Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.693
Filter
1.
Gait Posture ; 111: 182-184, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705036

ABSTRACT

BACKGROUND: To complement traditional clinical fall risk assessments, research is oriented towards adding real-life gait-related fall risk parameters (FRP) using inertial sensors fixed to a specific body position. While fixing the sensor position can facilitate data processing, it can reduce user compliance. A newly proposed step detection method, Smartstep, has been proven to be robust against sensor position and real-life challenges. Moreover, FRP based on step variability calculated from stride times (Standard deviation (SD), Coefficient of Variance (Cov), fractal exponent, and sample entropy of stride duration) proved to be useful to prospectively predict the fall risk. RESEARCH QUESTIONS: To evaluate whether Smartstep is convenient for calculating FRP from different sensor placements. METHODS: 29 elderly performed a 6-minute walking test with IMU placed on the waist and the wrist. FRP were computed from step-time estimated from Smartstep and compared to those obtained from foot-mounted inertial sensors: precision and recall of the step detection, Root mean square error (RMSE) and Intraclass Correlation Coefficient (ICC) of stride durations, and limits of agreement of FRP. RESULTS: The step detection precision and recall were respectively 99.5% and 95.9% for the waist position, and 99.4% and 95.7% for the wrist position. The ICC and RMSE of stride duration were 0.91 and 54 ms respectively for both the waist and the hand position. The limits of agreement of Cov, SD, fractal exponent, and sample entropy of stride duration are respectively 2.15%, 25 ms, 0.3, 0.5 for the waist and 1.6%, 16 ms, 0.23, 0.4 for the hand. SIGNIFICANCE: Robust against the elderly's gait and different body locations, especially the wrist, this method can open doors toward ambulatory measurements of steps, and calculation of different discrete stride-related falling risk indicators.


Subject(s)
Accidental Falls , Gait , Humans , Accidental Falls/prevention & control , Aged , Male , Female , Risk Assessment , Gait/physiology , Accelerometry/instrumentation , Monitoring, Ambulatory/instrumentation , Monitoring, Ambulatory/methods , Aged, 80 and over
2.
Physiol Meas ; 45(5)2024 May 24.
Article in English | MEDLINE | ID: mdl-38684167

ABSTRACT

Objective.This study aimed to examine differences in heart rate variability (HRV) across accelerometer-derived position, self-reported sleep, and different summary measures (sleep, 24 h HRV) in free-living settings using open-source methodology.Approach.HRV is a biomarker of autonomic activity. As it is strongly affected by factors such as physical behaviour, stress, and sleep, ambulatory HRV analysis is challenging. Beat-to-beat heart rate (HR) and accelerometry data were collected using single-lead electrocardiography and trunk- and thigh-worn accelerometers among 160 adults participating in the SCREENS trial. HR files were processed and analysed in the RHRV R package. Start time and duration spent in physical behaviours were extracted, and time and frequency analysis for each episode was performed. Differences in HRV estimates across activities were compared using linear mixed models adjusted for age and sex with subject ID as random effect. Next, repeated-measures Bland-Altman analysis was used to compare 24 h RMSSD estimates to HRV during self-reported sleep. Sensitivity analyses evaluated the accuracy of the methodology, and the approach of employing accelerometer-determined episodes to examine activity-independent HRV was described.Main results.HRV was estimated for 31 289 episodes in 160 individuals (53.1% female) at a mean age of 41.4 years. Significant differences in HR and most markers of HRV were found across positions [Mean differences RMSSD: Sitting (Reference) - Standing (-2.63 ms) or Lying (4.53 ms)]. Moreover, ambulatory HRV differed significantly across sleep status, and poor agreement between 24 h estimates compared to sleep HRV was detected. Sensitivity analyses confirmed that removing the first and last 30 s of accelerometry-determined HR episodes was an accurate strategy to account for orthostatic effects.Significance.Ambulatory HRV differed significantly across accelerometry-assigned positions and sleep. The proposed approach for free-living HRV analysis may be an effective strategy to remove confounding by physical activity when the aim is to monitor general autonomic stress.


