Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
STAR Protoc ; 2(2): 100421, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33870226

ABSTRACT

This protocol presents a workflow for detecting differences in kinematics between experimental conditions. It is tailored for short-tailed opossums but can be applied to any species capable of completing the ladder rung task. There are four phases of this protocol: (1) data collection, (2) pose tracking, (3) analysis of single trials, and (4) cross-condition comparisons. This pipeline implements aspects of machine learning and signal processing, allowing for rapid data analysis that provides insight into how animals perform this task. For complete details on the use and execution of this protocol, please refer to Englund et al. (2020).


Subject(s)
Biomechanical Phenomena/physiology , Monodelphis/physiology , Walking/physiology , Animals , Behavior, Animal/physiology , Computational Biology , Female , Machine Learning , Male , Signal Processing, Computer-Assisted , Video Recording
2.
J Comp Neurol ; 529(5): 969-986, 2021 04 01.
Article in English | MEDLINE | ID: mdl-32710567

ABSTRACT

This study investigates the response to spinal cord injury in the gray short-tailed opossum (Monodelphis domestica). In opossums spinal injury early in development results in spontaneous axon growth through the injury, but this regenerative potential diminishes with maturity until it is lost entirely. The mechanisms underlying this regeneration remain unknown. RNA sequencing was used to identify differential gene expression in regenerating (SCI at postnatal Day 7, P7SCI) and nonregenerating (SCI at Day 28, P28SCI) cords +1d, +3d, and +7d after complete spinal transection, compared to age-matched controls. Genes showing significant differential expression (log2FC ≥ 1, Padj ≤ 0.05) were used for downstream analysis. Across all time-points 233 genes altered expression after P7SCI, and 472 genes altered expression after P28SCI. One hundred and forty-seven genes altered expression in both injury ages (63% of P7SCI data set). The majority of changes were gene upregulations. Gene ontology overrepresentation analysis in P7SCI gene-sets showed significant overrepresentations only in immune-associated categories, while P28SCI gene-sets showed overrepresentations in these same immune categories, along with other categories such as "cell proliferation," "cell adhesion," and "apoptosis." Cell-type-association analysis suggested that, regardless of injury age, injury-associated gene transcripts were most strongly associated with microglia and endothelial cells, with strikingly fewer astrocyte, oligodendrocyte and neuron-related genes, the notable exception being a cluster of mostly downregulated oligodendrocyte-associated genes in the P7SCI + 7d gene-set. Our findings demonstrate a more complex transcriptomic response in nonregenerating cords, suggesting a strong influence of non-neuronal cells in the outcome after injury and providing the largest survey yet of the transcriptomic changes occurring after SCI in this model.


Subject(s)
Monodelphis/physiology , Spinal Cord Injuries/genetics , Spinal Cord Regeneration/physiology , Transcriptome , Aging/genetics , Aging/physiology , Animals , Animals, Newborn , Base Sequence , Endothelial Cells/metabolism , Gene Expression Regulation, Developmental , Gene Ontology , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Neuroglia/metabolism , Neurons/metabolism , Organ Specificity , Species Specificity , Spinal Cord/growth & development , Spinal Cord/metabolism , Spinal Cord Injuries/physiopathology
3.
Curr Biol ; 29(15): 2533-2540.e7, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31327712

ABSTRACT

Identifying shared quantitative features of a neural circuit across species is important for 3 reasons. Often expressed in the form of power laws and called scaling relationships [1, 2], they reveal organizational principles of circuits, make insights gleaned from model systems widely applicable, and explain circuit performance and function, e.g., visual circuits [3, 4]. The visual circuit is topographic [5, 6], wherein retinal neurons target and activate predictable spatial loci in primary visual cortex. The brain, however, contains many circuits, where neuronal targets and activity are unpredictable and distributed throughout the circuit, e.g., olfactory circuits, in which glomeruli (or mitral cells) in the olfactory bulb synapse with neurons distributed throughout the piriform cortex [7-10]. It is unknown whether such circuits, which we term distributed circuits, are scalable. To determine whether distributed circuits scale, we obtained quantitative descriptions of the olfactory bulb and piriform cortex in six mammals using stereology techniques and light microscopy. Two conserved features provide evidence of scalability. First, the number of piriform neurons n and bulb glomeruli g scale as n∼g3/2. Second, the average number of synapses between a bulb glomerulus and piriform neuron is invariant at one. Using theory and modeling, we show that these two features preserve the discriminatory ability and precision of odor information across the olfactory circuit. As both abilities depend on circuit size, manipulating size provides evolution with a way to adapt a species to its niche without designing developmental programs de novo. These principles might apply to other distributed circuits like the hippocampus.


