472: 134483, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38703684

ABSTRACT

Soil molybdenum (Mo) levels can reach ecologically hazardous levels. China has not yet established the relevant thresholds, posing challenges for environmental management. Therefore, we present our data relevant to Mo toxicity for several important species. By normalizing soil properties, we obtained a correlation model of Mo toxicity to Hordeum vulgare, as well as 31 models for the toxicity of other elements including Cu and Ni to invertebrates and microbial processes. Using interspecies correlation estimation (ICE) extrapolation, the sensitivity coefficient (0.12-0.71) for five plants were found. For invertebrates and microbial processes lacking Mo data, we used regression analysis to establish Mo toxicity models based on the soil quantitative ion character-activity relationships (s-QICAR; R2 =0.70-0.95) and known toxicities of other metal elements to invertebrate and microbial processes. Furthermore, combining species sensitivity distribution calculations, the HC5 values for protecting 95% of soil species from Mo in three typical soil scenarios in China were calculated. After correction, the predicted no-effect concentrations were 6.8, 4.8, and 3.4 mg/kg, respectively. This study innovatively combined ICE and s - QICAR to derive soil Mo thresholds. Our results can provide a basis for decision-making in the assessment and management of soil Mo pollution.


Subject(s)
Molybdenum , Soil Pollutants , Molybdenum/toxicity , China , Soil Pollutants/toxicity , Soil Pollutants/analysis , Risk Assessment , Animals , Soil Microbiology , Soil/chemistry , Invertebrates/drug effects , Environmental Monitoring/methods , Models, Theoretical
14.
J Hazard Mater ; 472: 134516, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38714056

ABSTRACT

There are many heavy metal stresses in agricultural biological systems, especially cadmium (Cd) stress, which prevent the full growth of plants, lead to a serious decline in crop yield, and endanger human health. Molybdenum (Mo), an essential nutrient element for plants, regulates plant growth mainly by reducing the absorption of heavy metals and protecting plants from oxidative damage. The aim of this study was to determine the protective effect of Mo (1 µM) application on wheat plants under conditions of Cd (10 µM) toxicity. The biomass, Cd and Mo contents, photosynthesis, leaf and root ultrastructure, antioxidant system, and active oxygen content of the wheat plants were determined. Mo increased the total chlorophyll content of wheat leaves by 43.02% and the net photosynthetic rate by 38.67%, and ameliorated the inhibitory effect of cadmium on photosynthesis by up-regulating photosynthesis-related genes and light-trapping genes. In addition, Mo reduced the content of superoxide anion (O2•-) by 16.55% and 31.12%, malondialdehyde (MDA) by 20.75% and 7.17%, hydrogen peroxide (H2O2) by 24.69% and 8.17%, and electrolyte leakage (EL) by 27.59% and 16.82% in wheat leaves and roots, respectively, and enhanced the antioxidant system to reduce the burst of reactive oxygen species and alleviate the damage of Cd stress on wheat. According to the above results, Mo is considered a plant essential nutrient that enhances Cd tolerance in wheat by limiting the absorption, accumulation and transport of Cd and by regulating antioxidant defence mechanisms. ENVIRONMENTAL IMPLICATION: Cadmium (Cd),is one of the most toxic heavy metals in the environment, and Cd pollution is a global environmental problem that threatens food security and human health. Molybdenum (Mo), as an essential plant nutrient, is often used to resist environmental stress. However, the mechanism of Mo treatment on wheat subjected to Cd stress has not been reported. In this study, we systematically analysed the effects of Mo on the phenotype, physiology, biochemistry, ultrastructure and Cd content of wheat subjected to Cd stress, and comprehensively analysed the transcriptomics. It not only reveals the mechanism of Mo tolerance to Cd stress in wheat, but also provides new insights into phytoremediation and plant growth in Cd-contaminated soil.


Subject(s)
Cadmium , Molybdenum , Photosynthesis , Plant Leaves , Triticum , Triticum/drug effects , Triticum/metabolism , Triticum/genetics , Cadmium/toxicity , Molybdenum/toxicity , Plant Leaves/drug effects , Plant Leaves/metabolism , Photosynthesis/drug effects , Plant Roots/drug effects , Plant Roots/metabolism , Soil Pollutants/toxicity , Antioxidants/metabolism , Transcriptome/drug effects , Chlorophyll/metabolism , Hydrogen Peroxide , Oxidative Stress/drug effects , Malondialdehyde/metabolism , Gene Expression Regulation, Plant/drug effects
15.
Environ Pollut ; 351: 124077, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38705447

