Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.903
Filter
1.
Chem Biol Drug Des ; 103(5): e14539, 2024 May.
Article in English | MEDLINE | ID: mdl-38760181

ABSTRACT

Tyrosinase is a copper-containing enzyme involved in the biosynthesis of melanin pigment. While the excess production of melanin causes hyperpigmentation of human skin, hypopigmentation results in medical conditions like vitiligo. Tyrosinase inhibitors could be used as efficient skin whitening agents and tyrosinase agonists could be used for enhanced melanin synthesis and skin protection from UV exposure. Among a wide range of tyrosinase-regulating compounds, natural and synthetic derivatives of furochromenones, such as 8-methoxypsoralen (8-MOP), are known to both activate and inhibit tyrosinase. We recently reported a synthetic approach to generate a variety of dihydrofuro[3,2-c]chromenones and furo[3,2-c]chromenones in a metal-free condition. In the present study, we investigated these compounds for their potential as antagonists or agonists of tyrosinase. Using fungal tyrosinase-based in vitro biochemical assay, we obtained one compound (3k) which could inhibit tyrosinase activity, and the other compound (4f) that stimulated tyrosinase activity. The kinetic studies revealed that compound 3k caused 'mixed' type tyrosinase inhibition and 4f stimulated the catalytic efficiency. Studying the mechanisms of these compounds may provide a basis for the development of new effective tyrosinase inhibitors or activators.


Subject(s)
Enzyme Inhibitors , Monophenol Monooxygenase , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Kinetics , Humans , Methoxsalen/pharmacology , Methoxsalen/chemistry , Enzyme Activators/chemistry , Enzyme Activators/pharmacology
2.
Mar Drugs ; 22(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38786597

ABSTRACT

Abnormal melanogenesis can lead to hyperpigmentation. Tyrosinase (TYR), a key rate-limiting enzyme in melanin production, is an important therapeutic target for these disorders. We investigated the TYR inhibitory activity of hydrolysates extracted from the muscle tissue of Takifugu flavidus (TFMH). We used computer-aided virtual screening to identify a novel peptide that potently inhibited melanin synthesis, simulated its binding mode to TYR, and evaluated functional efficacy in vitro and in vivo. TFMH inhibited the diphenolase activities of mTYR, reducing TYR substrate binding activity and effectively inhibiting melanin synthesis. TFMH indirectly reduced cAMP response element-binding protein phosphorylation in vitro by downregulating melanocortin 1 receptor expression, thereby inhibiting expression of the microphthalmia-associated transcription factor, further decreasing TYR, tyrosinase related protein 1, and dopachrome tautomerase expression and ultimately impeding melanin synthesis. In zebrafish, TFMH significantly reduced black spot formation. TFMH (200 µg/mL) decreased zebrafish TYR activity by 43% and melanin content by 52%. Molecular dynamics simulations over 100 ns revealed that the FGFRSP (T-6) peptide stably binds mushroom TYR via hydrogen bonds and ionic interactions. T-6 (400 µmol/L) reduced melanin content in B16F10 melanoma cells by 71% and TYR activity by 79%. In zebrafish, T-6 (200 µmol/L) inhibited melanin production by 64%. TFMH and T-6 exhibit good potential for the development of natural skin-whitening cosmetic products.


Subject(s)
Melanins , Melanoma, Experimental , Monophenol Monooxygenase , Takifugu , Zebrafish , Animals , Melanins/biosynthesis , Takifugu/metabolism , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Mice , Melanoma, Experimental/drug therapy , Melanoma, Experimental/metabolism , Cell Line, Tumor , Microphthalmia-Associated Transcription Factor/metabolism , Muscles/drug effects , Muscles/metabolism , Intramolecular Oxidoreductases/metabolism , Receptor, Melanocortin, Type 1/metabolism , Molecular Dynamics Simulation , Cyclic AMP Response Element-Binding Protein/metabolism
3.
Food Chem ; 451: 139409, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38692236