Subject(s)
Accelerometry , Heart Rate , Self Report , Sleep , Humans , Heart Rate/physiology , Sleep/physiology , Male , Female , Adult , Posture/physiology , Middle Aged , Monitoring, Ambulatory/methods
4.
IEEE J Biomed Health Inform ; 28(5): 2733-2744, 2024 May.
Article in English | MEDLINE | ID: mdl-38483804

ABSTRACT

Human Activity Recognition (HAR) has recently attracted widespread attention, with the effective application of this technology helping people in areas such as healthcare, smart homes, and gait analysis. Deep learning methods have shown remarkable performance in HAR. A pivotal challenge is the trade-off between recognition accuracy and computational efficiency, especially in resource-constrained mobile devices. This challenge necessitates the development of models that enhance feature representation capabilities without imposing additional computational burdens. Addressing this, we introduce a novel HAR model leveraging deep learning, ingeniously designed to navigate the accuracy-efficiency trade-off. The model comprises two innovative modules: 1) Pyramid Multi-scale Convolutional Network (PMCN), which is designed with a symmetric structure and is capable of obtaining a rich receptive field at a finer level through its multiscale representation capability; 2) Cross-Attention Mechanism, which establishes interrelationships among sensor dimensions, temporal dimensions, and channel dimensions, and effectively enhances useful information while suppressing irrelevant data. The proposed model is rigorously evaluated across four diverse datasets: UCI, WISDM, PAMAP2, and OPPORTUNITY. Additional ablation and comparative studies are conducted to comprehensively assess the performance of the model. Experimental results demonstrate that the proposed model achieves superior activity recognition accuracy while maintaining low computational overhead.


Subject(s)
Deep Learning , Human Activities , Humans , Human Activities/classification , Signal Processing, Computer-Assisted , Neural Networks, Computer , Algorithms , Databases, Factual , Monitoring, Ambulatory/methods , Monitoring, Ambulatory/instrumentation
5.
IEEE J Biomed Health Inform ; 28(6): 3411-3421, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38381640

ABSTRACT

OBJECTIVE: Exercise monitoring with low-cost wearables could improve the efficacy of remote physical-therapy prescriptions by tracking compliance and informing the delivery of tailored feedback. While a multitude of commercial wearables can detect activities of daily life, such as walking and running, they cannot accurately detect physical-therapy exercises. The goal of this study was to build open-source classifiers for remote physical-therapy monitoring and provide insight on how data collection choices may impact classifier performance. METHODS: We trained and evaluated multi-class classifiers using data from 19 healthy adults who performed 37 exercises while wearing 10 inertial measurement units (IMUs) on the chest, pelvis, wrists, thighs, shanks, and feet. We investigated the effect of sensor density, location, type, sampling frequency, output granularity, feature engineering, and training-data size on exercise-classification performance. RESULTS: Exercise groups (n = 10) could be classified with 96% accuracy using a set of 10 IMUs and with 89% accuracy using a single pelvis-worn IMU. Multiple sensor modalities (i.e., accelerometers and gyroscopes), high sampling frequencies, and more data from the same population did not improve model performance, but in the future data from diverse populations and better feature engineering could. CONCLUSIONS: Given the growing demand for exercise monitoring systems, our sensitivity analyses, along with open-source tools and data, should reduce barriers for product developers, who are balancing accuracy with product formfactor, and increase transparency and trust in clinicians and patients.


Subject(s)
Accelerometry , Exercise , Wearable Electronic Devices , Humans , Adult , Male , Female , Exercise/physiology , Accelerometry/methods , Young Adult , Monitoring, Ambulatory/methods , Monitoring, Ambulatory/instrumentation , Signal Processing, Computer-Assisted
7.
Article in English | MEDLINE | ID: mdl-38083043

ABSTRACT

In the recent years, Active Assisted Living (AAL) technologies used for autonomous tracking and activity recognition have started to play major roles in geriatric care. From fall detection to remotely monitoring behavioral patterns, vital functions and collection of air quality data, AAL has become pervasive in the modern era of independent living for the elderly section of the population. However, even with the current rate of progress, data access and data reliability has become a major hurdle especially when such data is intended to be used in new age modelling approaches such as those using machine learning. This paper presents a comprehensive data ecosystem comprising remote monitoring AAL sensors along with extensive focus on cloud native system architecture, secured and confidential access to data with easy data sharing. Results from a validation study illustrate the feasibility of using this system for remote healthcare surveillance. The proposed system shows great promise in multiple fields from various AAL studies to development of data driven policies by local governments in promoting healthy lifestyles for the elderly alongside a common data repository that can be beneficial to other research communities worldwide.Clinical Relevance- This study creates a cloud-based smart home data ecosystem, which can achieve the remote healthcare monitoring for aging population, enabling them to live more independently and decreasing hospital admission rates.