Subject(s)
Olfactory Bulb/physiology , Olfactory Pathways/physiology , Piriform Cortex/physiology , Animals , Cats/physiology , Ferrets/physiology , Guinea Pigs/physiology , Mice/physiology , Monodelphis/physiology , Neurons/physiology , Rats/physiology , Synapses/physiology
4.
Proc Biol Sci ; 286(1905): 20190691, 2019 06 26.
Article in English | MEDLINE | ID: mdl-31213185

ABSTRACT

In human pregnancy, recognition of an embryo within the uterus is essential to support the fetus through gestation. In most marsupials, such as the opossums, pregnancy is shorter than the oestrous cycle and the steroid hormone profile during pregnancy and oestrous cycle are indistinguishable. For these reasons, it was assumed that recognition of pregnancy, as a trait, evolved in the eutherian (placental) stem lineage and independently in wallabies and kangaroos. To investigate whether uterine recognition of pregnancy occurs in species with pregnancy shorter than the oestrous cycle, we examined reproduction in the short-tailed opossum ( Monodelphis domestica), a marsupial with a plesiomorphic mode of pregnancy. We examined the morphological and gene expression changes in the uterus of females in the non-pregnant oestrous cycle and compared these to pregnancy. We found that the presence of an embryo did not alter some aspects of uterine development but increased glandular activity. Transcriptionally, we saw big differences between the uterus of pregnant and cycling animals. These differences included an upregulation of genes involved in transport, inflammation and metabolic-activity in response to the presence of a fetus. Furthermore, transcriptional differences reflected protein level differences in transporter abundance. Our results suggest that while the uterus exhibits programmed changes after ovulation, its transcriptional landscape during pregnancy responds to the presence of a fetus and upregulates genes that may be essential for fetal support. These results are consistent with endometrial recognition of pregnancy occurring in the opossum. While the effects on maternal physiology appear to differ, recognition of pregnancy has now been observed in eutherian mammals, as well as, Australian and American marsupials.


Subject(s)
Monodelphis/physiology , Pregnancy , Animals , Estrous Cycle , Female , Marsupialia
5.
eNeuro ; 6(3)2019.
Article in English | MEDLINE | ID: mdl-31097626

ABSTRACT

External thermosensation is crucial to regulate animal behavior and homeostasis, but the development of the mammalian thermosensory system is not well known. We investigated whether temperature could play a role in the control of movements in a mammalian model born very immature, the opossum (Monodelphis domestica). Like other marsupials, at birth the opossum performs alternate and rhythmic movements with its forelimbs (FLs) to reach a teat where it attaches in order to continue its development. It was shown that FL movements can be induced by mechanical stimulation of the snout in in vitro preparations of newborns consisting of the neuraxis with skin and FLs intact. In the present study, we used puff ejections of cold, neutral (bath temperature) and hot liquid directed toward the snout to induce FL responses in such preparations. Either the responses were visually observed under a microscope or triceps muscle activity was recorded. Cold liquid systematically induced FL movements and triceps contractions, but neutral and hot temperatures were less potent to do so. Sections of the trigeminal nerves and removal of the facial skin diminished responses to cold and nearly abolished those to hot and neutral stimulations. Transient receptor potential melastatin 8 (TRPM8) being the major cold receptor cation channel in adult mammals, we employed immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) to test for its expression, but found that it is not expressed before 13 postnatal days. Overall our results indicate that cold thermosensation exerts a strong influence on motor behaviors in newborn opossums.