ABSTRACT

Herein, nineteen buckwheat honey samples collected from 19 stations of different ecological zones of Kazakhstan were analysed for their pollen density, physicochemical properties, chemical composition, antioxidant, anticholinesterase, tyrosinase inhibitory, and urease inhibitory activities with chemometric approaches. Twelve phenolic compounds and fumaric acid were identified using HPLC-DAD, and mainly fumaric, p-hydroxybenzoic, p-coumaric, trans-2-hydroxy cinnamic acids, and chrysin were detected in all samples. The honey samples collected from the Northern zone exhibited best antioxidant activity in lipid peroxidation inhibitory (IC50:8.65 ± 0.50 mg/mL), DPPH• (IC50:17.07 ± 1.49 mg/mL), ABTS•+ (IC50:8.90 ± 0.65 mg/mL), CUPRAC (A0.50:7.51 ± 0.30 mg/mL) and metal chelating assay (IC50:10.39 ± 0.71 mg/mL). In contrast, South-eastern zone samples indicated better acetylcholinesterase (55.57 ± 0.83%), butyrylcholinesterase (49.59 ± 1.09%), tyrosinase (44.40 ± 1.21%), and moderate urease (24.57 ± 0.33%) inhibitory activities at 20 mg/mL. The chemometric classification of nineteen buckwheat honey was performed using PCA and HCA techniques. Both were supported by correlation analysis. Thirteen compounds contributed significantly to the clustering of buckwheat honey based on geographical origin.


Subject(s)
Antioxidants , Fagopyrum , Honey , Honey/analysis , Honey/classification , Fagopyrum/chemistry , Fagopyrum/classification , Antioxidants/chemistry , Antioxidants/analysis , Kazakhstan , Monophenol Monooxygenase/antagonists & inhibitors , Chemometrics , Phenols/analysis , Phenols/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/analysis
4.
J Agric Food Chem ; 72(19): 10958-10969, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38703118

ABSTRACT

Demand for the exploration of botanical pesticides continues to increase due to the detrimental effects of synthetic chemicals on human health and the environment and the development of resistance by pests. Under the guidance of a bioactivity-guided approach and HSQC-based DeepSAT, 16 coumarin derivatives were discovered from the leaves of Ailanthus altissima (Mill.) Swingle, including seven undescribed monoterpenoid coumarins, three undescribed monoterpenoid phenylpropanoids, and two new coumarin derivatives. The structure and configurations of these compounds were established and validated via extensive spectroscopic analysis, acetonide analysis, and quantum chemical calculations. Biologically, 5 exhibited significant antifeedant activity toward the Plutella xylostella. Moreover, tyrosinase being closely related to the growth and development of larva, the inhibitory potentials of 5 against tyrosinase was evaluated in vitro and in silico. The bioactivity evaluation results highlight the prospect of 5 as a novel category of botanical insecticide.


Subject(s)
Ailanthus , Coumarins , Insecticides , Plant Extracts , Plant Leaves , Plant Leaves/chemistry , Animals , Coumarins/pharmacology , Coumarins/chemistry , Ailanthus/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Insecticides/chemistry , Insecticides/pharmacology , Molecular Structure , Larva/drug effects , Larva/growth & development , Moths/drug effects , Moths/growth & development , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Biological Assay , Monoterpenes/pharmacology , Monoterpenes/chemistry , Feeding Behavior/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry
5.
J Enzyme Inhib Med Chem ; 39(1): 2357174, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38814149

ABSTRACT

Tyrosinase, a pivotal enzyme in melanin synthesis, is a primary target for the development of depigmenting agents. In this work, in vitro and in silico techniques were employed to identify novel tyrosinase inhibitors from a set of 12 anilino-1,4-naphthoquinone derivatives. Results from the mushroom tyrosinase activity assay indicated that, among the 12 derivatives, three compounds (1, 5, and 10) demonstrated the most significant inhibitory activity against mushroom tyrosinase, surpassing the effectiveness of the kojic acid. Molecular docking revealed that all studied derivatives interacted with copper ions and amino acid residues at the enzyme active site. Molecular dynamics simulations provided insights into the stability of enzyme-inhibitor complexes, in which compounds 1, 5, and particularly 10 displayed greater stability, atomic contacts, and structural compactness than kojic acid. Drug likeness prediction further strengthens the potential of anilino-1,4-naphthoquinones as promising candidates for the development of novel tyrosinase inhibitors for the treatment of hyperpigmentation disorders.


