Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119704, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462075

ABSTRACT

Pulmonary arterial hypertension (PAH) is characterized by increased pulmonary vascular resistance (PVR), right ventricular (RV) failure and premature death. Compounds with vasodilatory characteristics, such as ß-caryophyllene, could be promising therapeutics for PAH. This study aimed to determine the effects of free and nanoemulsified ß-caryophyllene in lung oxidative stress and heart function in PAH rats. Male Wistar rats (170 g, n = 6/group) were divided into four groups: control (CO), monocrotaline (MCT), monocrotaline + ß-caryophyllene (MCT-Bcar) and monocrotaline + nanoemulsion with ß-caryophyllene (MCT-Nano). PAH was induced by MCT (60 mg/kg i.p.), and 7 days later, treatment with ß-caryophyllene, either free or in a nanoemulsion (by gavage, 176 mg/kg/day) or vehicle was given for 14 days. Echocardiographic and hemodynamic measurements were performed, and after, the RV was collected for morphometry and the lungs for evaluation of oxidative stress, antioxidant enzymes, total sulfhydryl compounds, nitric oxide synthase (NOS) activity and endothelin-1 receptor expression. RV hypertrophy, increased PVR and RV systolic and diastolic pressures (RVSP and RVEDP, respectively) and increased mean pulmonary arterial pressure (mPAP) were observed in the MCT group. Treatment with both free and nanoemulsified ß-caryophyllene reduced RV hypertrophy, mPAP, RVSP and lipid peroxidation. The reduction in RVSP was more pronounced in the MCT-Nano group. Moreover, RVEDP decreased only in the MCT-Nano group. These treatments also increased superoxide dismutase, catalase and NOS activities and decreased endothelin-1 receptors expression. Both ß-caryophyllene formulations improved mPAP, PVR and oxidative stress parameters. However, ß-caryophyllene in a nanoemulsion was more effective in attenuating the effects of PAH.


Subject(s)
Hypertension, Pulmonary , Polycyclic Sesquiterpenes , Pulmonary Arterial Hypertension , Rats , Male , Animals , Pulmonary Arterial Hypertension/metabolism , Monocrotaline/toxicity , Monocrotaline/metabolism , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/metabolism , Rats, Wistar , Pulmonary Artery/metabolism , Hypertrophy, Right Ventricular/chemically induced , Hypertrophy, Right Ventricular/metabolism
2.
Biochem Pharmacol ; 222: 116093, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38408681

ABSTRACT

BACKGROUND: Hyperproliferation, inflammation, and mitochondrial abnormalities in pulmonary artery smooth muscle cells (PASMCs) underlie the pathological mechanisms of vascular remodeling in pulmonary arterial hypertension (PAH). Cytoplasmic mtDNA activates the cGAS-STING-NFκB pathway and secretes pro-inflammatory cytokines that may be involved in the pathogenesis of PAH. Calcitonin gene-related peptide (CGRP) acts as a vasodilator to regulate patterns of cellular energy metabolism and has vasodilatory and anti-inflammatory effects. METHODS: The role of the cGAS-STING-NFκB signaling pathway in PAH vascular remodeling and the regulation of CGRP in the cGAS-STING-NFκB signaling pathway were investigated by echocardiography, morphology, histology, enzyme immunoassay, and fluorometry. RESULTS: Monocrotaline (MCT) could promote right heart hypertrophy, pulmonary artery intima thickening, and inflammatory cell infiltration in rats. Cinnamaldehyde (CA)-induced CGRP release alleviates MCT-induced vascular remodeling in PAH. CGRP reduces PDGF-BB-induced proliferation, and migration, and downregulates smooth muscle cell phenotypic proteins. In vivo and in vitro experiments confirm that the mitochondria of PASMCs were damaged during PAH, and the superoxide and mtDNA produced by injured mitochondria activate the cGAS-STING-NFκB pathway to promote PAH process, while CGRP could play an anti-PAH role by protecting the mitochondria and inhibiting the cGAS-STING-NFκB pathway through PKA. CONCLUSION: This study identifies that CGRP attenuates cGAS-STING-NFκB axis-mediated vascular remodeling in PAH through PKA.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Animals , Rats , Calcitonin Gene-Related Peptide/metabolism , Cell Proliferation , Disease Models, Animal , DNA, Mitochondrial/metabolism , Hypertension, Pulmonary/metabolism , Monocrotaline/toxicity , Monocrotaline/metabolism , Myocytes, Smooth Muscle , Nucleotidyltransferases/metabolism , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Pulmonary Artery/pathology , Rats, Sprague-Dawley , Vascular Remodeling
3.
Cardiovasc Res ; 120(2): 203-214, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38252891

ABSTRACT

AIMS: Pulmonary arterial hypertension (PAH) is characterized by extensive pulmonary arterial remodelling. Although mesenchymal stem cell (MSC)-derived exosomes provide protective effects in PAH, MSCs exhibit limited senescence during in vitro expansion compared with the induced pluripotent stem cells (iPSCs). Moreover, the exact mechanism is not known. METHODS AND RESULTS: In this study, we used murine iPSCs generated from mouse embryonic fibroblasts with triple factor (Oct4, Klf4, and Sox2) transduction to determine the efficacy and action mechanism of iPSC-derived exosomes (iPSC-Exo) in attenuating PAH in rats with monocrotaline (MCT)-induced pulmonary hypertension. Both early and late iPSC-Exo treatment effectively prevented the wall thickening and muscularization of pulmonary arterioles, improved the right ventricular systolic pressure, and alleviated the right ventricular hypertrophy in MCT-induced PAH rats. Pulmonary artery smooth muscle cells (PASMC) derived from MCT-treated rats (MCT-PASMC) developed more proliferative and pro-migratory phenotypes, which were attenuated by the iPSC-Exo treatment. Moreover, the proliferation and migration of MCT-PASMC were reduced by iPSC-Exo with suppression of PCNA, cyclin D1, MMP-1, and MMP-10, which are mediated via the HIF-1α and P21-activated kinase 1/AKT/Runx2 pathways. CONCLUSION: IPSC-Exo are effective at reversing pulmonary hypertension by reducing pulmonary vascular remodelling and may provide an iPSC-free therapy for the treatment of PAH.


