Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.521
Filter
1.
Plant Mol Biol ; 114(3): 64, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809410

ABSTRACT

Pollen tube growth is an essential step leading to reproductive success in flowering plants, in which vesicular trafficking plays a key role. Vesicular trafficking from endoplasmic reticulum to the Golgi apparatus is mediated by the coat protein complex II (COPII). A key component of COPII is small GTPase Sar1. Five Sar1 isoforms are encoded in the Arabidopsis genome and they show distinct while redundant roles in various cellular and developmental processes, especially in reproduction. Arabidopsis Sar1b is essential for sporophytic control of pollen development while Sar1b and Sar1c are critical for gametophytic control of pollen development. Because functional loss of Sar1b and Sar1c resulted in pollen abortion, whether they influence pollen tube growth was unclear. Here we demonstrate that Sar1b mediates pollen tube growth, in addition to its role in pollen development. Although functional loss of Sar1b does not affect pollen germination, it causes a significant reduction in male transmission and of pollen tube penetration of style. We further show that membrane dynamics at the apex of pollen tubes are compromised by Sar1b loss-of-function. Results presented provide further support of functional complexity of the Sar1 isoforms.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Pollen Tube , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Pollen Tube/growth & development , Pollen Tube/metabolism , Pollen Tube/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , Monomeric GTP-Binding Proteins/genetics , Gene Expression Regulation, Plant , Pollen/growth & development , Pollen/genetics , Pollen/metabolism , Plants, Genetically Modified , Germination/genetics
2.
J Cell Sci ; 137(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38587461

ABSTRACT

Mitochondrial fission is a tightly regulated process involving multiple proteins and cell signaling. Despite extensive studies on mitochondrial fission factors, our understanding of the regulatory mechanisms remains limited. This study shows the critical role of a mitochondrial GTPase, GTPBP8, in orchestrating mitochondrial fission in mammalian cells. Depletion of GTPBP8 resulted in drastic elongation and interconnectedness of mitochondria. Conversely, overexpression of GTPBP8 shifted mitochondrial morphology from tubular to fragmented. Notably, the induced mitochondrial fragmentation from GTPBP8 overexpression was inhibited in cells either depleted of the mitochondrial fission protein Drp1 (also known as DNM1L) or carrying mutated forms of Drp1. Importantly, downregulation of GTPBP8 caused an increase in oxidative stress, modulating cell signaling involved in the increased phosphorylation of Drp1 at Ser637. This phosphorylation hindered the recruitment of Drp1 to mitochondria, leading to mitochondrial fission defects. By contrast, GTPBP8 overexpression triggered enhanced recruitment and assembly of Drp1 at mitochondria. In summary, our study illuminates the cellular function of GTPBP8 as a pivotal modulator of the mitochondrial division apparatus, inherently reliant on its influence on Drp1.


Subject(s)
Dynamins , Microtubule-Associated Proteins , Mitochondria , Mitochondrial Dynamics , Monomeric GTP-Binding Proteins , Humans , Dynamins/metabolism , Dynamins/genetics , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Mitochondria/metabolism , Mitochondrial Dynamics/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Oxidative Stress , Phosphorylation , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism
3.
Int J Mol Sci ; 25(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38674111

ABSTRACT

Coatomer Protein Complex-II (COPII) mediates anterograde vesicle transport from the endoplasmic reticulum (ER) to the Golgi apparatus. Here, we report that the COPII coatomer complex is constructed dependent on a small GTPase, Sar1, in spermatocytes before and during Drosophila male meiosis. COPII-containing foci co-localized with transitional endoplasmic reticulum (tER)-Golgi units. They showed dynamic distribution along astral microtubules and accumulated around the spindle pole, but they were not localized on the cleavage furrow (CF) sites. The depletion of the four COPII coatomer subunits, Sec16, or Sar1 that regulate COPII assembly resulted in multinucleated cell production after meiosis, suggesting that cytokinesis failed in both or either of the meiotic divisions. Although contractile actomyosin and anilloseptin rings were formed once plasma membrane ingression was initiated, they were frequently removed from the plasma membrane during furrowing. We explored the factors conveyed toward the CF sites in the membrane via COPII-mediated vesicles. DE-cadherin-containing vesicles were formed depending on Sar1 and were accumulated in the cleavage sites. Furthermore, COPII depletion inhibited de novo plasma membrane insertion. These findings suggest that COPII vesicles supply the factors essential for the anchoring and/or constriction of the contractile rings at cleavage sites during male meiosis in Drosophila.