Subject(s)
Agaricales , Dose-Response Relationship, Drug , Enzyme Inhibitors , Monophenol Monooxygenase , Naphthoquinones , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Naphthoquinones/pharmacology , Naphthoquinones/chemistry , Naphthoquinones/chemical synthesis , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Agaricales/enzymology , Structure-Activity Relationship , Molecular Structure , Molecular Docking Simulation , Molecular Dynamics Simulation
6.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731413

ABSTRACT

Ultraviolet radiation can heighten tyrosinase activity, stimulate melanocyte production, impede the metabolism of numerous melanocytes, and result in the accumulation of plaques on the skin surface. α-Arbutin, a bioactive substance extracted from the arbutin plant, has been widely used for skin whitening. In this study, the whitening effect of α-arbutin by inhibiting tyrosinase activity and alleviating the photoaging effect induced by UVB are investigated. The results indicate that α-arbutin can inhibit skin inflammation, and its effectiveness is positively correlated with concentration. Moreover, α-arbutin can reduce the skin epidermal thickness, decrease the number of inflammatory cells, and down-regulate the expression levels of IL-1ß, IL-6 and TNF-α, which are inflammatory factors. It also promotes the expression of COL-1 collagen, thus playing an important role in anti-inflammatory action. Network pharmacology, metabolomics and transcriptomics further confirm that α-arbutin is related to the L-tyrosine metabolic pathway and may interfere with various signaling pathways related to melanin and other photoaging by regulating metabolic changes. Therefore, α-arbutin has a potential inhibitory effect on UVB-induced photoaging and possesses a whitening effect as a cosmetic compound.


Subject(s)
Arbutin , Skin Aging , Ultraviolet Rays , Arbutin/pharmacology , Ultraviolet Rays/adverse effects , Animals , Skin Aging/drug effects , Skin Aging/radiation effects , Mice , Monophenol Monooxygenase/metabolism , Monophenol Monooxygenase/antagonists & inhibitors , Humans , Skin/radiation effects , Skin/drug effects , Skin/metabolism , Skin/pathology
7.
Bioorg Chem ; 147: 107397, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691905

ABSTRACT

Phenolics, abundant in plants, constitute a significant portion of phytoconstituents consumed in the human diet. The phytochemical screening of the aerial parts of Centaurium spicatum led to the isolation of five phenolics. The anti-tyrosinase activities of the isolated compounds were assessed through a combination of in vitro experiments and multiple in silico approaches. Docking and molecular dynamics (MD) simulation techniques were utilized to figure out the binding interactions of the isolated phytochemicals with tyrosinase. The findings from molecular docking analysis revealed that the isolated phenolics were able to bind effectively to tyrosinase and potentially inhibit substrate binding, consequently diminishing the catalytic activity of tyrosinase. Among isolated compounds, cichoric acid displayed the lowest binding energy and the highest extent of polar interactions with the target enzyme. Analysis of MD simulation trajectories indicated that equilibrium was reached within 30 ns for all complexes of tyrosinase with the isolated phenolics. Among the five ligands studied, cichoric acid exhibited the lowest interaction energies, rendering its complex with tyrosinase the most stable. Considering these collective findings, cichoric acid emerges as a promising candidate for the design and development of a potential tyrosinase inhibitor. Furthermore, the in vitro anti-tyrosinase activity assay unveiled significant variations among the isolated compounds. Notably, cichoric acid exhibited the most potent inhibitory effect, as evidenced by the lowest IC50 value (7.92 ± 1.32 µg/ml), followed by isorhamnetin and gentiopicrin. In contrast, sinapic acid demonstrated the least inhibitory activity against tyrosinase, with the highest IC50 value. Moreover, cichoric acid exhibited a mixed inhibition mode against the hydrolysis of l-DOPA catalyzed by tyrosinase, with Ki value of 1.64. Remarkably, these experimental findings align well with the outcomes of docking and MD simulations, underscoring the consistency and reliability of our computational predictions with the actual inhibitory potential observed in vitro.