Subject(s)
Exosomes , Hypertension, Pulmonary , Induced Pluripotent Stem Cells , Pulmonary Arterial Hypertension , Rats , Animals , Mice , Pulmonary Arterial Hypertension/metabolism , Induced Pluripotent Stem Cells/metabolism , Vascular Remodeling , Exosomes/metabolism , Fibroblasts/metabolism , Familial Primary Pulmonary Hypertension/metabolism , Pulmonary Artery , Monocrotaline/adverse effects , Monocrotaline/metabolism , Cell Proliferation , Disease Models, Animal , Core Binding Factor Alpha 1 Subunit/metabolism
4.
J Appl Toxicol ; 44(3): 470-483, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37876240

ABSTRACT

Extensive, long-term exposure to cigarette smoke (CS) was recently suggested to be a risk factor for pulmonary hypertension, although further validation is required. The vascular effects of CS share similarities with the etiology of pulmonary hypertension, including vascular inflammation and remodeling. Thus, we examined the influence of CS exposure on the pathogenesis of monocrotaline (MCT)-induced pulmonary hypertension, hypothesizing that smoking might accelerate the development of primed pulmonary hypertension. CS was generated from 3R4F reference cigarettes, and rats were exposed to CS by inhalation at total particulate matter concentrations of 100-300 µg/L for 4 h/day, 7 days/week for 4 weeks. Following 1 week of initial exposure, rats received 60 mg/kg MCT and were sacrificed and analyzed after an additional 3 weeks of exposure. MCT induced hypertrophy in pulmonary arterioles and increased the Fulton index, a measure of right ventricular hypertrophy. Additional CS exposure exacerbated arteriolar hypertrophy but did not further elevate the Fulton index. No significant alterations were observed in levels of endothelin-1 and vascular endothelial growth factor, or in hematological and serum biochemical parameters. Short-term inhalation exposure to CS exacerbated arteriolar hypertrophy in the lung, although this effect did not directly aggravate the overworked heart under the current experimental conditions.


Subject(s)
Cigarette Smoking , Hypertension, Pulmonary , Rats , Animals , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/pathology , Monocrotaline/toxicity , Monocrotaline/metabolism , Vascular Endothelial Growth Factor A/metabolism , Inhalation Exposure/adverse effects , Rats, Sprague-Dawley , Hypertrophy , Pulmonary Artery/pathology
5.
J Pharm Pharmacol ; 75(8): 1100-1110, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37158759

ABSTRACT

OBJECTIVES: Nobiletin is a flavonoid found in the peel of Citrus sinensis (oranges). The purpose of this study is to investigate whether Nobiletin can alleviate the monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) and explore the underlying mechanisms. METHODS: The PAH rat model was replicated by subcutaneous injection of MCT. Nobiletin (1, 5 and 10 mg/kg) was administered by gavage from day 1 to day 21. After 21 days of MCT injection, the mean pulmonary artery pressure, pulmonary vascular resistance, Fulton Index, pulmonary artery remodelling, blood routine parameters, liver and kidney functions was measured. The level of inflammatory cytokines and PI3K/Akt/STAT3 were detected by qPCR, ELISA and western blot, the proliferation of pulmonary artery smooth muscle cells (PASMCs) was evaluated by CCK-8. KEY FINDINGS: Nobiletin (10 mg/kg) inhibited the MCT-induced increase in mean pulmonary artery pressure and pulmonary vascular resistance, right ventricular hypertrophy and pulmonary artery remodelling in rats. Nobiletin decreased the levels of inflammatory cytokines and phosphorylation level of PI3K/Akt/STAT3 in lungs of MCT-treated rats. Nobiletin inhibited the proliferation and lowered the inflammatory cytokines level induced by PDGF-BB in PASMCs. CONCLUSION: Nobiletin attenuates MCT-induced PAH, and the potential mechanism is to inhibit inflammation through PI3K/Akt/STAT3 pathway.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Rats , Animals , Pulmonary Arterial Hypertension/chemically induced , Pulmonary Arterial Hypertension/drug therapy , Pulmonary Arterial Hypertension/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Monocrotaline/adverse effects , Monocrotaline/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Pulmonary Artery , Cytokines/metabolism , Disease Models, Animal
6.
J Ethnopharmacol ; 314: 116544, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37088239

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Pulmonary artery hypertension (PAH) is a progressive and fatal lung disease of multifactorial etiology, which arouses an enhanced interest in PAH disease therapy. Modified Fangji Huangqi decoction (MFJHQ), a traditional Chinese medicine (TCM) formula, has a crucial role in the treatment of PAH. However, the pharmacological roles and mechanisms of MFJHQ on PAH remain unknown. AIM OF THE STUDY: To investigate the effects and potential mechanism of MFJHQ on pulmonary vascular remodeling in PAH. MATERIAL AND METHODS: Ultra-performance liquid chromatography (UPLC) was employed to quantitate the principal components in MFJHQ. Rats were treated with MFJHQ by gavage for final 2 weeks in monocrotaline (MCT)-induced PAH rats. RNA-sequencing and network pharmacology analysis were performed to explore the potential mechanism. The primary rat pulmonary artery smooth muscle cells (PASMCs) were utilized to evaluate the regulatory effect of MFJHQ in vitro. RESULTS: Seven active components from MFJHQ were quantitated by UPLC. In rats with MCT-induced PAH, MFJHQ treatment significantly improved hemodynamic parameters, right ventricular hypertrophy index, lung function, and attenuated pulmonary vascular remodeling. Mechanistically, we further confirmed that MFJHQ inhibits MCT-induced phosphatidylinositide 3-kinases/protein kinase B (PI3K/Akt) pathway predicated by network pharmacology and RNA-sequencing analysis to reduce the proliferation of pulmonary arteries and promote pulmonary artery apoptosis in lung tissues. Additionally, MFJHQ hindered the proliferation and migration, and accelerated apoptosis in PDGF-BB-induced PASMCs in vitro, which can be enhanced by the presence of the PI3K inhibitor LY294002. CONCLUSIONS: Our results indicated that MFJHQ inhibited MCT-induced pulmonary vascular remodeling by decreasing proliferation and migration of PASMCs and promoting PASMC apoptosis through PI3K/Akt pathway, which provides a novel treatment option for PAH with multi-targeting mechanisms inspired by TCM theory.