Subject(s)
Monodelphis/physiology , Motor Activity , Temperature , Thermosensing/physiology , Animals , Animals, Newborn/physiology , Female , Forelimb/physiology , In Vitro Techniques , Locomotion , Male , Monodelphis/growth & development , TRPM Cation Channels/physiology
6.
Nature ; 566(7745): 528-532, 2019 02.
Article in English | MEDLINE | ID: mdl-30760927

ABSTRACT

Over the past two centuries, mammalian chewing and related anatomical features have been among the most discussed of all vertebrate evolutionary innovations1-3. Chief among these features are two characters: the dentary-only mandible, and the tribosphenic molar with its triangulated upper cusps and lower talonid basin3-5. The flexible mandibular joint and the unfused symphysis of ancestral mammals-in combination with transformations of the adductor musculature and palate-are thought to have permitted greater mobility of each lower jaw, or hemimandible6,7. Following the appearance of precise dental occlusion near the origin of the mammalian crown8,9, therians evolved a tribosphenic molar with a craggy topography that is presumed to have been used to catch, cut and crush food. Here we describe the ancestral tribosphenic therian chewing stroke, as conserved in the short-tailed opossum Monodelphis domestica: it is a simple symmetrical sequence of lower tooth-row eversion and inversion during jaw opening and closing, respectively, enacted by hemimandibular long-axis rotation. This sequence is coupled with an eversion-inversion rotational grinding stroke. We infer that the ancestral therian chewing stroke relied heavily on long-axis rotation, including symmetrical eversion and inversion (inherited from the first mammaliaforms) as well as a mortar-and-pestle rotational grinding stroke that was inherited from stem therians along with the tribosphenic molar. The yaw-dominated masticatory cycle of primates, ungulates and other bunodont therians is derived; it is necessitated by a secondarily fused jaw symphysis, and permitted by the reduction of high, interlocking cusps10-12. The development of an efficient masticatory system-culminating in the tribosphenic apparatus-allowed early mammals to begin the process of digestion by shearing and crushing food into small boli instead of swallowing larger pieces in the reptilian manner, which necessitates a long, slow and wholly chemical breakdown. The vast diversity of mammalian teeth has emerged from the basic tribosphenic groundplan13.


Subject(s)
Jaw/physiology , Mastication/physiology , Molar/physiology , Monodelphis/physiology , Animals , Biological Evolution , Biomechanical Phenomena , Jaw/anatomy & histology , Male , Molar/anatomy & histology , Monodelphis/anatomy & histology , Rotation , Temporomandibular Joint/anatomy & histology , Temporomandibular Joint/physiology
7.
Cereb Cortex ; 29(9): 3666-3675, 2019 08 14.
Article in English | MEDLINE | ID: mdl-30272136

ABSTRACT

We have previously reported that the blockage of TrkB and TrkC signaling in primary culture of opossum neocortical cells affects neurogenesis that involves a range of processes including cell proliferation, differentiation, and survival. Here, we studied whether TrkB and TrkC activity specifically affects various types of progenitor cell populations during neocortex formation in the Monodelphis opossum in vivo. We found that the inhibition of TrkB and TrkC activities affects the same proliferative cellular phenotype, but TrkC causes more pronounced changes in the rate of cell divisions. Additionally, inhibition of TrkB and TrkC does not affect apoptosis in vivo, which was found in cell culture experiments. The lack of TrkB and TrkC receptor activity caused the arrest of newly generated neurons; therefore, they could not penetrate the subplate zone. We suggest that at this time point in development, migration consists of 2 steps. During the initial step, neurons migrate and reach the base of the subplate, whereas during the next step the migration of neurons to their final position is regulated by TrkB or TrkC signaling.


Subject(s)
Monodelphis/physiology , Neocortex/physiology , Neurogenesis , Neurons/physiology , Receptor, trkB/physiology , Receptor, trkC/physiology , Animals , Cell Differentiation , Cell Movement , Cell Proliferation , Cell Survival , Female , Male , Signal Transduction
8.
PLoS Biol ; 16(8): e2005594, 2018 08.
Article in English | MEDLINE | ID: mdl-30142145

ABSTRACT

Among animal species, cell types vary greatly in terms of number and kind. The number of cell types found within an organism differs considerably between species, and cell type diversity is a significant contributor to differences in organismal structure and function. These observations suggest that cell type origination is a significant source of evolutionary novelty. The molecular mechanisms that result in the evolution of novel cell types, however, are poorly understood. Here, we show that a novel cell type of eutherians mammals, the decidual stromal cell (DSC), evolved by rewiring an ancestral cellular stress response. We isolated the precursor cell type of DSCs, endometrial stromal fibroblasts (ESFs), from the opossum Monodelphis domestica. We show that, in opossum ESFs, the majority of decidual core regulatory genes respond to decidualizing signals but do not regulate decidual effector genes. Rather, in opossum ESFs, decidual transcription factors function in apoptotic and oxidative stress response. We propose that rewiring of cellular stress responses was an important mechanism for the evolution of the eutherian decidual cell type.