Subject(s)
Aging , Delivery of Health Care , Monitoring, Ambulatory , Remote Sensing Technology , Aged , Humans , Cloud Computing , Independent Living , Monitoring, Ambulatory/instrumentation , Monitoring, Ambulatory/methods , Remote Sensing Technology/instrumentation , Remote Sensing Technology/methods , Reproducibility of Results
8.
Sensors (Basel) ; 23(18)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37766008

ABSTRACT

After traffic-related incidents, falls are the second cause of human death, presenting the highest percentage among the elderly. Aiming to address this problem, the research community has developed methods built upon different sensors, such as wearable, ambiance, or hybrid, and various techniques, such as those that are machine learning- and heuristic based. Concerning the models used in the former case, they classify the input data between fall and no fall, and specific data dimensions are required. Yet, when algorithms that adopt heuristic techniques, mainly using thresholds, are combined with the previous models, they reduce the computational cost. To this end, this article presents a pipeline for detecting falls through a threshold-based technique over the data provided by a three-axis accelerometer. This way, we propose a low-complexity system that can be adopted from any acceleration sensor that receives information at different frequencies. Moreover, the input lengths can differ, while we achieve to detect multiple falls in a time series of sum vector magnitudes, providing the specific time range of the fall. As evaluated on several datasets, our pipeline reaches high performance results at 90.40% and 91.56% sensitivity on MMsys and KFall, respectively, while the generated specificity is 93.96% and 85.90%. Lastly, aiming to facilitate the research community, our framework, entitled PIPTO (drawing inspiration from the Greek verb "πι´πτω", signifying "to fall"), is open sourced in Python and C.


Subject(s)
Accelerometry , Algorithms , Humans , Aged , Accelerometry/methods , Machine Learning , Time Factors , Monitoring, Ambulatory/methods , Activities of Daily Living
9.
Front Public Health ; 11: 1211237, 2023.
Article in English | MEDLINE | ID: mdl-37554735

ABSTRACT

Introduction: The use of activity wristbands to monitor and promote schoolchildren's physical activity (PA) is increasingly widespread. However, their validity has not been sufficiently studied, especially among primary schoolchildren. Consequently, the main purpose was to examine the validity of the daily steps and moderate-to-vigorous PA (MVPA) scores estimated by the activity wristbands Fitbit Ace 2, Garmin Vivofit Jr 2, and the Xiaomi Mi Band 5 in primary schoolchildren under free-living conditions. Materials and methods: An initial sample of 67 schoolchildren (final sample = 62; 50% females), aged 9-12 years old (mean = 10.4 ± 1.0 years), participated in the present study. Each participant wore three activity wristbands (Fitbit Ace 2, Garmin Vivofit Jr 2, and Xiaomi Mi Band 5) on his/her non-dominant wrist and a research-grade accelerometer (ActiGraph wGT3X-BT) on his/her hip as the reference standard (number of steps and time in MVPA) during the waking time of one day. Results: Results showed that the validity of the daily step scores estimated by the Garmin Vivofit Jr 2 and Xiaomi Mi Band 5 were good and acceptable (e.g., MAPE = 9.6/11.3%, and lower 95% IC of ICC = 0.87/0.73), respectively, as well as correctly classified schoolchildren as meeting or not meeting the daily 10,000/12,000-step-based recommendations, obtaining excellent/good and good/acceptable results (e.g., Garmin Vivofit Jr 2, k = 0.75/0.62; Xiaomi Mi Band 5, k = 0.73/0.53), respectively. However, the Fitbit Ace 2 did not show an acceptable validity (e.g., daily steps: MAPE = 21.1%, and lower 95% IC of ICC = 0.00; step-based recommendations: k = 0.48/0.36). None of the three activity wristbands showed an adequate validity for estimating daily MVPA (e.g., MAPE = 36.6-90.3%, and lower 95% IC of ICC = 0.00-0.41) and the validity for the MVPA-based recommendation tended to be considerably lower (e.g., k = -0.03-0.54). Conclusions: The activity wristband Garmin Vivofit Jr 2 obtained the best validity for monitoring primary schoolchildren's daily steps, offering a feasible alternative to the research-grade accelerometers. Furthermore, this activity wristband could be used during PA promotion programs to provide accurate feedback to primary schoolchildren to ensure their accomplishment with the PA recommendations.