ABSTRACT

In this paper, the S-scheme/Schottky heterojunction photocatalyst (CuInS2/Bi/Bi2MoO6, CIS/Bi/BMO) was successfully constructed via a facile in-situ solvothermal method, aimed at enhancing its photocatalytic performance. The results of the study on the photocatalytic degradation of diclofenac sodium (DCF) under simulated solar light irradiation revealed that the as-prepared composite exhibited remarkable catalytic efficiency in comparison to the pristine Bi2MoO6 and CuInS2. The plasmonic bismuth (Bi) was formed during the solvothermal process. Subsequently, CuInS2 and Bi were grown on the surface of Bi2MoO6 leading to forming CIS/BMO S-scheme heterojunction, along with a Schottky junction between Bi and Bi2MoO6. The use of ethylene glycol as a support was the main reason for the significant improvement in photocatalytic efficiency in the degradation of DCF. Moreover, the probable photocatalytic mechanisms for the degradation of DCF had been proposed based on the active species quenching experiments. The eleven degradation products were detected by HPLC-MS, and the degradation reaction pathway of DCF was deduced. Additionally, the CIS/Bi/BMO photocatalyst exhibited a consistently high removal rate after four cycles. This study proposes a new strategy for designing efficient S-scheme/Schottky heterojunction photocatalysts for solar energy conversion.


Subject(s)
Bismuth , Copper , Diclofenac , Photolysis , Bismuth/chemistry , Diclofenac/chemistry , Catalysis , Copper/chemistry , Water Pollutants, Chemical/chemistry , Molybdenum/chemistry , Indium/chemistry , Photochemical Processes
16.
Sci Total Environ ; 937: 173304, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38777061

ABSTRACT

Molybdenum (Mo) plays a pivotal role in the growth and nitrogen-fixing process of plants mediated by rhizobia. However, the influence of nano­molybdenum trioxide (MoO3NPs) on soybean growth, rhizosphere bioavailable Mo, and nitrogen-fixing microorganisms remains underexplored. Here, we report that compared with that of ionic Mo and bulk MoO3, the utilization of MoO3NPs (specifically NPs0.05 and NPs0.15) significantly boosted the available Mo content in the rhizosphere soil throughout the seedling (by 21.64 %-101.38 %), podding (by 54.44 %-68.89 %), and mature stage (by 34.41 %-to 45.71 %) of soybean growth. Furthermore, both NPs0.05 and NPs0.15 treatments maintained consistently higher levels of acid-extractable Mo, reducible Mo, and oxidizable Mo across these stages, which facilitated stable conversion and supply of bioavailable Mo. Within the rhizosphere soil, NPs0.05 and NPs0.15 treatments resulted in the highest relative abundance of Rhizobiales and Bradyrhizobium genera, and significantly promoted the colonization of nitrogen-fixing microorganisms, thereby increasing the content of nitrate nitrogen (NO3--N) by 8.69 % and 7.72 % and ammonium nitrogen (NH4+-N) by 44.75 % and 17.55 %, respectively. Ultimately, these effects together contributed to 107.17 % and 84.00 % increment in soybean yield by NPs0.05 and NPs0.15 treatments, respectively. In summary, our findings underscore the potential of employing MoO3NPs to promote plant growth and maintain soil nitrogen cycling, indicating distinct advantages of MoO3NPs over ionic Mo and bulk MoO3.


Subject(s)
Glycine max , Molybdenum , Nitrogen Fixation , Oxides , Rhizosphere , Soil Microbiology , Molybdenum/metabolism , Soil/chemistry
17.
Colloids Surf B Biointerfaces ; 239: 113941, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744079

ABSTRACT

The whey protein ß-lactoglobulin (ßLG) forms fibrils similar to the amyloid fibrils in the neurodegenerative diseases due to its higher predisposition of ß-sheets. This study shed light on the understanding different inorganic Keggin polyoxometalates (POMs) interaction with the protein ßLG fibrils. POMs such as Phosphomolybdic acid (PMA), silicomolybdic acid (SMA), tungstosilicic acid (TSA), and phosphotungstic acid (PTA) were used due to their inherent higher anionic charges. The interaction studies were monitored with fluorescence spectra and Thioflavin T assay for both the ßLG monomers and the fibrils initially to elucidate the binding ability of the POMs. The binding of POMs and ßLG is also demonstrated by molecular docking studies. Zeta potential studies showed the electrostatic mediated higher interactions of the POMs with the protein fibrils. Isothermal titration calorimetry (ITC) studies showed that the molybdenum containing POMs have higher affinity to the protein fibrils than the tungsten. This study could help understanding formation of food grade protein fibrils which have profound importance in food industries.