Subject(s)
Decidua/physiology , Stress, Physiological/physiology , Animals , Biological Evolution , Endometrium/physiology , Evolution, Molecular , Female , Fibroblasts , Mammals , Monodelphis/physiology , Stress, Physiological/genetics , Stromal Cells/metabolism , Stromal Cells/physiology , Transcription Factors/metabolism
9.
J Appl Physiol (1985) ; 123(3): 513-525, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28522766

ABSTRACT

Terrestrial opossums use their semiprehensile tail for grasping nesting materials as opposed to arboreal maneuvering. We relate the development of this adaptive behavior with ontogenetic changes in myosin heavy chain (MHC) isoform expression from 21 days to adulthood. Monodelphis domestica is expected to demonstrate a progressive ability to flex the distal tail up to age 7 mo, when it should exhibit routine nest construction. We hypothesize that juvenile stages (3-7 mo) will be characterized by retention of the neonatal isoform (MHC-Neo), along with predominant expression of fast MHC-2X and -2B, which will transition into greater MHC-1ß and -2A isoform content as development progresses. This hypothesis was tested using Q-PCR to quantify and compare gene expression of each isoform with its protein content determined by gel electrophoresis and densitometry. These data were correlated with nesting activity in an age-matched sample of each age group studied. Shifts in regulation of MHC gene transcripts matched well with isoform expression. Notably, mRNA for MHC-Neo and -2B decrease, resulting in little-to-no isoform translation after age 7 mo, whereas mRNA for MHC-1ß and -2A increase, and this corresponds with subtle increases in content for these isoforms into late adulthood. Despite the tail remaining intrinsically fast-contracting, a critical growth period for isoform transition is observed between 7 and 13 mo, correlating primarily with use of the tail during nesting activities. Functional transitions in MHC isoforms and fiber type properties may be associated with muscle "tuning" repetitive nest remodeling tasks requiring sustained contractions of the caudal flexors.NEW & NOTEWORTHY Little is understood about skeletal muscle development as it pertains to tail prehensility in mammals. This study uses an integrative approach of relating both MHC gene and protein expression with behavioral and morphometric changes to reveal a predominant fast MHC expression with subtle isoform transitions in caudal muscle across ontogeny. The functional shifts observed are most notably correlated with increased tail grasping for nesting activities.


Subject(s)
Hand Strength/physiology , Monodelphis/physiology , Myosin Heavy Chains/biosynthesis , Myosin Heavy Chains/genetics , Tail/physiology , Animals , Female , Gene Expression , Male , Myosins/biosynthesis , Myosins/genetics , Protein Isoforms/biosynthesis , Protein Isoforms/genetics
10.
J Neurophysiol ; 117(2): 556-565, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27832604

ABSTRACT

The hippocampus generates population events termed sharp-wave ripples (SWRs) and dentate spikes (DSs). While little is known about DSs, SWR-related hippocampal discharges during sleep are thought to replay prior waking activity, reactivating the cortical networks that encoded the initial experience. During slow-wave sleep, such reactivations likely occur during up-states, when most cortical neurons are depolarized. However, most studies have examined the relationship between SWRs and up-states measured in single neocortical regions. As a result, it is currently unclear whether SWRs are associated with particular patterns of widely distributed cortical activity. Additionally, no such investigation has been carried out for DSs. The present study addressed these questions by recording SWRs and DSs from the dorsal hippocampus simultaneously with prefrontal, sensory (visual and auditory), perirhinal, and entorhinal cortices in naturally sleeping rats. We found that SWRs and DSs were associated with up-states in all cortical regions. Up-states coinciding with DSs and SWRs exhibited increased unit activity, power in the gamma band, and intraregional gamma coherence. Unexpectedly, interregional gamma coherence rose much more strongly in relation to DSs than to SWRs. Whereas the increase in gamma coherence was time locked to DSs, that seen in relation to SWRs was not. These observations suggest that SWRs are related to the strength of up-state activation within individual regions throughout the neocortex but not so much to gamma coherence between different regions. Perhaps more importantly, DSs coincided with stronger periods of interregional gamma coherence, suggesting that they play a more important role than previously assumed. NEW & NOTEWORTHY: Off-line cortico-hippocampal interactions are thought to support memory consolidation. We surveyed the relationship between hippocampal sharp-wave ripples (SWRs) and dentate spikes (DSs) with up-states across multiple cortical regions. SWRs and DSs were associated with increased cortical gamma oscillations. Interregional gamma coherence rose much more strongly in relation to DSs than to SWRs. Moreover, it was time locked to DSs but not SWRs. These results have important implications for current theories of systems memory consolidation during sleep.