Subject(s)
Enzyme Inhibitors , Molecular Docking Simulation , Monophenol Monooxygenase , Phenols , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Phenols/chemistry , Phenols/pharmacology , Phenols/isolation & purification , Molecular Structure , Dose-Response Relationship, Drug , Structure-Activity Relationship , Molecular Dynamics Simulation , Agaricales/enzymology
8.
Front Biosci (Landmark Ed) ; 29(5): 194, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38812330

ABSTRACT

BACKGROUNDS: Melanogenesis, regulated by genetic, hormonal, and environmental factors, occurs in melanocytes in the basal layer of the epidermis. Dysregulation of this process can lead to various skin disorders, such as hyperpigmentation and hypopigmentation. Therefore, the present study investigated the effect of ultrasonic-assisted ethanol extract (SHUE) from Sargassum horneri (S. horneri), brown seaweed against melanogenesis in α-melanocyte-stimulating hormone (MSH)-stimulated B16F10 murine melanocytes. METHODS: Firstly, yield and proximate compositional analysis of the samples were conducted. The effect of SHUE on cell viability has been evaluated by using 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. After that, the melanin content and cellular tyrosinase activity in α-MSH-stimulated B16F10 murine melanocytes were examined. Western blot analysis was carried out to investigate the protein expression levels of microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 (TRP1), and tyrosinase-related protein-2 (TRP2). In addition, the effect of extracellular signal-regulated kinase (ERK) on the melanogenesis process was assessed via Western blotting. RESULTS: As per the analysis, SHUE contained the highest average yield on a dry basis at 28.70 ± 3.21%. The findings showed that SHUE reduced the melanin content and cellular tyrosinase activity in α-MSH-stimulated B16F10 murine melanocytes. Additionally, the expression levels of MITF, TRP1, and TRP2 protein were significantly downregulated by SHUE treatment in α-MSH-stimulated B16F10 murine melanocytes. Moreover, SHUE upregulated the phosphorylation of ERK and AKT in α-MSH-stimulated B16F10 murine melanocytes. In addition, experiments conducted using the ERK inhibitor (PD98059) revealed that the activity of SHUE depends on the ERK signaling cascade. CONCLUSION: These results suggest that SHUE has an anti-melanogenic effect and can be used as a material in the formulation of cosmetics related to whitening and lightening.


Subject(s)
Ethanol , Melanins , Melanocytes , Monophenol Monooxygenase , Sargassum , Animals , Sargassum/chemistry , Melanins/biosynthesis , Melanins/metabolism , Monophenol Monooxygenase/metabolism , Monophenol Monooxygenase/antagonists & inhibitors , Melanocytes/drug effects , Melanocytes/metabolism , Mice , Ethanol/chemistry , Microphthalmia-Associated Transcription Factor/metabolism , alpha-MSH/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Survival/drug effects , Melanoma, Experimental/metabolism , Cell Line, Tumor , Intramolecular Oxidoreductases/metabolism
9.
J Med Chem ; 67(9): 7260-7275, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38651218

ABSTRACT

Artificial intelligence (AI) de novo molecular generation is a highly promising strategy in the drug discovery, with deep reinforcement learning (RL) models emerging as powerful tools. This study introduces a fragment-by-fragment growth RL forward molecular generation and optimization strategy based on a low activity lead compound. This process integrates fragment growth-based reaction templates, while target docking and drug-likeness prediction were simultaneously performed. This comprehensive approach considers molecular similarity, internal diversity, synthesizability, and effectiveness, thereby enhancing the quality and efficiency of molecular generation. Finally, a series of tyrosinase inhibitors were generated and synthesized. Most compounds exhibited more improved activity than lead, with an optimal candidate compound surpassing the effects of kojic acid and demonstrating significant antipigmentation activity in a zebrafish model. Furthermore, metabolic stability studies indicated susceptibility to hepatic metabolism. The proposed AI structural optimization strategies will play a promising role in accelerating the drug discovery and improving traditional efficiency.