Subject(s)
COP-Coated Vesicles , Cytokinesis , Drosophila Proteins , Meiosis , Vesicular Transport Proteins , Animals , Male , Cadherins/metabolism , Cell Membrane/metabolism , COP-Coated Vesicles/metabolism , Cytokinesis/physiology , Drosophila/metabolism , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Meiosis/physiology , Monomeric GTP-Binding Proteins/metabolism , Monomeric GTP-Binding Proteins/genetics , Spermatocytes/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
4.
Cell Signal ; 119: 111172, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38604342

ABSTRACT

Simvastatin is an inhibitor of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, which is a rate-limiting enzyme of the cholesterol synthesis pathway. It has been used clinically as a lipid-lowering agent to reduce low-density lipoprotein (LDL) cholesterol levels. In addition, antitumor activity has been demonstrated. Although simvastatin attenuates the prenylation of small GTPases, its effects on cell division in which small GTPases play an important role, have not been examined as a mechanism underlying its cytostatic effects. In this study, we determined its effect on cell division. Cell cycle synchronization experiments revealed a delay in mitotic progression in simvastatin-treated cells at concentrations lower than the IC50. Time-lapse imaging analysis indicated that the duration of mitosis, especially from mitotic entry to anaphase onset, was prolonged. In addition, simvastatin increased the number of cells exhibiting misoriented anaphase/telophase and bleb formation. Inhibition of the spindle assembly checkpoint (SAC) kinase Mps1 canceled the mitotic delay. Additionally, the number of cells exhibiting kinetochore localization of BubR1, an essential component of SAC, was increased, suggesting an involvement of SAC in the mitotic delay. Enhancement of F-actin formation and cell rounding at mitotic entry indicates that cortical actin dynamics were affected by simvastatin. The cholesterol removal agent methyl-ß-cyclodextrin (MßCD) accelerated mitotic progression differently from simvastatin, suggesting that cholesterol loss from the plasma membrane is not involved in the mitotic delay. Of note, the small GTPase RhoA, which is a critical factor for cortical actin dynamics, exhibited upregulated expression. In addition, Rap1 was likely not geranylgeranylated. Our results demonstrate that simvastatin affects actin dynamics by modifying small GTPases, thereby activating the spindle assembly checkpoint and causing abnormal cell division.


Subject(s)
M Phase Cell Cycle Checkpoints , Simvastatin , Simvastatin/pharmacology , Humans , M Phase Cell Cycle Checkpoints/drug effects , HeLa Cells , Monomeric GTP-Binding Proteins/metabolism , Mitosis/drug effects , Cell Division/drug effects , rhoA GTP-Binding Protein/metabolism
5.
Proc Natl Acad Sci U S A ; 121(19): e2322164121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38687799

ABSTRACT

Proteins carrying a signal peptide and/or a transmembrane domain enter the intracellular secretory pathway at the endoplasmic reticulum (ER) and are transported to the Golgi apparatus via COPII vesicles or tubules. SAR1 initiates COPII coat assembly by recruiting other coat proteins to the ER membrane. Mammalian genomes encode two SAR1 paralogs, SAR1A and SAR1B. While these paralogs exhibit ~90% amino acid sequence identity, it is unknown whether they perform distinct or overlapping functions in vivo. We now report that genetic inactivation of Sar1a in mice results in lethality during midembryogenesis. We also confirm previous reports that complete deficiency of murine Sar1b results in perinatal lethality. In contrast, we demonstrate that deletion of Sar1b restricted to hepatocytes is compatible with survival, though resulting in hypocholesterolemia that can be rescued by adenovirus-mediated overexpression of either SAR1A or SAR1B. To further examine the in vivo function of these two paralogs, we genetically engineered mice with the Sar1a coding sequence replacing that of Sar1b at the endogenous Sar1b locus. Mice homozygous for this allele survive to adulthood and are phenotypically normal, demonstrating complete or near-complete overlap in function between the two SAR1 protein paralogs in mice. These data also suggest upregulation of SAR1A gene expression as a potential approach for the treatment of SAR1B deficiency (chylomicron retention disease) in humans.