Subject(s)
Exercise , Monitoring, Ambulatory , Humans , Male , Female , Child , Monitoring, Ambulatory/methods , Fitness Trackers , Schools
10.
BMC Health Serv Res ; 23(1): 698, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37370059

ABSTRACT

COVID Watch is a remote patient monitoring program implemented during the pandemic to support home dwelling patients with COVID-19. The program conferred a large survival advantage. We conducted semi-structured interviews of 85 patients and clinicians using COVID Watch to understand how to design such programs even better. Patients and clinicians found COVID Watch to be comforting and beneficial, but both groups desired more clarity about the purpose and timing of enrollment and alternatives to text-messages to adapt to patients' preferences as these may have limited engagement and enrollment among marginalized patient populations. Because inclusiveness and equity are important elements of programmatic success, future programs will need flexible and multi-channel human-to-human communication pathways for complex clinical interactions or for patients who do not desire tech-first approaches.


Subject(s)
Attitude of Health Personnel , Attitude to Health , COVID-19 , Monitoring, Ambulatory , Patients , Telemedicine , Humans , COVID-19/epidemiology , COVID-19/therapy , Pandemics , Patient Preference , Patients/psychology , Patients/statistics & numerical data , Monitoring, Ambulatory/methods , Program Evaluation , Qualitative Research , Program Development , Male , Female , Middle Aged , Adult , Aged
11.
IEEE J Biomed Health Inform ; 27(5): 2155-2165, 2023 05.
Article in English | MEDLINE | ID: mdl-37022004

ABSTRACT

Stress is an inevitable part of modern life. While stress can negatively impact a person's life and health, positive and under-controlled stress can also enable people to generate creative solutions to problems encountered in their daily lives. Although it is hard to eliminate stress, we can learn to monitor and control its physical and psychological effects. It is essential to provide feasible and immediate solutions for more mental health counselling and support programs to help people relieve stress and improve their mental health. Popular wearable devices, such as smartwatches with several sensing capabilities, including physiological signal monitoring, can alleviate the problem. This work investigates the feasibility of using wrist-based electrodermal activity (EDA) signals collected from wearable devices to predict people's stress status and identify possible factors impacting stress classification accuracy. We use data collected from wrist-worn devices to examine the binary classification discriminating stress from non-stress. For efficient classification, five machine learning-based classifiers were examined. We explore the classification performance on four available EDA databases under different feature selections. According to the results, Support Vector Machine (SVM) outperforms the other machine learning approaches with an accuracy of 92.9 for stress prediction. Additionally, when the subject classification included gender information, the performance analysis showed significant differences between males and females. We further examine a multimodal approach for stress classifications. The results indicate that wearable devices with EDA sensors have a great potential to provide helpful insight for improved mental health monitoring.


Subject(s)
Wearable Electronic Devices , Wrist , Male , Female , Humans , Wrist/physiology , Galvanic Skin Response , Monitoring, Ambulatory/methods , Machine Learning
12.
J Sleep Res ; 32(2): e13732, 2023 04.
Article in English | MEDLINE | ID: mdl-36122661

ABSTRACT

To assess the feasibility, the acceptability and the usefulness of home nocturnal infrared video in recording the frequency and the complexity of non-rapid eye movement sleep parasomnias in adults, and in monitoring the treatment response. Twenty adult patients (10 males, median age 27.5 years) with a diagnosis of non-rapid eye movement parasomnia were consecutively enrolled. They had a face-to-face interview, completed self-reported questionnaires to assess clinical characteristics and performed a video-polysomnography in the Sleep Unit. Patients were then monitored at home during at least five consecutive nights using infrared-triggered cameras. They completed a sleep diary and questionnaires to evaluate the number of parasomniac episodes at home and the acceptability of the home nocturnal infrared video recording. Behavioural analyses were performed on home nocturnal infrared video and video-polysomnography recordings. Eight patients treated by clonazepam underwent a second home nocturnal infrared video recording during five consecutive days. All patients had at least one parasomniac episode during the home nocturnal infrared video monitoring, compared with 75% during the video-polysomnography. A minimum of three consecutive nights with home nocturnal infrared video was required to record at least one parasomniac episode. Most patients underestimated the frequency of episodes on the sleep diary compared with home nocturnal infrared video. Episodes recorded at home were often more complex than those recorded during the video-polysomnography. The user-perceived acceptability of the home nocturnal infrared video assessment was excellent. The frequency and the complexity of the parasomniac episodes decreased with clonazepam. Home nocturnal infrared video has good feasibility and acceptability, and may improve the evaluation of the phenotype and severity of the non-rapid eye movement parasomnias and of the treatment response in an ecological setting.