Subject(s)
Artificial Intelligence , Enzyme Inhibitors , Monophenol Monooxygenase , Zebrafish , Animals , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Molecular Docking Simulation , Structure-Activity Relationship , Molecular Structure , Humans , Drug Discovery
10.
Int J Biol Macromol ; 267(Pt 2): 131513, 2024 May.
Article in English | MEDLINE | ID: mdl-38608979

ABSTRACT

Tyrosinase is a copper oxidase enzyme which catalyzes the first two steps in the melanogenesis pathway, L-tyrosine to L-dopa conversion and, then, to o-dopaquinone and dopachrome. Hypopigmentation and, above all, hyperpigmentation issues can be originated depending on their activity. This enzyme also promotes the browning of fruits and vegetables. Therefore, control of their activity by regulators is research topic of great relevance. In this work, we consider the use of inhibitors of monophenolase and diphenolase activities of the enzyme in order to accomplish such control. An experimental design and data analysis which allow the accurate calculation of the degree of inhibition of monophenolase activity (iM) and diphenolase activity (iD) are proposed. The IC50 values (amount of inhibitor that causes 50 % inhibition at a fixed substrate concentration) can be calculated for the two activities and from the values of IC50M (monophenolase) and IC50D(diphenolase). Additionally, the strength and type of inhibition can be deduced from these values. The data analysis from these IC50D values allows to obtain the values of [Formula: see text] or [Formula: see text] , or and [Formula: see text] from the values of IC50M. In all cases, the values of the different must satisfy their relationship with IC50M and IC50D.


Subject(s)
Enzyme Inhibitors , Monophenol Monooxygenase , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Monophenol Monooxygenase/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Inhibitory Concentration 50 , Kinetics , Oxidoreductases/antagonists & inhibitors , Oxidoreductases/metabolism , Humans
11.
Fitoterapia ; 175: 105901, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38467281

ABSTRACT

To compare the bioactive compounds in agarwood induced by different methods in Aquilaria sinensis(Lour.) Gilg trees, a two dimensional thin layer chromatograph(2D-TLC) combined with effect directive analysis(EDA) was developed. Three antioxidants were found by 2D-TLC-DPPH and further identified as 2-(2-phenylethyl) chromones(PECs) with LC-MS/MS. The 3 antioxidants decreased along agarwood formation and their compositions in drilling induced agarwood differed with those in microbe culture induced agarwood. Further study showed NaCl treatment promoted antioxidants accumulation in agarwood induced by drilling or hot drilling. Hot drilling combined with salty stimulation was most efficient in some chemicals accumulation, which were identified as PECs with antioxidant, tyrosinase or ß-glucosidase inhibiting activities by 2D-TLC-EDA-LC-MS/MS. This study provided a 2D-TLC-EDA-LC-MS/MS method for bioactive compounds screen and qualification of agarwood. Based on this method, non-conventional methods were found to accelerate the accumulation of some bioactive PECs in A. sinensis trees.


Subject(s)
Antioxidants , Tandem Mass Spectrometry , Thymelaeaceae , Thymelaeaceae/chemistry , Antioxidants/pharmacology , Chromatography, Thin Layer , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Wood/chemistry , Sodium Chloride/pharmacology , Sodium Chloride/chemistry , Chromatography, Liquid , Monophenol Monooxygenase/antagonists & inhibitors , Molecular Structure , Flavonoids
12.
Fitoterapia ; 175: 105905, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38479616

ABSTRACT

Six new dimeric 2-(2-phenylethyl)chromones (1-6) were successfully isolated from the ethanol extract of agarwood of Aquilaria filaria from Philippines under HPLC-MS guidance. Compounds 1-6 are all dimers formed by linking 5,6,7,8-tetrahydro-2-(2-phenylethyl)chromone and flindersia 2-(2-phenylethyl)chromone via a single ether bond, and the linkage site (C5-O-C8'') of compound 2 is extremely rare. A variety of spectroscopic methods were used to ascertain their structures, including extensive 1D and 2D NMR spectroscopic analysis, HRESIMS, and comparison with literature. The in vitro tyrosinase inhibitory and anti-inflammatory activities of each isolate were assessed. Among these compounds, compound 2 had a tyrosinase inhibition effect with an IC50 value of 27.71 ± 2.60 µM, and compound 4 exhibited moderate inhibition of nitric oxide production in lipopolysaccharide-stimulated RAW264.7 cells with an IC50 value of 35.40 ± 1.04 µM.