Subject(s)
Monomeric GTP-Binding Proteins , Animals , Humans , Mice , COP-Coated Vesicles/metabolism , COP-Coated Vesicles/genetics , Endoplasmic Reticulum/metabolism , Hepatocytes/metabolism , Mice, Knockout , Monomeric GTP-Binding Proteins/metabolism , Monomeric GTP-Binding Proteins/genetics
6.
Methods Mol Biol ; 2797: 227-236, 2024.
Article in English | MEDLINE | ID: mdl-38570463

ABSTRACT

Guanine nucleotides can be quantitatively analyzed by high-performance liquid chromatography (HPLC). Here we describe an ion-pair reversed-phase HPLC (IP-RP-HPLC)-based method, which enables analyzing GDP and GTP bound to small GTPases immunoprecipitated from cells. The activation status of FLAG-KRAS expressed in HEK293T cells can be investigated with the IP-RP-HPLC method. This method also can be adapted to determine the effects of compounds such as the KRAS/G12C inhibitor sotorasib on the activation status of FLAG-KRAS in the cells.


Subject(s)
Guanine Nucleotides , Monomeric GTP-Binding Proteins , Humans , Chromatography, High Pressure Liquid/methods , Proto-Oncogene Proteins p21(ras)/genetics , HEK293 Cells
7.
Commun Biol ; 7(1): 273, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472392

ABSTRACT

Membrane-enclosed organelles are defining features of eukaryotes in distinguishing these organisms from prokaryotes. Specification of distinct membranes is critical to assemble and maintain discrete compartments. Small GTPases and their regulators are the signaling molecules that drive membrane-modifying machineries to the desired location. These signaling molecules include Rab and Rag GTPases, roadblock and longin domain proteins, and TRAPPC3-like proteins. Here, we take a structural approach to assess the relatedness of these eukaryotic-like proteins in Asgard archaea, the closest known prokaryotic relatives to eukaryotes. We find that the Asgard archaea GTPase core domains closely resemble eukaryotic Rabs and Rags. Asgard archaea roadblock, longin and TRAPPC3 domain-containing proteins form dimers similar to those found in the eukaryotic TRAPP and Ragulator complexes. We conclude that the emergence of these protein architectures predated eukaryogenesis, however further adaptations occurred in proto-eukaryotes to allow these proteins to regulate distinct internal membranes.


Subject(s)
Monomeric GTP-Binding Proteins , Monomeric GTP-Binding Proteins/chemistry , Archaea/metabolism , Protein Transport
8.
Cells ; 13(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38534316

ABSTRACT

Small GTPases are molecular switches that participate in many essential cellular processes. Amongst them, human Rac1 was first described for its role in regulating actin cytoskeleton dynamics and cell migration, with a close relation to carcinogenesis. More recently, the role of Rac1 in regulating the production of reactive oxygen species (ROS), both as a subunit of NADPH oxidase complexes and through its association with mitochondrial functions, has drawn attention. Malfunctions in this context affect cellular plasticity and apoptosis, related to neurodegenerative diseases and diabetes. Some of these features of Rac1 are conserved in its yeast homologue Rho5. Here, we review the structural and functional similarities and differences between these two evolutionary distant proteins and propose yeast as a useful model and a device for high-throughput screens for specific drugs.


Subject(s)
Monomeric GTP-Binding Proteins , Saccharomyces cerevisiae , Male , Humans , Saccharomyces cerevisiae/metabolism , Monomeric GTP-Binding Proteins/metabolism , Oxidative Stress , rho GTP-Binding Proteins/metabolism , Reactive Oxygen Species/metabolism
9.
Cell Rep ; 43(3): 113941, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38478523