Subject(s)
Hypertension, Pulmonary , Proto-Oncogene Proteins c-akt , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Artery , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Rats, Sprague-Dawley , Phosphatidylinositol 3-Kinases/metabolism , Vascular Remodeling , Cell Proliferation , Myocytes, Smooth Muscle/metabolism , Monocrotaline/toxicity , Monocrotaline/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Apoptosis , RNA/adverse effects , RNA/metabolism
7.
J Pharmacol Exp Ther ; 385(2): 88-94, 2023 05.
Article in English | MEDLINE | ID: mdl-36849413

ABSTRACT

A pathogenic aspect of pulmonary arterial hypertension (PAH) is the aberrant pulmonary arterial smooth muscle cell (PASMC) proliferation. PASMC proliferation is significantly affected by inflammation. A selective α-2 adrenergic receptor agonist called dexmedetomidine (DEX) modulates specific inflammatory reactions. We investigated the hypothesis that anti-inflammatory characteristics of DEX could lessen PAH that monocrotaline (MCT) causes in rats. In vivo, male Sprague-Dawley rats aged 6 weeks were subcutaneously injected with MCT at a dose of 60 mg/kg. Continuous infusions of DEX (2 µg/kg per hour) were started via osmotic pumps in one group (MCT plus DEX group) at day 14 following MCT injection but not in another group (MCT group). Right ventricular systolic pressure (RVSP), right ventricular end-diastolic pressure (RVEDP), and survival rate significantly improved in the MCT plus DEX group compared with the MCT group [RVSP, 34 mmHg ± 4 mmHg versus 70 mmHg ± 10 mmHg; RVEDP, 2.6 mmHg ± 0.1 mmHg versus 4.3 mmHg ± 0.6 mmHg; survival rate, 42% versus 0% at day 29 (P < 0.01)]. In the histologic study, the MCT plus DEX group showed fewer phosphorylated p65-positive PASMCs and less medial hypertrophy of the pulmonary arterioles. In vitro, DEX dose-dependently inhibited human PASMC proliferation. Furthermore, DEX decreased the expression of interleukin-6 mRNA in human PASMCs treated with fibroblast growth factor 2 (FGF2). These consequences suggest that DEX improves PAH by inhibiting PASMC proliferation through its anti-inflammatory properties. Additionally, DEX may exert anti-inflammatory effects via blocking FGF2-induced nuclear factor κ B activation. SIGNIFICANCE STATEMENT: Dexmedetomidine, a selective α-2 adrenergic receptor agonist utilized as a sedative in the clinical setting, improves pulmonary arterial hypertension (PAH) by inhibiting pulmonary arterial smooth muscle cell proliferation through its anti-inflammatory effect. Dexmedetomidine may be a new PAH therapeutic agent with vascular reverse remodeling effect.


Subject(s)
Dexmedetomidine , Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Humans , Rats , Male , Animals , Pulmonary Arterial Hypertension/drug therapy , Rats, Sprague-Dawley , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/pathology , Dexmedetomidine/pharmacology , Dexmedetomidine/therapeutic use , Fibroblast Growth Factor 2/metabolism , Pulmonary Artery , Inflammation/metabolism , Monocrotaline/adverse effects , Monocrotaline/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Adrenergic Agonists/adverse effects , Myocytes, Smooth Muscle/metabolism , Disease Models, Animal
8.
Circulation ; 147(8): 650-666, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36515093

ABSTRACT

BACKGROUND: Senescent cells (SCs) are involved in proliferative disorders, but their role in pulmonary hypertension remains undefined. We investigated SCs in patients with pulmonary arterial hypertension and the role of SCs in animal pulmonary hypertension models. METHODS: We investigated senescence (p16, p21) and DNA damage (γ-H2AX, 53BP1) markers in patients with pulmonary arterial hypertension and murine models. We monitored p16 activation by luminescence imaging in p16-luciferase (p16LUC/+) knock-in mice. SC clearance was obtained by a suicide gene (p16 promoter-driven killer gene construct in p16-ATTAC mice), senolytic drugs (ABT263 and cell-permeable FOXO4-p53 interfering peptide [FOXO4-DRI]), and p16 inactivation in p16LUC/LUC mice. We investigated pulmonary hypertension in mice exposed to normoxia, chronic hypoxia, or hypoxia+Sugen, mice overexpressing the serotonin transporter (SM22-5-HTT+), and rats given monocrotaline. RESULTS: Patients with pulmonary arterial hypertension compared with controls exhibited high lung p16, p21, and γ-H2AX protein levels, with abundant vascular cells costained for p16, γ-H2AX, and 53BP1. Hypoxia increased thoracic bioluminescence in p16LUC/+ mice. In wild-type mice, hypoxia increased lung levels of senescence and DNA-damage markers, senescence-associated secretory phenotype components, and p16 staining of pulmonary endothelial cells (P-ECs, 30% of lung SCs in normoxia), and pulmonary artery smooth muscle cells. SC elimination by suicide gene or ABT263 increased the right ventricular systolic pressure and hypertrophy index, increased vessel remodeling (higher dividing proliferating cell nuclear antigen-stained vascular cell counts during both normoxia and hypoxia), and markedly decreased lung P-ECs. Pulmonary hemodynamic alterations and lung P-EC loss occurred in older p16LUC/LUC mice, wild-type mice exposed to Sugen or hypoxia+Sugen, and SM22-5-HTT+ mice given either ABT263 or FOXO4-DRI, compared with relevant controls. The severity of monocrotaline-induced pulmonary hypertension in rats was decreased slightly by ABT263 for 1 week but was aggravated at 3 weeks, with loss of P-ECs. CONCLUSIONS: Elimination of senescent P-ECs by senolytic interventions may worsen pulmonary hemodynamics. These results invite consideration of the potential impact on pulmonary vessels of strategies aimed at controlling cell senescence in various contexts.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Mice , Rats , Animals , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Pulmonary Arterial Hypertension/metabolism , Endothelial Cells/metabolism , Monocrotaline/metabolism , Senotherapeutics , Pulmonary Artery , Familial Primary Pulmonary Hypertension/metabolism , Hypoxia/metabolism , Cellular Senescence , Forkhead Transcription Factors/metabolism
9.
Neurotoxicology ; 94: 59-70, 2023 01.
Article in English | MEDLINE | ID: mdl-36336098