Subject(s)
Action Potentials/physiology , Dentate Gyrus/cytology , Neurons/physiology , Visual Cortex/cytology , Visual Cortex/physiology , Visual Perception/physiology , Animals , Brain Mapping , Contrast Sensitivity/physiology , Female , Male , Monodelphis/physiology , Nerve Net/physiology , Orientation , Photic Stimulation , Social Isolation , Space Perception , Visual Fields/physiology , Visual Pathways/physiology
11.
J Comp Neurol ; 524(17): 3587-3613, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27098555

ABSTRACT

Movable tactile sensors in the form of whiskers are present in most mammals, but sensory coding in the cortical whisker representation has been studied almost exclusively in mice and rats. Many species that possess whiskers lack the modular "barrel" organization found in the primary somatosensory cortex (S1) of mice and rats, but it is unclear how whisker-related input is represented in these species. We used single-unit extracellular recording techniques to characterize receptive fields and response properties in S1 of Monodelphis domestica (short-tailed opossum), a nocturnal, terrestrial marsupial that shared its last common ancestor with placental mammals over 160 million years ago. Short-tailed opossums lack barrels and septa in S1 but show active whisking behavior similar to that of mice and rats. Most neurons in short-tailed opossum S1 exhibited multiwhisker receptive fields, including a single best whisker (BW) and lower magnitude responses to the deflection of surrounding whiskers. Mean tuning width was similar to that reported for mice and rats. Both symmetrical and asymmetrical receptive fields were present. Neurons tuned to ventral whiskers tended to show broad tuning along the rostrocaudal axis. Thus, despite the absence of barrels, most receptive field properties were similar to those reported for mice and rats. However, unlike those species, S1 neuronal responses to BW and surround whisker deflection showed comparable latencies in short-tailed opossums. This dissimilarity suggests that some aspects of barrel cortex function may not generalize to tactile processing across mammalian species and may be related to differences in the architecture of the whisker-to-cortex pathway. J. Comp. Neurol. 524:3587-3613, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Monodelphis/physiology , Somatosensory Cortex/physiology , Touch Perception/physiology , Vibrissae/physiology , Action Potentials , Animals , Biological Evolution , Blotting, Western , Evoked Potentials, Somatosensory , Female , Male , Microelectrodes , Monodelphis/anatomy & histology , Neurons/physiology , Parvalbumins/metabolism , Physical Stimulation , Vibrissae/anatomy & histology
12.
Exp Anim ; 64(3): 323-32, 2015.
Article in English | MEDLINE | ID: mdl-25912322

ABSTRACT

The opossum delivers a newborn baby equivalent to tremature fetus state by postpregnancy. The peculiarity is advantageous for studies of fetus, because operations to take out fetus from the uterus of a mother are not necessary. When mammalian skin is wounded by full-thickness excision, fetal and adult wound healing processes differ. Fetal-type wound healing does not leave a scar. However, studies of how the fetal wound healing process differs in detail from the adult type are not advanced. We first observed the normal skin development of the gray short-tailed opossum (Monodelphis domestica) using an electron microscope. As for normal skin, an epidermis became multi-layered, and thickened from birth through to 7 days after birth. The quantity of extracellular matrix of the dermis increased thereafter, and several types of cells were found in the dermis. To examine the wound healing, we used material from a 1 day-old newborn baby, and from another 15 days after birth, and compared the wound healing style morphologically. Differences in the constitution of cells and fine structures of the skin were observed, it was obviously suggested that change in the wound healing style from fetal-type to adult-type occurred between 1 to 15 days after birth.