Subject(s)
Anti-Inflammatory Agents , Monophenol Monooxygenase , Nitric Oxide , Thymelaeaceae , Wood , RAW 264.7 Cells , Animals , Thymelaeaceae/chemistry , Mice , Molecular Structure , Wood/chemistry , Nitric Oxide/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/chemistry , Monophenol Monooxygenase/antagonists & inhibitors , Philippines , Chromones/isolation & purification , Chromones/pharmacology , Chromones/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Flavonoids
13.
Chem Biodivers ; 21(5): e202400139, 2024 May.
Article in English | MEDLINE | ID: mdl-38494875

ABSTRACT

Species of Onobrychis have been used to treat skin disorders such as wounds and cuts in folk medicine and Onobrychis argyrea subsp. argyrea (OA) commonly known as 'silvery sainfoin', is a member of this genus. In this study, it was aimed to investigate the skin-related biological activities and phytochemical characterization of OA. Moreover, an emulgel formulation was developed from the main methanolic extract of the plant (OAM). Initially, to identifiy of the active fractions, aerial parts of the plant material was extracted with methanol and fractionated by n-hexane, chloroform, ethyl acetate and n-butanol, respectively. Antioxidant activity was determined by CUPRAC, TOAC, FRAP and DPPH assays. Thereafter, the inhibition potential of OAM, novel formulation and all fractions was measured against elastase, collagenase, tyrosinase and hyaluronidase enzymes. OAM was analyzed and characterized by LC/MS-MS. The major bioactive flavonoids which are rutin and isoquercetin were measured and compared as qualitative and quantitative via high performance thin layer chromatography (HPTLC) analysis in OAM and fractions. The results showed that extracts of OA can be a potential cosmeceutical agent for skin related problems.


Subject(s)
Antioxidants , Enzyme Inhibitors , Monophenol Monooxygenase , Phytochemicals , Plant Extracts , Skin , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Skin/drug effects , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/isolation & purification , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Pancreatic Elastase/antagonists & inhibitors , Pancreatic Elastase/metabolism , Collagenases/metabolism , Hyaluronoglucosaminidase/antagonists & inhibitors , Hyaluronoglucosaminidase/metabolism , Gels/chemistry , Humans
14.
Chem Biodivers ; 21(5): e202400414, 2024 May.
Article in English | MEDLINE | ID: mdl-38500337

ABSTRACT

Three undescribed sesquiterpenes (1-3), two enantiomeric pairs of monoterpenes (4a/4b-5a/5b), one alkyne (6), two known alkynes (7-8) and eight known coumarins (9-16) were isolated from the aerial parts extracts of Artemisia scoparia. The structures of these compounds were fully elucidated by their 1D and 2D NMR, HRESIMS spectral data analyses, and comparison with literature. The absolute configurations of compounds were determined by single-crystal X-ray crystallography (1), a comparison of experimental and calculated electronic circular dichroism (ECD) data (2-6). 15 showed moderate inhibitory activity with the NO release in LPS-induced RAW264.7 cells. 9-16 showed varying degrees of promoting melanogenesis and tyrosinase activity in B16 cells.


Subject(s)
Artemisia , Nitric Oxide , Artemisia/chemistry , Mice , Animals , RAW 264.7 Cells , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Crystallography, X-Ray , Plant Components, Aerial/chemistry , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Molecular Structure , Monoterpenes/chemistry , Monoterpenes/isolation & purification , Monoterpenes/pharmacology , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/isolation & purification , Molecular Conformation , Melanins/antagonists & inhibitors , Melanins/metabolism , Models, Molecular , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification
15.
J Microbiol Biotechnol ; 34(4): 949-957, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38480002