Subject(s)
Eye Movements , Monitoring, Ambulatory , Parasomnias , Humans , Male , Clonazepam/therapeutic use , Parasomnias/diagnosis , Parasomnias/drug therapy , Polysomnography , Sleep , Video Recording , Female , Adult , Feasibility Studies , Surveys and Questionnaires , Monitoring, Ambulatory/methods
13.
Sensors (Basel) ; 22(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36501823

ABSTRACT

Parkinson's disease is a neurodegenerative disorder impacting patients' movement, causing a variety of movement abnormalities. It has been the focus of research studies for early detection based on wearable technologies. The benefit of wearable technologies in the domain rises by continuous monitoring of this population's movement patterns over time. The ubiquity of wrist-worn accelerometry and the fact that the wrist is the most common and acceptable body location to wear the accelerometer for continuous monitoring suggests that wrist-worn accelerometers are the best choice for early detection of the disease and also tracking the severity of it over time. In this study, we use a dataset consisting of one-week wrist-worn accelerometry data collected from individuals with Parkinson's disease and healthy elderlies for early detection of the disease. Two feature engineering methods, including epoch-based statistical feature engineering and the document-of-words method, were used. Using various machine learning classifiers, the impact of different windowing strategies, using the document-of-words method versus the statistical method, and the amount of data in terms of number of days were investigated. Based on our results, PD was detected with the highest average accuracy value (85% ± 15%) across 100 runs of SVM classifier using a set of features containing features from every and all windowing strategies. We also found that the document-of-words method significantly improves the classification performance compared to the statistical feature engineering model. Although the best performance of the classification task between PD and healthy elderlies was obtained using seven days of data collection, the results indicated that with three days of data collection, we can reach a classification performance that is not significantly different from a model built using seven days of data collection.


Subject(s)
Parkinson Disease , Wearable Electronic Devices , Humans , Monitoring, Ambulatory/methods , Parkinson Disease/diagnosis , Accelerometry/methods , Wrist
14.
Kidney360 ; 3(9): 1545-1555, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36245649

ABSTRACT

Background: Physical inactivity is common in patients receiving hemodialysis, but activity patterns throughout the day and in relation to dialysis are largely unknown. This knowledge gap can be addressed by long-term continuous activity monitoring, but this has not been attempted and may not be acceptable to patients receiving dialysis. Methods: Ambulatory patients with end-stage kidney disease receiving thrice-weekly hemodialysis wore commercially available wrist-worn activity monitors for 6 months. Step counts were collected every 15 minutes and were linked to dialysis treatments. Physical function was assessed using the Short Physical Performance Battery (SPPB). Fast time to recovery from dialysis was defined as ≤2 hours. Mixed effects models were created to estimate step counts over time. Results: Of 52 patients enrolled, 48 were included in the final cohort. The mean age was 60 years, and 75% were Black or Hispanic. Comorbidity burden was high, 38% were transported to and from dialysis by paratransit, and 79% had SPPB <10. Median accelerometer use (199 days) and adherence (95%) were high. Forty-two patients (of 43 responders) reported wearing the accelerometer every day, and few barriers to adherence were noted. Step counts were lower on dialysis days (3991 [95% CI, 3187 to 4796] versus 4561 [95% CI, 3757 to 5365]), but step-count intensity was significantly higher during the hour immediately after dialysis than during the corresponding time on nondialysis days (188 steps per hour increase [95% CI, 171 to 205]); these levels were the highest noted at any time. Postdialysis increases were more pronounced among patients with fast recovery time (225 [95% CI, 203 to 248] versus 134 [95% CI, 107 to 161] steps per hour) or those with SPPB ≥7. Estimates were unchanged after adjustment for demographics, diabetes status, and ultrafiltration rate. Conclusions: Long-term continuous monitoring of physical activity is feasible in patients receiving hemodialysis. Highly granular data collection and analysis yielded new insights into patterns of activity after dialysis treatments.