ABSTRACT

Pyrrolizidine alkaloids (PAs) are secondary plant metabolites playing an important role as phytotoxins in the plant defense mechanisms and can be present as contaminant in the food of humans and animals. The PA monocrotaline (MCT), one of the major plant derived toxin that affect humans and animals, is present in a high concentration in Crotalaria spp. (Leguminosae) seeds and can induce toxicity after consumption, characterized mainly by hepatotoxicity and pneumotoxicity. However, the effects of the ingestion of MCT in the central nervous system (CNS) are still poorly elucidated. Here we investigated the effects of MCT oral acute administration on the behavior and CNS toxicity in rats. Male adult Wistar were treated with MCT (109 mg/Kg, oral gavage) and three days later the Elevated Pluz Maze test demonstrated that MCT induced an anxiolytic-like effect, without changes in novelty habituation and in operational and spatial memory profiles. Histopathology revealed that the brain of MCT-intoxicated animals presented hyperemic vascular structures in the hippocampus, parahippocampal cortex and neocortex, mild perivascular edema in the neocortex, hemorrhagic focal area in the brain stem, hemorrhage and edema in the thalamus. MCT also induced neurotoxicity in the cortex and hippocampus, as revealed by Fluoro Jade-B and Cresyl Violet staining, as well astrocyte reactivity, revealed by immunocytochemistry for glial fibrillary acidic protein. Additionally, it was demonstrated by RT-qPCR that MCT induced up-regulation on mRNA expression of neuroinflammatory mediator, especially IL1ß and CCL2 in the hippocampus and cortex, and down-regulation on mRNA expression of neurotrophins HGDF and BDNF in the cortex. Together, these results demonstrate that the ingestion of MCT induces cerebrovascular lesions and toxicity to neurons that are associated to astroglial cell response and neuroinflammation in the cortex and hippocampus of rats, highlighting CNS damages after acute intoxication, also putting in perspective it uses as a model for cerebrovascular damage.


Subject(s)
Gliosis , Monocrotaline , Humans , Rats , Animals , Monocrotaline/toxicity , Monocrotaline/metabolism , Gliosis/chemically induced , Rats, Wistar , Astrocytes/metabolism , RNA, Messenger/metabolism
10.
Am J Pathol ; 193(1): 27-38, 2023 01.
Article in English | MEDLINE | ID: mdl-36309105

ABSTRACT

Inadequate DNA damage response related to ataxia telangiectasia mutated gene restricts hepatic regeneration in acute liver failure. Resolving mechanistic gaps in liver damage and repair requires additional animal models that are unconstrained by ultrarapid and unpredictable mortalities or substantial divergences from human pathology. This study used Fischer 344 rats primed with the antitubercular drug, rifampicin, plus phenobarbitone, and monocrotaline, a DNA adduct-forming alkaloid. Rifampicin and monocrotaline can cause liver failure in people. This regimen resulted in hepatic oxidative stress, necrosis, DNA double-strand breaks, liver test abnormalities, altered serum cytokine expression, and mortality. Healthy donor hepatocytes were transplanted ectopically in the peritoneal cavity to study whether they could supply metabolic support and rebalance inflammatory or protective cytokines affecting liver regeneration events. Hepatocyte transplantation increased candidate cytokine levels (granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, interferon-γ, IL-10, and IL-12), leading to Atm, Stat3, and Akt signaling in hepatocytes and nonparenchymal cells, lowering of inflammation, and improvements in intermediary metabolism, DNA repair, and hepatocyte proliferation. Such control of DNA damage and inflammation, along with stimulation of hepatic growth, offers paradigms for cell signaling to restore hepatic homeostasis and regeneration in acute liver failure. Further studies of molecular pathways of high pathobiological impact will advance the knowledge of liver regeneration.


Subject(s)
Ataxia Telangiectasia , Liver Failure, Acute , Rats , Humans , Animals , Ataxia Telangiectasia/metabolism , Ataxia Telangiectasia/pathology , Monocrotaline/metabolism , Rifampin/metabolism , Cytokines/metabolism , Liver Failure, Acute/metabolism , Liver/metabolism , Liver Regeneration/physiology , Hepatocytes/pathology , Rats, Inbred F344 , Inflammation/pathology
11.
Cardiovasc Drugs Ther ; 37(3): 449-460, 2023 06.
Article in English | MEDLINE | ID: mdl-35088192