Subject(s)
Epidermis/ultrastructure , Monodelphis/embryology , Monodelphis/physiology , Skin Physiological Phenomena , Skin/ultrastructure , Wound Healing , Aging/metabolism , Aging/physiology , Animals , Animals, Newborn , Epidermal Cells , Epidermis/metabolism , Extracellular Matrix/metabolism , Female , Marsupialia , Microscopy, Electron , Pregnancy , Skin/embryology
13.
Lab Anim (NY) ; 44(2): 53, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25602390
14.
Naturwissenschaften ; 101(11): 1003-6, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25142634

ABSTRACT

The grey short-tailed opossum, Monodelphis domestica, has been an established research animal for more than five decades, but relatively, little is known about its thermophysiology. Here we studied core body temperature (T b) and metabolic rate (MR) of female adult M. domestica housed in the laboratory at an ambient temperature (T a) of 26 °C. In expanding previous reports, the average recorded core T b of M. domestica was 34.3 °C. The T b of an individual M. domestica can drop below 30 °C (minimal T b: 28.6 °C) accompanied by a reduction in MR of up to 52 % even while having ad libitum access to food. These findings demonstrate for the first time the presence of spontaneous torpor in M. domestica. Metabolic suppression at relatively high T a and T b furthermore broadens our perspective on the use of torpor as a metabolic strategy not just restricted to cold climates.


Subject(s)
Hot Temperature , Monodelphis/physiology , Torpor/physiology , Animals , Body Temperature , Female
15.
Dev Neurobiol ; 74(7): 707-22, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24443161

ABSTRACT

The expression, development pattern, spatiotemporal distribution, and function of TrkB receptors were investigated during the postnatal brain development of the opossum. Full-length TrkB receptor expression was detectable in the newborn opossum, whereas three different short forms that are expressed in the adult brain were almost undetectable in the newborn opossum brain. The highest level of full-length TrkB receptor expression was observed at P35, which corresponds to the time of eye opening. We found that in different brain structures, TrkB receptors were localized in various compartments of cells. The hypothalamus was distinguished by the presence of TrkB receptors not only in cell bodies but also in the neuropil. Double immunofluroscent staining for TrkB and a marker for the identification of the cell phenotype in several brain regions such as the olfactory bulb, hippocampus, thalamus, and cerebellum showed that unlike in eutherians, in the opossum, TrkB receptors were predominantly expressed in neurons. A lack of TrkB receptors in glial cells, particularly astrocytes and oligodendrocytes, provides evidence that TrkB receptors can play a functionally different role in marsupials than in eutherians. The effects of TrkB signaling on the development of cortical progenitor cells were examined in vitro using shRNAs. Blockade of the endogenous TrkB receptor expression induced a decrease in the number of progenitor cells proliferation, whereas the number of apoptotic progenitor cells increased. These changes were statistically significant but relatively small. In contrast, TrkB signaling was strongly involved in regulation of the cortical progenitor cell differentiation process.


Subject(s)
Brain/growth & development , Brain/physiology , Monodelphis/growth & development , Monodelphis/physiology , Receptor, trkB/metabolism , Age Factors , Animals , Apoptosis/physiology , Blotting, Western , Cell Proliferation , Cells, Cultured , Fluorescent Antibody Technique , Gene Expression Regulation, Developmental , Neural Stem Cells/physiology , Neurogenesis/physiology , Neuroglia/physiology , Neurons/physiology , Photomicrography , RNA, Small Interfering/metabolism , Receptor, trkB/genetics , Transfection
16.
PLoS One ; 8(8): e71181, 2013.
Article in English | MEDLINE | ID: mdl-23951105