Subject(s)
Fitness Trackers , Kidney Failure, Chronic , Monitoring, Ambulatory , Renal Dialysis , Cohort Studies , Feasibility Studies , Humans , Kidney Failure, Chronic/therapy , Middle Aged , Monitoring, Ambulatory/instrumentation , Monitoring, Ambulatory/methods , Wearable Electronic Devices
15.
Sensors (Basel) ; 22(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36080829

ABSTRACT

This paper proposes a human gait tracking system using a dual foot-mounted IMU and multiple 2D LiDARs. The combining system aims to overcome the disadvantages of each single sensor system (the short tracking range of the single 2D LiDAR and the drift errors of the IMU system). The LiDARs act as anchors to mitigate the errors of an inertial navigation algorithm. In our system, two 2D LiDARs are used. LiDAR 1 is placed around the starting point, and LiDAR 2 is placed at the ending point (in straight walking) or at the turning point (in rectangular path walking). Using the LiDAR 1, we can estimate the initial headings and positions of each IMU without any calibration process. We also propose a method to calibrate two LiDARs that are placed far apart. Then, the measurement from two LiDARs can be combined in a Kalman filter and the smoother algorithm to correct the two estimated feet trajectories. If straight walking is detected, we update the current stride heading and the foot position using the previous stride headings. Then, it is used as a measurement update in the Kalman filter. In the smoother algorithm, a step width constraint is used as a measurement update. We evaluate the stride length estimation through a straight walking experiment along a corridor. The root mean square errors compared with an optical tracking system are less than 3 cm. The performance of proposed method is also verified with a rectangular path walking experiment.


Subject(s)
Gait , Monitoring, Ambulatory , Algorithms , Foot , Humans , Monitoring, Ambulatory/methods , Walking
16.
Zhongguo Yi Liao Qi Xie Za Zhi ; 46(4): 422-427, 2022 Jul 30.
Article in Chinese | MEDLINE | ID: mdl-35929159

ABSTRACT

The continuous glucose monitoring system (CGMS) has been clinically applied to monitor the dynamic change of the subcutaneous interstitial glucose concentration which is a function of the blood glucose level by glucose sensors. It can track blood glucose levels all day along, and thus provide comprehensive and reliable information about blood glucose dynamics. The clinical application of CGMS enables monitoring of blood glucose fluctuations and the discovery of hidden hyperglycemia and hypoglycemia that are difficult to be detected by traditional methods. As a CGMS needs to work subcutaneously for a long time, a series of factors such as biocompatibility, enzyme inactivation, oxygen deficiency, foreign body reaction, implant size, electrode flexibility, error correction, comfort, device toxicity, electrical safety, et al. should be considered beforehand. The study focused on the difficulties in the technology, and compared the products of Abbott, Medtronic and DexCom, then summarized their cutting-edge. Finally, this study expounded some key technologies in dynamic blood glucose monitoring and therefore can be utilized as a reference for the development of CGMS.


Subject(s)
Hyperglycemia , Hypoglycemia , Blood Glucose , Blood Glucose Self-Monitoring/methods , Humans , Monitoring, Ambulatory/methods , Monitoring, Physiologic
17.
Comput Intell Neurosci ; 2022: 3142677, 2022.
Article in English | MEDLINE | ID: mdl-35814553

ABSTRACT

With the further advancement of microelectronics innovation and sensors, sensors can be broadly implanted in cell phone gadgets, compact gadgets, and so forth. The utilization of speed increase sensors for human running checking has expansive application possibilities. From one perspective, the everyday development of the human body is firmly connected with the physical and emotional wellness of the person. Observing the day-to-day developments of the human body is of incredible importance in planning a logical running activity plan and working on actual wellbeing. On the other hand, it is also of practical value to monitor human abnormal movements. This kind of abnormal movement caused by accidental falls can bring certain harm to the human body. Real-time monitoring of the fall can provide timely assistance to the person and reduce the risk brought by the fall. This article analyzes and summarizes the research theories and common research methods in the field of 50 m round-trip movement monitoring based on the acceleration sensor. According to the process of 50 m round-trip movement pattern recognition, the data collection, preprocessing, feature extraction, and selection of 50 m round-trip movement are evaluated. The classification and recognition of each module were analyzed. This article proposes a human body motion recognition mechanism based on acceleration sensors by looking at the three trademark upsides, the wavefront edge, wavefront limit, and time stretch between the pinnacle and valley of the speed increase sensor vertical information waveform, and joining the rule of choice tree order to accomplish the activities of hunching down, taking off, and running. To get an accurate recognizable proof and recognize ways of behaving, a human fall identification calculation is proposed. This calculation removes human movement attributes throughout the fall and focuses on four sorts of falls: forward fall, reverse fall, left fall, and right fall by utilizing the connection of the three tomahawks of the speed increase sensor. The trial results show that the normal right acknowledgment pace of the human body's 50 m full-circle running way of behaviour is more than 90%, which has specific useful application esteem.