ABSTRACT

PURPOSE: To investigate the role of cyclin-dependent kinase 9 (CDK9) and the therapeutic potential of a CDK9 inhibitor (flavopiridol) in monocrotaline (MCT)-induced pulmonary hypertension (PH). METHODS: For the in vivo experiments, rats with PH were established by a single intraperitoneal injection of MCT (60 mg/kg). After 2 weeks of MCT injection, rats were then treated with flavopiridol (5 mg/kg, i.p., twice a week) or vehicle for 2 weeks. For the in vitro experiments, human pulmonary artery smooth muscle cells (HPASMCs) were treated with flavopiridol (0.025-1 µM) or vehicle under hypoxic conditions. Hemodynamic recording, right ventricle histology, lung histology, and pulmonary arterial tissue isolation were performed. The expression levels of CDK9, RNA polymerase II, c-Myc, Mcl-1, and survivin were determined by qRT-PCR and western blotting, and the proliferation and apoptosis of rat pulmonary arterial tissues and/or HPASMCs were also assayed. RESULTS: Compared to the control group, CDK9 was upregulated in pulmonary arterial tissues from MCT-induced PH rats and hypoxic cultured HPASMCs. Upregulation of CDK9 was associated with enhanced phosphorylation of the C-terminal domain (CTD) of RNA polymerase II (RNA pol II) at serine-2 (Ser-2), promoting the expression of prosurvival and antiapoptotic proteins (c-Myc, Mcl-1, and survivin). Furthermore, treatment with flavopiridol (5 mg/kg) significantly alleviated pulmonary artery remodeling and partially reversed the progression of MCT-induced PH. Consistently, flavopiridol (0.5 µM) treatment decreased the proliferation and induced the apoptosis of cultured HPASMCs under hypoxic conditions. As a result of CDK9 inhibition and subsequent inhibition of RNA pol II CTD phosphorylation at Ser-2, flavopiridol decreased c-Myc, Mcl-1, and survivin expression in isolated pulmonary small arteries, leading to cell growth inhibition and apoptosis. CONCLUSION: Flavopiridol mitigates the progression of MCT-induced PH in rats by targeting CDK9.


Subject(s)
Hypertension, Pulmonary , Rats , Humans , Animals , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/drug therapy , Survivin/metabolism , RNA Polymerase II/metabolism , Monocrotaline/adverse effects , Monocrotaline/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Cyclin-Dependent Kinase 9/metabolism , Pulmonary Artery
12.
J Hypertens ; 40(10): 1979-1993, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36052522

ABSTRACT

OBJECTIVE: Vascular calcification has been considered as a potential therapeutic target in pulmonary hypertension. Mg2+ has a protective role against calcification. This study aimed to investigate whether Mg2+ could alleviate pulmonary hypertension by reducing medial calcification of pulmonary arteries. METHODS: Monocrotaline (MCT)-induced and chronic hypoxia-induced pulmonary hypertension rats were given an oral administration of 10% MgSO4 (10 ml/kg per day). Additionally, we administered Mg2+ in calcified pulmonary artery smooth muscle cells (PASMCs) after incubating with ß-glycerophosphate (ß-GP, 10 mmol/l). RESULTS: In vivo, MCT-induced and chronic hypoxia-induced pulmonary hypertension indexes, including right ventricular systolic pressure, right ventricular mass index, and arterial wall thickness, as well as Alizarin Red S (ARS) staining-visualized calcium deposition, high calcium levels, and osteochondrogenic differentiation in pulmonary arteries, were mitigated by dietary Mg2+ intake. In vitro, ß-GP-induced calcium-rich deposits stained by ARS, calcium content, as well as the detrimental effects of calcification to proliferation, migration, and resistance to apoptosis of PASMCs were alleviated by high Mg2+ but exacerbated by low Mg2+. Expression levels of mRNA and protein of ß-GP-induced osteochondrogenic markers, RUNX Family Transcription Factor 2, and Msh Homeobox 2 were decreased by high Mg2+ but increased by low Mg2+; however, Mg2+ did not affect ß-GP-induced expression of SRY-Box Transcription Factor 9. Moreover, mRNA expression and protein levels of ß-GP-reduced calcification inhibitor, Matrix GLA protein was increased by high Mg2+ but decreased by low Mg2+. CONCLUSION: Mg2+ supplement is a powerful strategy to treat pulmonary hypertension by mitigating pulmonary arterial calcification as the calcification triggered physiological and pathological changes to PASMCs.


Subject(s)
Hypertension, Pulmonary , Animals , Calcium/metabolism , Cell Proliferation , Disease Models, Animal , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Hypoxia , Magnesium/pharmacology , Monocrotaline/metabolism , Monocrotaline/toxicity , Myocytes, Smooth Muscle/metabolism , Pulmonary Artery/metabolism , RNA, Messenger/metabolism , Rats , Rodentia , Transcription Factors/metabolism , Transcription Factors/pharmacology
13.
Lung ; 200(5): 619-631, 2022 10.
Article in English | MEDLINE | ID: mdl-36107242

ABSTRACT

PURPOSE: It has been shown that activation of autophagy promotes the development of pulmonary arterial hypertension (PAH). Meanwhile, forkhead box M1 (FOXM1) has been found to induce autophagy in several types of cancer. However, it is still unclear whether FOXM1 mediates autophagy activation in PAH, and detailed mechanisms responsible for these processes are indefinite. METHOD: PAH was induced by a single intraperitoneal injection of monocrotaline (MCT) to rats. The right ventricle systolic pressure (RVSP), right ventricular hypertrophy index (RVHI), percentage of medial wall thickness (%MT), α-smooth muscle actin (α-SMA) staining, and Ki67 staining were performed to evaluate the development of PAH. The protein levels of FOXM1, phospho-focal adhesion kinase (p-FAK), FAK, and LC3B were determined by immunoblotting or immunohistochemistry. RESULTS: FOXM1 protein level and FAK activity were significantly increased in MCT-induced PAH rats, this was accompanied with the activation of autophagy. Pharmacological inhibition of FOXM1 or FAK suppressed MCT-induced autophagy activation, decreased RVSP, RVHI and %MT in MCT-induced PAH rats, and inhibited the proliferation of pulmonary arterial smooth muscle cells and pulmonary vessel muscularization in MCT-induced PAH rats. CONCLUSION: FOXM1 promotes the development of PAH by inducing FAK phosphorylation and subsequent activation of autophagy in MCT-treated rats.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Actins/metabolism , Animals , Autophagy , Disease Models, Animal , Familial Primary Pulmonary Hypertension , Forkhead Box Protein M1/metabolism , Forkhead Box Protein M1/therapeutic use , Hypertension, Pulmonary/drug therapy , Hypertrophy, Right Ventricular/chemically induced , Hypertrophy, Right Ventricular/metabolism , Ki-67 Antigen/metabolism , Monocrotaline/metabolism , Monocrotaline/toxicity , Phosphorylation , Pulmonary Arterial Hypertension/chemically induced , Pulmonary Artery , Rats , Rats, Sprague-Dawley
14.
J Physiol ; 600(20): 4465-4484, 2022 10.
Article in English | MEDLINE | ID: mdl-35993114