Subject(s)
Lactoglobulins , Molecular Docking Simulation , Molybdenum , Static Electricity , Lactoglobulins/chemistry , Molybdenum/chemistry , Tungsten Compounds/chemistry , Amyloid/chemistry , Spectrometry, Fluorescence , Polyelectrolytes , Anions
18.
Clin Nutr ESPEN ; 61: 369-376, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777456

ABSTRACT

BACKGROUND: Trace elements are an essential component of metabolism and medical nutrition therapy, with key roles in metabolic pathways, antioxidation, and immunity, which the present course aims at summarizing. RESULTS: Medical nutrition therapy includes the provision of all essential trace elements. The clinical essential issues are summarized for Copper, Iron, Selenium, Zinc, Iodine, Chromium, Molybdenum, and Manganese: the optimal analytical techniques are presented. The delivery of all these elements occurs nearly automatically when the patient is fed with enteral nutrition, but always requires separate prescription in case of parenteral nutrition. Isolated deficiencies may occur, and some patients have increased requirements, therefore a regular monitoring is required. The clinicians should always consider the impact of inflammation on blood levels, mostly lowering them even in absence of deficiency. CONCLUSION: This text summarises the most relevant clinical manifestations of trace element depletion and deficiency, the difficulties in assessing status, and makes practical recommendations for provision for enteral and parenteral nutrition.


Subject(s)
Enteral Nutrition , Micronutrients , Parenteral Nutrition , Trace Elements , Humans , Trace Elements/deficiency , Trace Elements/administration & dosage , Trace Elements/blood , Micronutrients/deficiency , Selenium/deficiency , Selenium/blood , Nutritional Status , Zinc/deficiency , Zinc/blood , Nutritional Requirements , Copper/deficiency , Copper/blood , Molybdenum , Iron/blood
19.
Biosens Bioelectron ; 257: 116345, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38692247

ABSTRACT

Nitrite (NO2-) is present in a variety of foods, but the excessive intake of NO2- can indirectly lead to carcinogenic, teratogenic, mutagenicity and other risks to the human body. Therefore, the detection of NO2- is crucial for maintaining human health. In this study, an integrated array sensor for NO2- detection is developed based on molybdenum single atom material (IMSMo-SAC) using high-resolution electrohydrodynamic (EHD) printing technology. The sensor comprises three components: a printed electrode array, multichannels designed on polydimethylsiloxane (PDMS) and an electronic signal process device with bluetooth. By utilizing Mo-SAC to facilitate electron transfer during the redox reaction, rapid and efficient detection of NO2- can be achieved. The sensor has a wide linear range of 0.1 µM-107.8 mM, a low detection limit of 33 nM and a high sensitivity of 0.637 mA-1mM-1 cm-2. Furthermore, employing this portable array sensor allows simultaneously measurements of NO2- concentrations in six different foods samples with acceptable recovery rates. This array sensor holds great potential for detecting of small molecules in various fields.


Subject(s)
Biosensing Techniques , Equipment Design , Food Analysis , Limit of Detection , Molybdenum , Nitrites , Molybdenum/chemistry , Biosensing Techniques/instrumentation , Nitrites/analysis , Food Analysis/instrumentation , Humans , Dimethylpolysiloxanes/chemistry , Electrodes , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Food Contamination/analysis
20.
Lett Appl Microbiol ; 77(4)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38573838

ABSTRACT

Seleniivibrio woodruffii strain S4T is an obligate anaerobe belonging to the phylum Deferribacterota. It was isolated for its ability to respire selenate and was also found to respire arsenate. The high-quality draft genome of this bacterium is 2.9 Mbp, has a G+C content of 48%, 2762 predicted genes of which 2709 are protein-coding, and 53 RNA genes. An analysis of the genome focusing on the genes encoding for molybdenum-containing enzymes (molybdoenzymes) uncovered a remarkable number of genes encoding for members of the dimethylsulfoxide reductase family of proteins (DMSOR), including putative reductases for selenate and arsenate respiration, as well as genes for nitrogen fixation. Respiratory molybdoenzymes catalyze redox reactions that transfer electrons to a variety of substrates that can act as terminal electron acceptors for energy generation. Seleniivibrio woodruffii strain S4T also has essential genes for molybdate transporters and the biosynthesis of the molybdopterin guanine dinucleotide cofactors characteristic of the active centers of DMSORs. Phylogenetic analysis revealed candidate respiratory DMSORs spanning nine subfamilies encoded within the genome. Our analysis revealed the untapped potential of this interesting microorganism and expanded our knowledge of molybdoenzyme co-occurrence.


Subject(s)
Arsenates , Bacteria , Genomics , Arsenates/metabolism , Phylogeny , Selenic Acid , Oxidation-Reduction , Molybdenum
SELECTION OF CITATIONS
SEARCH DETAIL
...