Subject(s)
Accidental Falls , Monitoring, Ambulatory , Acceleration , Accelerometry , Accidental Falls/prevention & control , Algorithms , Humans , Monitoring, Ambulatory/methods , Movement , Students
18.
JAMA ; 327(24): 2413-2422, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35661856

ABSTRACT

Importance: Electronic systems that facilitate patient-reported outcome (PRO) surveys for patients with cancer may detect symptoms early and prompt clinicians to intervene. Objective: To evaluate whether electronic symptom monitoring during cancer treatment confers benefits on quality-of-life outcomes. Design, Setting, and Participants: Report of secondary outcomes from the PRO-TECT (Alliance AFT-39) cluster randomized trial in 52 US community oncology practices randomized to electronic symptom monitoring with PRO surveys or usual care. Between October 2017 and March 2020, 1191 adults being treated for metastatic cancer were enrolled, with last follow-up on May 17, 2021. Interventions: In the PRO group, participants (n = 593) were asked to complete weekly surveys via an internet-based or automated telephone system for up to 1 year. Severe or worsening symptoms triggered care team alerts. The control group (n = 598) received usual care. Main Outcomes and Measures: The 3 prespecified secondary outcomes were physical function, symptom control, and health-related quality of life (HRQOL) at 3 months, measured by the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire (QLQ-C30; range, 0-100 points; minimum clinically important difference [MCID], 2-7 for physical function; no MCID defined for symptom control or HRQOL). Results on the primary outcome, overall survival, are not yet available. Results: Among 52 practices, 1191 patients were included (mean age, 62.2 years; 694 [58.3%] women); 1066 (89.5%) completed 3-month follow-up. Compared with usual care, mean changes on the QLQ-C30 from baseline to 3 months were significantly improved in the PRO group for physical function (PRO, from 74.27 to 75.81 points; control, from 73.54 to 72.61 points; mean difference, 2.47 [95% CI, 0.41-4.53]; P = .02), symptom control (PRO, from 77.67 to 80.03 points; control, from 76.75 to 76.55 points; mean difference, 2.56 [95% CI, 0.95-4.17]; P = .002), and HRQOL (PRO, from 78.11 to 80.03 points; control, from 77.00 to 76.50 points; mean difference, 2.43 [95% CI, 0.90-3.96]; P = .002). Patients in the PRO group had significantly greater odds of experiencing clinically meaningful benefits vs usual care for physical function (7.7% more with improvements of ≥5 points and 6.1% fewer with worsening of ≥5 points; odds ratio [OR], 1.35 [95% CI, 1.08-1.70]; P = .009), symptom control (8.6% and 7.5%, respectively; OR, 1.50 [95% CI, 1.15-1.95]; P = .003), and HRQOL (8.5% and 4.9%, respectively; OR, 1.41 [95% CI, 1.10-1.81]; P = .006). Conclusions and Relevance: In this report of secondary outcomes from a randomized clinical trial of adults receiving cancer treatment, use of weekly electronic PRO surveys to monitor symptoms, compared with usual care, resulted in statistically significant improvements in physical function, symptom control, and HRQOL at 3 months, with mean improvements of approximately 2.5 points on a 0- to 100-point scale. These findings should be interpreted provisionally pending results of the primary outcome of overall survival. Trial Registration: ClinicalTrials.gov Identifier: NCT03249090.


Subject(s)
Monitoring, Ambulatory , Neoplasm Metastasis , Patient Reported Outcome Measures , Adult , Electronics , Female , Health Status Indicators , Humans , Internet , Male , Middle Aged , Monitoring, Ambulatory/instrumentation , Monitoring, Ambulatory/methods , Neoplasm Metastasis/diagnosis , Neoplasm Metastasis/therapy , Neoplasms/diagnosis , Neoplasms/therapy , Neoplasms, Second Primary/diagnosis , Neoplasms, Second Primary/therapy , Quality of Life , Surveys and Questionnaires , Telemedicine
19.
Gait Posture ; 94: 107-113, 2022 05.
Article in English | MEDLINE | ID: mdl-35276456