ABSTRACT

Right-sided myocardial mechanical efficiency (work output/metabolic energy input) in pulmonary hypertension can be severely reduced. We determined the contribution of intrinsic myocardial determinants of efficiency using papillary muscle preparations from monocrotaline-induced pulmonary hypertensive (MCT-PH) rats. The hypothesis tested was that efficiency is reduced by mitochondrial dysfunction in addition to increased activation heat reported previously. Right ventricular muscle preparations were subjected to 5 Hz sinusoidal length changes at 37°C. Work and suprabasal oxygen consumption ( V ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ ) were measured before and after cross-bridge inhibition by blebbistatin. Cytosolic cytochrome c concentration, myocyte cross-sectional area, proton permeability of the inner mitochondrial membrane and monoamine oxidase and glucose 6-phosphate dehydrogenase activities and phosphatidylglycerol/cardiolipin contents were determined. Mechanical efficiency ranged from 23% to 11% in control (n = 6) and from 22% to 1% in MCT-PH (n = 15) and correlated with work (r2  = 0.68, P < 0.0001) but not with V ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ (r2  = 0.004, P = 0.7919). V ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ for cross-bridge cycling was proportional to work (r2  = 0.56, P = 0.0005). Blebbistatin-resistant V ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ (r2  = 0.32, P = 0.0167) and proton permeability of the mitochondrial inner membrane (r2  = 0.36, P = 0.0110) correlated inversely with efficiency. Together, these variables explained the variance of efficiency (coefficient of multiple determination r2  = 0.79, P = 0.0001). Cytosolic cytochrome c correlated inversely with work (r2  = 0.28, P = 0.0391), but not with efficiency (r2  = 0.20, P = 0.0867). Glucose 6-phosphate dehydrogenase, monoamine oxidase and phosphatidylglycerol/cardiolipin increased in the right ventricular wall of MCT-PH but did not correlate with efficiency. Reduced myocardial efficiency in MCT-PH is a result of activation processes and mitochondrial dysfunction. The variance of work and the ratio of activation heat reported previously and blebbistatin-resistant V ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ are discussed. KEY POINTS: Mechanical efficiency of right ventricular myocardium is reduced in pulmonary hypertension. Increased energy use for activation processes has been demonstrated previously, but the contribution of mitochondrial dysfunction is unknown. Work and oxygen consumption are determined during work loops. Oxygen consumption for activation and cross-bridge cycling confirm the previous heat measurements. Cytosolic cytochrome c concentration, proton permeability of the mitochondrial inner membrane and phosphatidylglycerol/cardiolipin are increased in experimental pulmonary hypertension. Reduced work and mechanical efficiency are related to mitochondrial dysfunction. Upregulation of the pentose phosphate pathway and a potential gap in the energy balance suggest mitochondrial dysfunction in right ventricular overload is a resiult of the excessive production of reactive oxygen species.


Subject(s)
Hypertension, Pulmonary , Animals , Cardiolipins/metabolism , Cytochromes c/metabolism , Glucose/metabolism , Monoamine Oxidase/adverse effects , Monoamine Oxidase/metabolism , Monocrotaline/adverse effects , Monocrotaline/metabolism , Oxidoreductases/metabolism , Oxygen Consumption/physiology , Papillary Muscles , Phosphates/metabolism , Protons , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism
15.
Circulation ; 146(16): 1243-1258, 2022 10 18.
Article in English | MEDLINE | ID: mdl-35993245

ABSTRACT

BACKGROUND: RNA-binding proteins are master orchestrators of gene expression regulation. They regulate hundreds of transcripts at once by recognizing specific motifs. Thus, characterizing RNA-binding proteins targets is critical to harvest their full therapeutic potential. However, such investigation has often been restricted to a few RNA-binding protein targets, limiting our understanding of their function. In cancer, the RNA-binding protein HNRNPA2B1 (heterogeneous nuclear ribonucleoprotein A2B1; A2B1) promotes the pro-proliferative/anti-apoptotic phenotype. The same phenotype in pulmonary arterial smooth muscle cells (PASMCs) is responsible for the development of pulmonary arterial hypertension (PAH). However, A2B1 function has never been investigated in PAH. METHOD: Through the integration of computational and experimental biology, the authors investigated the role of A2B1 in human PAH-PASMC. Bioinformatics and RNA sequencing allowed them to investigate the transcriptome-wide function of A2B1, and RNA immunoprecipitation and A2B1 silencing experiments allowed them to decipher the intricate molecular mechanism at play. In addition, they performed a preclinical trial in the monocrotaline-induced pulmonary hypertension rat model to investigate the relevance of A2B1 inhibition in mitigating pulmonary hypertension severity. RESULTS: They found that A2B1 expression and its nuclear localization are increased in human PAH-PASMC. Using bioinformatics, they identified 3 known motifs of A2B1 and all mRNAs carrying them. In PAH-PASMC, they demonstrated the complementary nonredundant function of A2B1 motifs because all motifs are implicated in different aspects of the cell cycle. In addition, they showed that in PAH-PASMC, A2B1 promotes the expression of its targets. A2B1 silencing in PAH-PASMC led to a decrease of all tested mRNAs carrying an A2B1 motif and a concomitant decrease in proliferation and resistance to apoptosis. Last, in vivo A2B1 inhibition in the lungs rescued pulmonary hypertension in rats. CONCLUSIONS: Through the integration of computational and experimental biology, the study revealed the role of A2B1 as a master orchestrator of the PAH-PASMC phenotype and its relevance as a therapeutic target in PAH.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Animals , Humans , Rats , Cell Proliferation , Familial Primary Pulmonary Hypertension/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Hypertension, Pulmonary/metabolism , Monocrotaline/metabolism , Monocrotaline/toxicity , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Phenotype , Pulmonary Artery , RNA/metabolism , RNA-Binding Proteins/genetics
16.
Lipids Health Dis ; 21(1): 69, 2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35941581