ABSTRACT

Resting CD4 T cells resist productive HIV-1 infection. The HIV-2/simian immunodeficiency virus protein viral accessory protein X (Vpx) renders these cells permissive to infection, presumably by alleviating blocks at cytoplasmic reverse transcription and subsequent nuclear import of reverse-transcription/pre-integration complexes (RTC/PICs). Here, spatial analyses using quantitative virus imaging techniques reveal that HIV-1 capsids containing RTC/PICs are readily imported into the nucleus, recruit the host dependency factor CPSF6, and translocate to nuclear speckles in resting CD4 T cells. Reverse transcription, however, remains incomplete, impeding proviral integration and viral gene expression. Vpx or pharmacological inhibition of the deoxynucleotide triphosphohydrolase (dNTPase) activity of the restriction factor SAM domain and HD domain-containing protein 1 (SAMHD1) increases levels of nuclear reverse-transcribed cDNA and facilitates HIV-1 integration. Nuclear import and intranuclear transport of viral complexes therefore do not pose important blocks to HIV-1 in resting CD4 T cells, and the limitation to reverse transcription by SAMHD1's dNTPase activity constitutes the main pre-integration block to infection.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Monomeric GTP-Binding Proteins , Animals , Humans , HIV-1/genetics , CD4-Positive T-Lymphocytes/metabolism , SAM Domain and HD Domain-Containing Protein 1/metabolism , HIV-2/genetics , Viral Regulatory and Accessory Proteins/metabolism , Monomeric GTP-Binding Proteins/metabolism , HEK293 Cells
10.
J Cell Sci ; 137(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38506245

ABSTRACT

Natural killer (NK) cells have the ability to lyse other cells through the release of lytic granules (LGs). This is in part mediated by the small GTPase Rab27a, which was first identified to play a crucial role in degranulation through the study of individuals harboring mutations in the gene encoding Rab27a. However, the guanine nucleotide exchange factor (GEF) regulating the activation of Rab27a in cytotoxic lymphocytes was unknown. Here, we show that knockout of MADD significantly decreased the levels of GTP-bound Rab27a in both resting and stimulated NK cells, and MADD-deficient NK cells and CD8+ T cells displayed severely reduced degranulation and cytolytic ability, similar to that seen with Rab27a deficiency. Although MADD colocalized with Rab27a on LGs and was enriched at the cytolytic synapse, the loss of MADD did not impact Rab27a association with LGs nor their recruitment to the cytolytic synapse. Together, our results demonstrate an important role for MADD in cytotoxic lymphocyte killing.


Subject(s)
Exocytosis , Monomeric GTP-Binding Proteins , Humans , Killer Cells, Natural , CD8-Positive T-Lymphocytes , Cell Degranulation , Guanine Nucleotide Exchange Factors/genetics , Death Domain Receptor Signaling Adaptor Proteins
11.
J Mol Graph Model ; 129: 108748, 2024 06.
Article in English | MEDLINE | ID: mdl-38452417

ABSTRACT

The sterile alpha motif and histidine-aspartate domain-containing protein 1 (or SAMHD1), a human dNTP-triphosphohydrolase, contributes to HIV-1 restriction in select terminally differentiated cells of the immune system. While the prevailing hypothesis is that the catalytically active form of the protein is an allosterically triggered tetramer, whose HIV-1 restriction properties are attributed to its dNTP - triphosphohydrolase activity, it is also known to bind to ssRNA and ssDNA oligomers. A complete picture of the structure-function relationship of the enzyme is still elusive and the function corresponding to its nucleic acid binding ability is debated. In this in silico study, we investigate the stability, preference and allosteric effects of DNA oligomers bound to SAMHD1. In particular, we compare the binding of DNA and RNA oligomers of the same sequence and also consider the binding of DNA fragments with phosphorothioate bonds in the backbone. The results are compared with the canonical form with the monomers connected by GTP/dATP crossbridges. The simulations indicate that SAMHD1 dimers preferably bind to DNA and RNA oligomers compared to GTP/dATP. However, allosteric communication channels are altered in the nucleic acid acid bound complexes compared to the canonical form. All results are consistent with the hypothesis that the DNA bound form of the protein correspond to an unproductive off-pathway state where the protein is sequestered and not available for dNTP hydrolysis.