ABSTRACT

Complete spinal transection in the mature nervous system is typically followed by minimal axonal repair, extensive motor paralysis and loss of sensory functions caudal to the injury. In contrast, the immature nervous system has greater capacity for repair, a phenomenon sometimes called the infant lesion effect. This study investigates spinal injuries early in development using the marsupial opossum Monodelphis domestica whose young are born very immature, allowing access to developmental stages only accessible in utero in eutherian mammals. Spinal cords of Monodelphis pups were completely transected in the lower thoracic region, T10, on postnatal-day (P)7 or P28 and the animals grew to adulthood. In P7-injured animals regrown supraspinal and propriospinal axons through the injury site were demonstrated using retrograde axonal labelling. These animals recovered near-normal coordinated overground locomotion, but with altered gait characteristics including foot placement phase lags. In P28-injured animals no axonal regrowth through the injury site could be demonstrated yet they were able to perform weight-supporting hindlimb stepping overground and on the treadmill. When placed in an environment of reduced sensory feedback (swimming) P7-injured animals swam using their hindlimbs, suggesting that the axons that grew across the lesion made functional connections; P28-injured animals swam using their forelimbs only, suggesting that their overground hindlimb movements were reflex-dependent and thus likely to be generated locally in the lumbar spinal cord. Modifications to propriospinal circuitry in P7- and P28-injured opossums were demonstrated by changes in the number of fluorescently labelled neurons detected in the lumbar cord following tracer studies and changes in the balance of excitatory, inhibitory and neuromodulatory neurotransmitter receptors' gene expression shown by qRT-PCR. These results are discussed in the context of studies indicating that although following injury the isolated segment of the spinal cord retains some capability of rhythmic movement the mechanisms involved in weight-bearing locomotion are distinct.


Subject(s)
Locomotion/physiology , Monodelphis/physiology , Nerve Regeneration , Spinal Cord Injuries/physiopathology , Animals , Axons/metabolism , Behavior, Animal , Brain Stem/metabolism , Gene Expression , Neurons/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology , Spinal Cord Injuries/genetics , Swimming , Transcriptome , Weight-Bearing
17.
J Comp Neurol ; 521(17): 3877-97, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-23784751

ABSTRACT

The current experiment is one of a series of comparative studies in our laboratory designed to determine the network of somatosensory areas that are present in the neocortex of the mammalian common ancestor. Such knowledge is critical for appreciating the basic functional circuitry that all mammals possess and how this circuitry was modified to generate species-specific, sensory-mediated behavior. Our animal model, the gray short-tailed opossum (Monodelphis domestica), is a marsupial that is proposed to represent this ancestral state more closely than most other marsupials and, to some extent, even monotremes. We injected neuroanatomical tracers into the primary somatosensory area (S1), rostral and caudal somatosensory fields (SR and SC, respectively), and multimodal cortex (MM) and determined their connections with other architectonically defined cortical fields. Our results show that S1 has dense intrinsic connections, dense projections from the frontal myelinated area (FM), and moderate projections from S2 and SC. SR has strong projections from several areas, including S1, SR, FM, and piriform cortex. SC has dense projections from S1, moderate to strong projections from other somatosensory areas, FM, along with connectivity from the primary (V1) and second visual areas. Finally, MM had dense intrinsic connections, dense projections from SC and V1, and moderate projections from S1. These data support the proposition that ancestral mammals likely had at least four specifically interconnected somatosensory areas, along with at least one multimodal area. We discuss the possibility that these additional somatosensory areas (SC and SR) are homologous to somatosensory areas in eutherian mammals.


Subject(s)
Monodelphis/physiology , Nerve Net/chemistry , Nerve Net/physiology , Somatosensory Cortex/chemistry , Somatosensory Cortex/physiology , Animals , Brain/physiology , Female , Male
18.
J Exp Biol ; 216(Pt 18): 3483-94, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23737559

ABSTRACT

Facial vibrissae, or whiskers, are found in nearly all extant mammal species and are likely to have been present in early mammalian ancestors. A sub-set of modern mammals, including many rodents, move their long mystacial whiskers back and forth at high speed whilst exploring in a behaviour known as 'whisking'. It is not known whether the vibrissae of early mammals moved in this way. The grey short-tailed opossum, Monodelphis domestica, is considered a useful species from the perspective of tracing the evolution of modern mammals. Interestingly, these marsupials engage in whisking bouts similar to those seen in rodents. To better assess the likelihood that active vibrissal sensing was present in ancestral mammals, we examined the vibrissal musculature of the opossum using digital miscroscopy to see whether this resembles that of rodents. Although opossums have fewer whiskers than rats, our investigation found that they have a similar vibrissal musculature. In particular, in both rats and opossums, the musculature includes both intrinsic and extrinsic muscles with the intrinsic muscles positioned as slings linking pairs of large vibrissae within rows. We identified some differences in the extrinsic musculature which, interestingly, matched with behavioural data obtained through high-speed video recording, and indicated additional degrees of freedom for positioning the vibrissae in rats. These data show that the whisker movements of opossum and rat exploit similar underlying mechanisms. Paired with earlier results suggesting similar patterns of vibrissal movement, this strongly implies that early therian (marsupial and placental) mammals were whisking animals that actively controlled their vibrissae.