ABSTRACT

There has been a growing interest in skin beauty and antimelanogenic products. Melanogenesis is the process of melanin synthesis whereby melanocytes are activated by UV light or hormone stimulation to produce melanin. Melanogenesis is mediated by several enzymes, such as tyrosinase (TYR), microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1 (TRP-1), and TRP-2. In this study, we investigated the effect of Tuber himalayense extract on melanin synthesis in α-melanocyte-stimulating hormone (α-MSH)-treated B16F10 melanoma cells. We confirmed that T. himalayense extract was not toxic to α-MSH-treated B16F10 melanoma cells and exhibited a significant inhibitory effect on melanin synthesis at concentrations of 25, 50, and 100 µg/ml. Additionally, the T. himalayense extract inhibited melanin, TRP-1, TRP-2, tyrosinase, and MITF, which are enzymes involved in melanin synthesis, in a concentration-dependent manner. Furthermore, T. himalayense extract inhibited the mitogen-activated protein kinase (MAPK) pathways, such as extracellular signal-regulated kinase-1/2 (ERK), c-Jun N-terminal kinase (JNK), and p38. Therefore, we hypothesized that various components of T. himalayense extract affect multiple factors involved in melanogenesis in B16F10 cells. Our results indicate that T. himalayense extract could potentially be used as a new material for preparing whitening cosmetics.


Subject(s)
Melanins , Microphthalmia-Associated Transcription Factor , Monophenol Monooxygenase , Plant Extracts , Melanins/biosynthesis , Melanins/metabolism , Animals , Mice , Plant Extracts/pharmacology , Plant Extracts/chemistry , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Cell Line, Tumor , Republic of Korea , Microphthalmia-Associated Transcription Factor/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Intramolecular Oxidoreductases/metabolism , alpha-MSH/pharmacology , alpha-MSH/metabolism , Melanoma, Experimental/metabolism , Oxidoreductases/metabolism , Plant Tubers/chemistry , Membrane Glycoproteins/metabolism , Melanocytes/drug effects , Melanocytes/metabolism , Cell Survival/drug effects
16.
Phytochem Anal ; 35(4): 799-816, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38297293

ABSTRACT

INTRODUCTION: Nymphaea rubra belongs to the Nymphaea family and is regarded as a vegetable used in traditional medicine to cure several ailments. These species are rich in phenolic acid, flavonoids, and hydrolysable tannin. OBJECTIVE: This study aimed to assess the biological activities of Nymphaea rubra flowers (NRF) and leaves (NRL) by identifying and quantifying their polyphenolic compounds using ultra-performance liquid chromatography coupled to quadrupole cyclic ion mobility time-of-flight mass spectrometry (UHPLC-Q-cIM-TOF-MS) and triple quadrupole mass spectrometry (UHPLC-TQ-MS). METHODOLOGY: NRF and NRL powder was extracted with methanol and fractionated using hexane, ethylacetate, and water. Antioxidant and α-glucosidase, and tyrosinase enzyme inhibitory activities were evaluated. The polyphenolic components of NRF and NRL were identified and quantified using UHPLC-Q-cIM-TOF-MS and UHPLC-TQ-MS. The method was validated using linearity, precision, accuracy, limit of detection (LOD), and lower limit of quantification (LLOQ). RESULTS: Bioactive substances and antioxidants were highest in the ethylacetate fraction of flowers and leaves. Principal component analysis showed how solvent and plant components affect N. rubra's bioactivity and bioactive compound extraction. A total of 67 compounds were identified, and among them 21 significant polyphenols were quantified. Each calibration curve had R2 > 0.998. The LOD and LLOQ varied from 0.007 to 0.09 µg/mL and from 0.01 to 0.1 µg/mL, respectively. NRF contained a significant amount of gallic acid (10.1 mg/g), while NRL contained abundant pentagalloylglucose (2.8 mg/g). CONCLUSION: The developed method is simple, rapid, and selective for the identification and quantification of bioactive molecules. These findings provide a scientific basis for N. rubra's well-documented biological effects.


Subject(s)
Antioxidants , Flowers , Nymphaea , Plant Leaves , Polyphenols , Chromatography, High Pressure Liquid/methods , Plant Leaves/chemistry , Polyphenols/analysis , Flowers/chemistry , Antioxidants/analysis , Antioxidants/pharmacology , Nymphaea/chemistry , Mass Spectrometry/methods , Monophenol Monooxygenase/antagonists & inhibitors , Reproducibility of Results , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/analysis , alpha-Glucosidases/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/analysis
17.
Eur J Med Chem ; 259: 115655, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37482020