Subject(s)
Molecular Dynamics Simulation , Monomeric GTP-Binding Proteins , Humans , Monomeric GTP-Binding Proteins/chemistry , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , SAM Domain and HD Domain-Containing Protein 1/metabolism , Nucleotides/metabolism , DNA , Guanosine Triphosphate/chemistry , Guanosine Triphosphate/metabolism , Communication , RNA
12.
Cell Mol Biol Lett ; 29(1): 27, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383288

ABSTRACT

BACKGROUND: The R-RAS2 is a small GTPase highly similar to classical RAS proteins at the regulatory and signaling levels. The high evolutionary conservation of R-RAS2, its links to basic cellular processes and its role in cancer, make R-RAS2 an interesting research topic. To elucidate the evolutionary history of R-RAS proteins, we investigated and compared structural and functional properties of ancestral type R-RAS protein with human R-RAS2. METHODS: Bioinformatics analysis were used to elucidate the evolution of R-RAS proteins. Intrinsic GTPase activity of purified human and sponge proteins was analyzed with GTPase-GloTM Assay kit. The cell model consisted of human breast cancer cell lines MCF-7 and MDA-MB-231 transiently transfected with EsuRRAS2-like or HsaRRAS2. Biological characterization of R-RAS2 proteins was performed by Western blot on whole cell lysates or cell adhesion protein isolates, immunofluorescence and confocal microscopy, MTT test, colony formation assay, wound healing and Boyden chamber migration assays. RESULTS: We found that the single sponge R-RAS2-like gene/protein probably reflects the properties of the ancestral R-RAS protein that existed prior to duplications during the transition to Bilateria, and to Vertebrata. Biochemical characterization of sponge and human R-RAS2 showed that they have the same intrinsic GTPase activity and RNA binding properties. By testing cell proliferation, migration and colony forming efficiency in MDA-MB-231 human breast cancer cells, we showed that the ancestral type of the R-RAS protein, sponge R-RAS2-like, enhances their oncogenic potential, similar to human R-RAS2. In addition, sponge and human R-RAS2 were not found in focal adhesions, but both homologs play a role in their regulation by increasing talin1 and vinculin. CONCLUSIONS: This study suggests that the ancestor of all animals possessed an R-RAS2-like protein with oncogenic properties similar to evolutionarily more recent versions of the protein, even before the appearance of true tissue and the origin of tumors. Therefore, we have unraveled the evolutionary history of R-RAS2 in metazoans and improved our knowledge of R-RAS2 properties, including its structure, regulation and function.


Subject(s)
Breast Neoplasms , Monomeric GTP-Binding Proteins , Animals , Female , Humans , Breast Neoplasms/genetics , Cell Proliferation , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , ras Proteins/genetics , ras Proteins/metabolism , Signal Transduction
13.
Proc Natl Acad Sci U S A ; 121(10): e2311321121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38408251

ABSTRACT

Since their discovery, extracellular vesicles (EVs) have changed our view on how organisms interact with their extracellular world. EVs are able to traffic a diverse array of molecules across different species and even domains, facilitating numerous functions. In this study, we investigate EV production in Euryarchaeota, using the model organism Haloferax volcanii. We uncover that EVs enclose RNA, with specific transcripts preferentially enriched, including those with regulatory potential, and conclude that EVs can act as an RNA communication system between haloarchaea. We demonstrate the key role of an EV-associated small GTPase for EV formation in H. volcanii that is also present across other diverse evolutionary branches of Archaea. We propose the name, ArvA, for the identified family of archaeal vesiculating GTPases. Additionally, we show that two genes in the same operon with arvA (arvB and arvC) are also involved in EV formation. Both, arvB and arvC, are closely associated with arvA in the majority of other archaea encoding ArvA. Our work demonstrates that small GTPases involved in membrane deformation and vesiculation, ubiquitous in Eukaryotes, are also present in Archaea and are widely distributed across diverse archaeal phyla.