ABSTRACT

BACKGROUND: Pulmonary arterial hypertension (PAH) is a chronic, progressive lung vascular disease accompanied by elevated pulmonary vascular pressure and resistance, and it is characterized by increased pulmonary artery smooth muscle cell (PASMC) proliferation. Apolipoprotein A5 (ApoA5) improves monocrotaline (MCT)-induced PAH and right heart failure; however, the underlying mechanism remains unknown. Here we speculate that ApoA5 has a protective effect in pulmonary vessels and aim to evaluate the mechanism. METHODS: ApoA5 is overexpressed in an MCT-induced PAH animal model and platelet-derived growth factor (PDGF)-BB-induced proliferating PASMCs. Lung vasculature remodeling was measured by immunostaining, and PASMC proliferation was determined by cell counting kit-8 and 5-ethynyl-2'-deoxyuridine5-ethynyl-2'-deoxyuridine incorporation assays. Coimmunoprecipitation-mass spectrometry was used to investigate the probable mechanism. Next, its role and mechanism were further verified by knockdown studies. RESULTS: ApoA5 level was decreased in MCT-induced PAH lung as well as PASMCs. Overexpression of ApoA5 could help to inhibit the remodeling of pulmonary artery smooth muscle. ApoA5 could inhibit PDGF-BB-induced PASMC proliferation and endoplasmic reticulum stress by increasing the expression of glucose-regulated protein 78 (GRP78). After knocking down GRP78, the protecting effects of ApoA5 have been blocked. CONCLUSION: ApoA5 ameliorates MCT-induced PAH by inhibiting endoplasmic reticulum stress in a GRP78 dependent mechanism.


Subject(s)
Endoplasmic Reticulum Stress , Hypertension, Pulmonary , Monocrotaline , Animals , Apolipoprotein A-V/metabolism , Cell Proliferation , Disease Models, Animal , Endoplasmic Reticulum Chaperone BiP/metabolism , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Monocrotaline/metabolism , Monocrotaline/toxicity , Myocytes, Smooth Muscle/metabolism , Rats , Rats, Sprague-Dawley
17.
Int J Mol Sci ; 23(14)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35887275

ABSTRACT

Pyrrolizidine alkaloid monocrotaline (MCT) induces sinusoidal obstruction syndrome (SOS) in rats characterised by a sinusoidal congestive obstruction. Additionally, MCT administration decreases the biliary excretion of gadobenate dimeglumine (BOPTA), a hepatobiliary substrate used in clinical imaging. BOPTA crosses hepatocyte membranes through organic anion transporting polypeptides, multidrug-resistance-associated protein 2, and Mrp3/4 transporters, and a modified function of these transporters is likely to explain the decreased biliary excretion. This study compared BOPTA transport across hepatocytes in livers isolated from normal (Nl) rats and rats with intragastric administration of MCT. BOPTA hepatocyte influx clearance was similar in both groups, while biliary clearance and bile concentrations were much lower in MCT than in Nl livers. BOPTA efflux clearance back to the sinusoids compensated for the low biliary excretion, and hepatocyte concentrations remained similar in both groups. This SOS-associated changes of transporter functions might impact the pharmacokinetics of numerous drugs that use similar transporters to cross hepatocytes.


Subject(s)
Membrane Transport Proteins , Organic Anion Transporters , Animals , Biological Transport , Hepatocytes/metabolism , Liver/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Monocrotaline/metabolism , Monocrotaline/toxicity , Organic Anion Transporters/metabolism , Rats
18.
ESC Heart Fail ; 9(5): 3407-3417, 2022 10.
Article in English | MEDLINE | ID: mdl-35841124