ABSTRACT

BACKGROUND: Posture has been recently integrated into activity guidelines, advising people to limit their sedentary time and break up sedentary postures with standing/stepping as much as possible. The thigh-worn activPAL is a frequently used objective measure of posture, but its validity has only been investigated by individual studies and has not been systematically reviewed. RESEARCH QUESTION: Can the activPAL accurately characterize different postures? METHODS: A rigorous systematic review protocol was conducted, including multiple study screeners and determiners of study quality. To be included, validation studies had to examine the accuracy of an activPAL posture outcome relative to a criterion measure (e.g., direct observation) in adults (>18 years). Citations were not restricted to language or date of publication. Sources were searched on May 16, 2021 and included Scopus, EMBASE, MEDLINE, CINAHL, and Academic Search Premier. The study was pre-registered in Prospero (ID# CRD42021248240). Study quality was determined using a modified Hagströmer Bowles checklist. The results are presented narratively. RESULTS: Twenty-four studies (18 semi-structured laboratory arms, 8 uncontrolled protocol arms; 476 participants) met the inclusion criteria. Some studies (5/24) incorporated dual-monitor (trunk: 4/5; shin: 1/5) configurations. While heterogenous statistical procedures were implemented, most studies (n = 22/24) demonstrated a high validity (e.g., percent agreement >90%, no fixed bias, etc.) of the activPAL to measure sedentary and/or upright postures across semi-structured (17/18 arms) and uncontrolled study designs (7/8 arms). Specific experimental protocol factors (i.e., seat height, fidgeting, non-direct observation criterion comparator) likely explain the divergent reports that observed valid versus invalid findings. The study quality was 11.3 (standard deviation: 2.3) out of 19. CONCLUSION: Despite heterogeneous methodological and statistical approaches, the included studies generally provide supporting evidence that the activPAL can accurately distinguish between sedentary and standing postures. Multiple activPAL monitor configurations (e.g., thigh and torso) are needed to better characterize sitting versus lying postures.


Subject(s)
Accelerometry , Posture , Accelerometry/methods , Adult , Humans , Monitoring, Ambulatory/methods , Reproducibility of Results , Sedentary Behavior , Torso
20.
Alcohol Clin Exp Res ; 46(1): 100-113, 2022 01.
Article in English | MEDLINE | ID: mdl-35066894

ABSTRACT

BACKGROUND: Wearable transdermal alcohol concentration (TAC) sensors allow passive monitoring of alcohol concentration in natural settings and measurement of multiple features from drinking episodes, including peak intoxication level, speed of intoxication (absorption rate) and elimination, and duration. These passively collected features extend commonly used self-reported drink counts and may facilitate the prediction of alcohol-related consequences in natural settings, aiding risk stratification and prevention efforts. METHOD: A total of 222 young adults aged 21-29 (M age = 22.3, 64% female, 79% non-Hispanic white, 84% undergraduates) who regularly drink heavily participated in a 5-day study that included the ecological momentary assessment (EMA) of alcohol consumption (daily morning reports and participant-initiated episodic EMA sequences) and the wearing of TAC sensors (SCRAM-CAM anklets). The analytic sample contained 218 participants and 1274 days (including 554 self-reported drinking days). Five features-area under the curve (AUC), peak TAC, rise rate (rate of absorption), fall rate (rate of elimination), and duration-were extracted from TAC-positive trajectories for each drinking day. Day- and person-level associations of TAC features with drink counts (morning and episodic EMA) and alcohol-related consequences were tested using multilevel modeling. RESULTS: TAC features were strongly associated with morning drink reports (r = 0.6-0.7) but only moderately associated with episodic EMA drink counts (r = 0.3-0.5) at both day and person levels. Higher peaks, larger AUCs, faster rise rates, and faster fall rates were significantly predictive of day-level alcohol-related consequences after adjusting for both morning and episodic EMA drink counts in separate models. Person means of TAC features added little above daily scores to the prediction of alcohol-related consequences. CONCLUSIONS: These results support the utility of TAC sensors in studies of alcohol misuse among young adults in natural settings and outline the specific TAC features that contribute to the day-level prediction of alcohol-related consequences. TAC sensors provide a passive option for obtaining valid and unique information predictive of drinking risk in natural settings.


Subject(s)
Alcoholism/blood , Alcoholism/psychology , Blood Alcohol Content , Ecological Momentary Assessment , Monitoring, Ambulatory/instrumentation , Adult , Alcohol Drinking/blood , Alcohol Drinking/psychology , Area Under Curve , Female , Humans , Male , Monitoring, Ambulatory/methods , Self Report , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...