Subject(s)
Euryarchaeota , Extracellular Vesicles , Haloferax volcanii , Monomeric GTP-Binding Proteins , Euryarchaeota/genetics , Archaea/genetics , RNA , Haloferax volcanii/genetics , Extracellular Vesicles/genetics
14.
Biochem Soc Trans ; 52(1): 41-53, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38385554

ABSTRACT

Despite the well-established functions of protein palmitoylation in fundamental cellular processes, the roles of this reversible post-translational lipid modification in cardiomyocyte biology remain poorly studied. Palmitoylation is catalyzed by a family of 23 zinc finger and Asp-His-His-Cys domain-containing S-acyltransferases (zDHHC enzymes) and removed by select thioesterases of the lysophospholipase and α/ß-hydroxylase domain (ABHD)-containing families of serine hydrolases. Recently, studies utilizing genetic manipulation of zDHHC enzymes in cardiomyocytes have begun to unveil essential functions for these enzymes in regulating cardiac development, homeostasis, and pathogenesis. Palmitoylation co-ordinates cardiac electrophysiology through direct modulation of ion channels and transporters to impact their trafficking or gating properties as well as indirectly through modification of regulators of channels, transporters, and calcium handling machinery. Not surprisingly, palmitoylation has roles in orchestrating the intracellular trafficking of proteins in cardiomyocytes, but also dynamically fine-tunes cardiomyocyte exocytosis and natriuretic peptide secretion. Palmitoylation has emerged as a potent regulator of intracellular signaling in cardiomyocytes, with recent studies uncovering palmitoylation-dependent regulation of small GTPases through direct modification and sarcolemmal targeting of the small GTPases themselves or by modification of regulators of the GTPase cycle. In addition to dynamic control of G protein signaling, cytosolic DNA is sensed and transduced into an inflammatory transcriptional output through palmitoylation-dependent activation of the cGAS-STING pathway, which has been targeted pharmacologically in preclinical models of heart disease. Further research is needed to fully understand the complex regulatory mechanisms governed by protein palmitoylation in cardiomyocytes and potential emerging therapeutic targets.


Subject(s)
Lipoylation , Monomeric GTP-Binding Proteins , Lipoylation/physiology , Myocytes, Cardiac/metabolism , Signal Transduction , Ion Channels/metabolism , Protein Processing, Post-Translational , Monomeric GTP-Binding Proteins/metabolism , Acyltransferases/metabolism
15.
Mol Genet Metab ; 142(1): 108346, 2024 May.
Article in English | MEDLINE | ID: mdl-38368708

ABSTRACT

OBJECTIVE: Aicardi Goutières Syndrome (AGS) is a genetic interferonopathy associated with multisystemic heterogeneous disease and neurologic dysfunction. AGS includes a broad phenotypic spectrum which is only partially explained by genotype. To better characterize this variability, we will perform a systematic analysis of phenotypic variability in familial cases of AGS. METHODS: Among thirteen families, twenty-six siblings diagnosed with AGS were identified from the Myelin Disorders and Biorepository Project (MDBP) at the Children's Hospital of Philadelphia. Data were collected on the age of onset, genotype, neurologic impairment, and systemic complications. Neurologic impairment was assessed by a disease-specific scale (AGS Severity Scale) at the last available clinical encounter (range: 0-11 representing severe - attenuated phenotypes). The concordance of clinical severity within sibling pairs was categorized based on the difference in AGS Scale (discordant defined as >2-unit difference). The severity classifications were compared between sibling sets and by genotype. RESULTS: Five genotypes were represented: TREX1 (n = 4 subjects), RNASEH2B (n = 8), SAMHD1 (n = 8) ADAR1 (n = 4), and IFIH1 (n = 2). The older sibling was diagnosed later relative to the younger affected sibling (median age 7.32 years [IQR = 14.1] compared to 1.54 years [IQR = 10.3]). Common presenting neurologic symptoms were tone abnormalities (n = 10/26) and gross motor dysfunction (n = 9/26). Common early systemic complications included dysphagia and chilblains. The overall cohort median AGS severity score at the last encounter was 8, while subjects presenting with symptoms before one year had a median score of 5. The TREX1 cohort presented at the youngest age and with the most severe phenotype on average. AGS scores were discordant for 5 of 13 sibling pairs, most commonly in the SAMHD1 pairs. Microcephaly, feeding tube placement, seizures and earlier onset sibling were associated with lower AGS scores (respectively, Wilcoxon rank sum: p = 0.0001, p < 0.0001, p = 0.0426, and Wilcoxon signed rank: p = 0.0239). CONCLUSIONS: In this systematic analysis of phenotypic variability in familial cases, we found discordance between siblings affected by AGS. Our results underscore the heterogeneity of AGS and suggest factors beyond AGS genotype may affect phenotype. Understanding the critical variables associated with disease onset and severity can guide future therapeutic interventions and clinical monitoring. This report reinforces the need for further studies to uncover potential factors to better understand this phenotypic variability, and consequently identify potential targets for interventions in attempt to change the natural history of the disease.