ABSTRACT

AIMS: Orchestrating the transition from reversible medial hypertrophy to irreversible plexiform lesions is crucial for pulmonary arterial hypertension related to congenital heart disease (CHD-PAH). Transgelin is an actin-binding protein that modulates pulmonary arterial smooth muscle cell (PASMC) dysfunction. In this study, we aimed to probe the molecular mechanism and biological function of transgelin in the pathogenesis of CHD-PAH. METHODS AND RESULTS: Transgelin expression was detected in lung tissues from both CHD-PAH patients and monocrotaline (MCT)-plus aortocaval (AV)-induced PAH rats by immunohistochemistry. In vitro, the effects of transgelin on the proliferation, migration, and apoptosis of human PASMCs (HPASMCs) were evaluated by the cell count and EdU assays, transwell migration assay, and TUNEL assay, respectively. And the effect of transgelin on the expression of HPASMC phenotype markers was assessed by the immunoblotting assay. (i) Compared with the normal control group (n = 12), transgelin expression was significantly overexpressed in the pulmonary arterioles of the reversible (n = 15) and irreversible CHD-PAH group (n = 4) (reversible group vs. control group: 18.2 ± 5.1 vs. 13.6 ± 2.6%, P < 0.05; irreversible group vs. control group: 29.9 ± 4.7 vs. 13.6 ± 2.6%, P < 0.001; irreversible group vs. reversible group: 29.9 ± 4.7 vs. 18.2 ± 5.1, P < 0.001). This result was further confirmed in MCT-AV-induced PAH rats. Besides, the transgelin expression level was positively correlated with the pathological grading of pulmonary arteries in CHD-PAH patients (r = 0.48, P = 0.03, n = 19). (ii) Compared with the normal control group (n = 12), TGF-ß1 expression was notably overexpressed in the pulmonary arterioles of the reversible (n = 15) and irreversible CHD-PAH group (n = 4) (reversible group vs. control group: 14.8 ± 4.4 vs. 6.0 ± 2.5%, P < 0.001; irreversible group vs. control group: 20.1 ± 4.4 vs. 6.0 ± 2.5%, P < 0.001; irreversible group vs. reversible group: 20.1 ± 4.4 vs. 14.8 ± 4.4, P < 0.01). The progression-dependent correlation between TGF-ß1 and transgelin was demonstrated in CHD-PAH patients (r = 0.48, P = 0.04, n = 19) and MCT-AV-induced PAH rats, which was further confirmed at sub-cellular levels. (iii) Knockdown of transgelin diminished proliferation, migration, apoptosis resistance, and phenotypic transformation of HPASMCs through repressing the TGF-ß1 signalling pathway. On the contrary, transgelin overexpression resulted in the opposite effects. CONCLUSIONS: These results indicate that transgelin may be an indicator of CHD-PAH development via boosting HPASMC dysfunction through positive regulation of the TGF-ß1 signalling pathway, as well as a potential therapeutic target for the treatment of CHD-PAH.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Animals , Humans , Rats , Cell Proliferation/genetics , Hypertension, Pulmonary/etiology , Microfilament Proteins/metabolism , Monocrotaline/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Pulmonary Arterial Hypertension/etiology , Pulmonary Artery , Transforming Growth Factor beta1/metabolism
19.
J Thorac Cardiovasc Surg ; 163(5): e361-e373, 2022 05.
Article in English | MEDLINE | ID: mdl-32948302

ABSTRACT

OBJECTIVE: Because mitochondrial dysfunction is a key factor in the progression of pulmonary hypertension, this study tested the hypothesis that transplantation of exogenous viable mitochondria can reverse pulmonary artery remodeling and restore right ventricular performance in pulmonary hypertension. METHODS: Pulmonary hypertension was induced by parenteral injection of monocrotaline (60 mg/kg) and creation of a left-to-right shunt aortocaval fistula in rats. Three weeks after creation of fistula, the animals were randomly assigned to receive intravenous delivery of placebo solution or allogeneic mitochondria once weekly for 3 consecutive weeks. Mitochondria (100 µg) were isolated from the freshly harvested soleus muscles of naïve rats. Transthoracic echocardiography was performed at 3 weeks after mitochondrial delivery. RESULTS: Ex vivo heart-lung block images acquired by an IVIS Spectrum (PerkinElmer, Waltham, Mass) imaging system confirmed the enhancement of MitoTracker (Invitrogen, Carlsbad, Calif) fluorescence in the pulmonary arteries. Mitochondria transplantation significantly increased lung tissue adenosine triphosphate concentrations and improved right ventricular performance, as evidenced by a reduction in serum levels of B-type natriuretic peptide and ventricular diameter. Right ventricular mass and wall thickness were restored in the mitochondrial group. In the pulmonary arteries of rats that received mitochondrial treatment, vascular smooth muscle cells expressed higher levels of α-smooth muscle actin and smooth muscle myosin heavy chain II, indicating the maintenance of the nonproliferative, contractile phenotype. The hyper-reactivity of isolated pulmonary arteries to α-adrenergic stimulation was also attenuated after mitochondrial transplantation. CONCLUSIONS: Transplantation of viable mitochondria can restore the contractile phenotype and vasoreactivity of the pulmonary artery, thereby reducing the afterload and right ventricular remodeling in rats with established pulmonary hypertension. The improvement in overall right ventricular performance suggests that mitochondrial transplantation can be a revolutionary clinical therapeutic option for the management of pulmonary hypertension.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Animals , Rats , Disease Models, Animal , Mitochondria , Monocrotaline/adverse effects , Monocrotaline/metabolism , Pulmonary Artery , Vascular Remodeling , Ventricular Remodeling
20.
Arch Physiol Biochem ; 128(5): 1330-1338, 2022 Oct.
Article in English | MEDLINE | ID: mdl-32449880

ABSTRACT

The effects of exercise training on oxidative stress in gastrocnemius of rats with pulmonary hypertension were studied. Four groups were established: sedentary control (SC), sedentary monocrotaline (SM), trained control (TC), trained monocrotaline (TM). Exercise was applied for 4 weeks, 5 days/week, 50-60 min/session, at 60% of VO2 max. Right ventricular (RV) pressures were measured, heart and gastrocnemius were removed for morphometric/biochemical analysis. Lipid peroxidation (LPO), H2O2, GSH/GSSG, and activity/expression of antioxidant enzymes were evaluated. Increased RV hypertrophy, systolic and end-diastolic pressures (RVEDP) were observed in SM animals, and the RVEDP was decreased in TM vs. SM. H2O2, SOD-1, and LPO were higher in the SM group than in SC. In TM, H2O2 was further increased when compared to SM, with a rise in antioxidant defences and a decrease in LPO. GSH/GSSG was higher only in the TC group. Exercise induced an efficient antioxidant adaptation, preventing oxidative damage to lipids.


Subject(s)
Monocrotaline , Pulmonary Arterial Hypertension , Animals , Antioxidants/metabolism , Glutathione Disulfide/metabolism , Hydrogen Peroxide/metabolism , Lipids , Monocrotaline/metabolism , Monocrotaline/toxicity , Muscle, Skeletal , Oxidative Stress , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...