Subject(s)
Biological Evolution , Monodelphis/physiology , Muscles/physiology , Vibrissae/anatomy & histology , Animals , Behavior, Animal/physiology , Female , Male , Movement/physiology , Muscle Contraction/physiology , Muscles/anatomy & histology , Muscles/cytology , Rats , Skull/anatomy & histology , Vibrissae/cytology , Vibrissae/physiology
19.
Evol Dev ; 15(1): 18-27, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23331914

ABSTRACT

During their embryogenesis, marsupials transiently develop a unique structure, the shoulder arch, which provides the structural support and muscle-attachments necessary for the newborn's crawl to the teat. One of the most pronounced and functionally important aspects of the shoulder arch is an enlarged coracoid. The goal of this study is to determine the molecular basis of shoulder arch formation in marsupials. To achieve this goal, this study investigates the relative expression of several genes with known roles in shoulder girdle morphogenesis in a marsupial-the opossum, Monodelphis domestica-and a placental, the mouse, Mus musculus. Results indicate that Hoxc6, a gene involved in coracoid patterning, is expressed for a longer period of time and at higher levels in opossum relative to mouse. Functional manipulation suggests that these differences in Hoxc6 expression are independent of documented differences in retinoic acid signaling in opossum and mouse forelimbs. Results also indicate that Emx2, a gene involved in scapular blade condensation, is upregulated in opossum relative to mouse. However, several other genes involved in shoulder girdle patterning (e.g., Gli3, Pax1, Pbx1, Tbx15) are comparably expressed in these species. These findings suggest that the upregulation of Hoxc6 and Emx2 occurs through independent genetic modifications in opossum relative to mouse. In summary, this study documents a correlation between gene expression and the divergent shoulder girdle morphogenesis of marsupial (i.e., opossum) and placental (i.e., mouse) mammals, and thereby provides a foundation for future research into the genetic basis of shoulder girdle morphogenesis in marsupials. Furthermore, this study supports the hypothesis that the mammalian shoulder girdle is a highly modular structure whose elements are relatively free to evolve independently.


Subject(s)
Gene Expression Regulation, Developmental , Monodelphis/embryology , Animals , Body Patterning , DNA Primers/genetics , Developmental Biology , Female , Homeodomain Proteins/metabolism , Male , Mice , Monodelphis/physiology , Morphogenesis , Polymerase Chain Reaction , Shoulder/pathology , Species Specificity , Tretinoin/metabolism
20.
Neuroscience ; 223: 124-30, 2012 Oct 25.
Article in English | MEDLINE | ID: mdl-22871523

ABSTRACT

Monodelphis domestica (short-tailed opossum) is an emerging animal model for studies of neural development due to the extremely immature state of the nervous system at birth and its subsequent rapid growth to adulthood. Yet little is known about its normal sensory discrimination abilities. In the present investigation, visual acuity was determined in this species using the optokinetic test (OPT), which relies on involuntary head tracking of a moving stimulus and can be easily elicited using a rotating visual stimulus of varying spatial frequencies. Using this methodology, we determined that the acuity of Monodelphis is 0.58 cycles per degree (cpd), which is similar to the acuity of rats using the same methodology, and higher than in mice. However, acuity in the short-tailed opossum is lower than in other marsupials. This is in part due to the methodology used to determine acuity, but may also be due to differences in diel patterns, lifestyle and phylogeny. We demonstrate that for the short-tailed opossum, the OPT is a rapid and reliable method of determining a baseline acuity and can be used to study enhanced acuities due to cortical plasticity.


Subject(s)
Monodelphis/physiology , Visual Acuity/physiology , Animals , Female , Head Movements , Male , Mice , Nystagmus, Optokinetic/physiology , Photic Stimulation , Phylogeny , Rats , Space Perception/physiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...