Subject(s)
Autoimmune Diseases of the Nervous System , Exodeoxyribonucleases , Genetic Association Studies , Genotype , Nervous System Malformations , Phenotype , Siblings , Humans , Autoimmune Diseases of the Nervous System/genetics , Nervous System Malformations/genetics , Nervous System Malformations/complications , Female , Male , Child, Preschool , Child , Infant , Exodeoxyribonucleases/genetics , Phosphoproteins/genetics , Ribonuclease H/genetics , SAM Domain and HD Domain-Containing Protein 1/genetics , Adolescent , Monomeric GTP-Binding Proteins/genetics , Interferon-Induced Helicase, IFIH1/genetics , Mutation , RNA-Binding Proteins/genetics , Age of Onset , Severity of Illness Index
17.
J Biomed Sci ; 31(1): 20, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38321486

ABSTRACT

BACKGROUND: Programmed cell death protein 1 (PD-1) is an immune checkpoint receptor expressed on the surface of T cells. High expression of PD-1 leads to T-cell dysfunction in the tumor microenvironment (TME). However, the mechanism of intracellular trafficking and plasma membrane presentation of PD-1 remains unclear. METHODS: Multiple databases of lung cancer patients were integratively analyzed to screen Rab proteins and potential immune-related signaling pathways. Imaging and various biochemical assays were performed in Jurkat T cells, splenocytes, and human peripheral blood mononuclear cells (PBMCs). Rab37 knockout mice and specimens of lung cancer patients were used to validate the concept. RESULTS: Here, we identify novel mechanisms of intracellular trafficking and plasma membrane presentation of PD-1 mediated by Rab37 small GTPase to sustain T cell exhaustion, thereby leading to poor patient outcome. PD-1 colocalized with Rab37-specific vesicles of T cells in a GTP-dependent manner whereby Rab37 mediated dynamic trafficking and membrane presentation of PD-1. However, glycosylation mutant PD-1 delayed cargo recruitment to the Rab37 vesicles, thus stalling membrane presentation. Notably, T cell proliferation and activity were upregulated in tumor-infiltrating T cells from the tumor-bearing Rab37 knockout mice compared to those from wild type. Clinically, the multiplex immunofluorescence-immunohistochemical assay indicated that patients with high Rab37+/PD-1+/TIM3+/CD8+ tumor infiltrating T cell profile correlated with advanced tumor stages and poor overall survival. Moreover, human PBMCs from patients demonstrated high expression of Rab37, which positively correlated with elevated levels of PD-1+ and TIM3+ in CD8+ T cells exhibiting reduced tumoricidal activity. CONCLUSIONS: Our results provide the first evidence that Rab37 small GTPase mediates trafficking and membrane presentation of PD-1 to sustain T cell exhaustion, and the tumor promoting function of Rab37/PD-1 axis in T cells of TME in lung cancer. The expression profile of Rab37high/PD-1high/TIM3high in tumor-infiltrating CD8+ T cells is a biomarker for poor prognosis in lung cancer patients.


Subject(s)
Lung Neoplasms , Monomeric GTP-Binding Proteins , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/metabolism , Hepatitis A Virus Cellular Receptor 2/metabolism , Leukocytes, Mononuclear/metabolism , Lung Neoplasms/pathology , Mice, Knockout , Monomeric GTP-Binding Proteins/metabolism , Programmed Cell Death 1 Receptor , rab GTP-Binding Proteins , T-Cell Exhaustion , Tumor Microenvironment
18.
Protein Expr Purif ; 218: 106446, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38395209

ABSTRACT

The small GTPase Rat sarcoma virus proteins (RAS) are key regulators of cell growth and involved in 20-30% of cancers. RAS switches between its active state and inactive state via exchange of GTP (active) and GDP (inactive). Therefore, to study active protein, it needs to undergo nucleotide exchange to a non-hydrolysable GTP analog. Calf intestine alkaline phosphatase bound to agarose beads (CIP-agarose) is regularly used in a nucleotide exchange protocol to replace GDP with a non-hydrolysable analog. Due to pandemic supply problems and product shortages, we found the need for an alternative to this commercially available product. Here we describe how we generated a bacterial alkaline phosphatase (BAP) with an affinity tag bound to an agarose bead. This BAP completely exchanges the nucleotide in our samples, thereby demonstrating an alternative to the commercially available product using generally available laboratory equipment.


Subject(s)
Monomeric GTP-Binding Proteins , Monomeric GTP-Binding Proteins/metabolism , Nucleotides , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Sepharose , Guanosine Triphosphate/metabolism , Guanosine Diphosphate/metabolism
19.
Cell Signal ; 117: 111102, 2024 05.
Article in English | MEDLINE | ID: mdl-38365113

ABSTRACT

Cluster of differentiation 36 (CD36) is a scavenger receptor (SR), recognizing diverse extracellular ligands in various types of mammalian cells. Long-chain fatty acids (FAs), which are important constituents of phospholipids and triglycerides, also utilize CD36 as a predominant membrane transporter, being incorporated from the circulation across the plasma membrane in several cell types, including cardiac and skeletal myocytes and adipocytes. CD36 is localized in intracellular vesicles as well as the plasma membrane, and its distribution is modulated by extracellular stimuli. Herein, we aimed to clarify the molecular basis of insulin-stimulated translocation of CD36, which leads to the enhanced uptake of long-chain FAs, in adipocytes. To this end, we developed a novel exofacial epitope-tagged reporter to specifically detect cell surface-localized CD36. By employing this reporter, we demonstrate that the small GTPase Rac1 plays a pivotal role in insulin-stimulated translocation of CD36 to the plasma membrane in 3T3-L1 adipocytes. Additionally, phosphoinositide 3-kinase and the protein kinase Akt2 are shown to be involved in the regulation of Rac1. Downstream of Rac1, another small GTPase RalA directs CD36 translocation. Collectively, these results suggest that CD36 is translocated to the plasma membrane by insulin through mechanisms similar to those for the glucose transporter GLUT4 in adipocytes.


Subject(s)
Insulin , Monomeric GTP-Binding Proteins , Animals , Adipocytes/metabolism , CD36 Antigens/metabolism , Cell Membrane/metabolism , Fatty Acids/metabolism , Glucose/metabolism , Glucose Transporter Type 4/metabolism , Insulin/pharmacology , Insulin/metabolism , Membrane Transport Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Transport , Signal Transduction , Mice
20.
Int J Mol Sci ; 25(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38203762

ABSTRACT

Botrytis cinerea is a necrotrophic fungus that can cause gray mold in over 1400 plant species. Once it is detected by Arabidopsis thaliana, several defense responses are activated against this fungus. The proper activation of these defenses determines plant susceptibility or resistance. It has been proposed that the RAC/ROP small GTPases might serve as a molecular link in this process. In this study, we investigate the potential role of the Arabidopsis RAC7 gene during infection with B. cinerea. For that, we evaluated A. thaliana RAC7-OX lines, characterized by the overexpression of the RAC7 gene. Our results reveal that these RAC7-OX lines displayed increased susceptibility to B. cinerea infection, with enhanced fungal colonization and earlier lesion development. Additionally, they exhibited heightened sensitivity to bacterial infections caused by Pseudomonas syringae and Pectobacterium brasiliense. By characterizing plant canonical defense mechanisms and performing transcriptomic profiling, we determined that RAC7-OX lines impaired the plant transcriptomic response before and during B. cinerea infection. Global pathway analysis of differentially expressed genes suggested that RAC7 influences pathogen perception, cell wall homeostasis, signal transduction, and biosynthesis and response to hormones and antimicrobial compounds through actin filament modulation. Herein, we pointed out, for first time, the negative role of RAC7 small GTPase during A. thaliana-B. cinerea interaction.


Subject(s)
Arabidopsis , Monomeric GTP-Binding Proteins , Actin Cytoskeleton , Arabidopsis/genetics , Immune System , Monomeric GTP-Binding Proteins/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...