ABSTRACT

The tyrosinase enzyme, which is widely found in microorganisms, animals and plants, has a significant position in melanogenesis, plays an important role in undesirable browning of fruits and vegetables, antibiotic resistance, skin pigment formation, sclerotization of cuticle, neurodegeneration, etc. Therefore, with the wide potential application fields of tyrosinase in food, agriculture, cosmetics and pharmaceutical industries, which has become the target enzyme for the development of therapeutic agents such as antibrowning, anticancer, antibacterial, skin whitening, insecticides, etc., a large number of synthetic tyrosinase inhibitors have been widely reported in recent years. The triazole ring, which has a broad spectrum of biological action, is of increasing interest in the synthesis of new tyrosinase inhibitors. In this review, tyrosinase inhibition effects, structure-activity relationships, enzyme inhibition kinetics and mechanisms of action of 1,2,3- or 1,2,4-triazole derivatives were investigated. The data gathered is anticipated to supply rational guidance and an influential strategy for the development of novel, potent and safe tyrosinase inhibitors for better practical application in the future.


Subject(s)
Enzyme Inhibitors , Monophenol Monooxygenase , Triazoles , Animals , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Monophenol Monooxygenase/antagonists & inhibitors , Plants/metabolism , Structure-Activity Relationship , Triazoles/chemistry , Triazoles/pharmacology
18.
Biochem Pharmacol ; 212: 115574, 2023 06.
Article in English | MEDLINE | ID: mdl-37127249

ABSTRACT

Hyperpigmentation is a common and distressing dermatologic condition. Since tyrosinase (TYR) plays an essential role in melanogenesis, its inhibition is considered a logical approach along with other therapeutic methods to prevent the accumulation of melanin in the skin. Thus, TYR inhibitors are a tempting target as the medicinal and cosmetic active agents of hyperpigmentation disorder. Among TYR inhibitors, hydroquinone is a traditional lightening agent that is commonly used in clinical practice. However, despite good efficacy, prolonged use of hydroquinone is associated with side effects. To overcome these shortcomings, new approaches in targeting TYR and treating hyperpigmentation are desperately requiredessentialneeded. In line with this purpose, several non-hydroquinone lightening agents have been developed and suggested as hydroquinone alternatives. In addition to traditional approaches, nanomedicine and nanotheranostic platforms have been recently proposed in the treatment of hyperpigmentation. In this review, we discuss the available strategies for the management of hyperpigmentation with a focus on TYR inhibition. In addition, alternative treatment options to hydroquinone are discussed. Finally, we present nano-based strategies to improve the therapeutic effect of drugs prescribed to patients with skin disorders.


Subject(s)
Hyperpigmentation , Skin Lightening Preparations , Humans , Hyperpigmentation/drug therapy , Melanins/metabolism , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Skin , Skin Lightening Preparations/therapeutic use , Skin Lightening Preparations/pharmacology
19.
Int J Mol Sci ; 24(6)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36982292

ABSTRACT

Cancer represents the main cause of morbidity and mortality worldwide, constituting a serious health problem. In this context, melanoma represents the most aggressive and fatal type of skin cancer, with death rates increasing every year. Scientific efforts have been addressed to the development of inhibitors targeting the tyrosinase enzyme as potential anti-melanoma agents due to the importance of this enzyme in melanogenesis biosynthesis. Coumarin-based compounds have shown potential activity as anti-melanoma agents and tyrosinase inhibitors. In this study, coumarin-based derivatives were designed, synthesized, and experimentally evaluated upon tyrosinase. Compound FN-19, a coumarin-thiosemicarbazone analog, exhibited potent anti-tyrosinase activity, with an IC50 value of 42.16 ± 5.16 µM, being more active than ascorbic acid and kojic acid, both reference inhibitors. The kinetic study showed that FN-19 acts as a mixed inhibitor. Still, for this compound, molecular dynamics (MD) simulations were performed to determine the stability of the complex with tyrosinase, generating RMSD, RMSF, and interaction plots. Additionally, docking studies were performed to elucidate the binding pose at the tyrosinase, suggesting that the hydroxyl group of coumarin derivative performs coordinate bonds (bidentate) with the copper(II) ions at distances ranging from 2.09 to 2.61 Å. Then, MM/PBSA calculations revealed that van der Waals interactions are the most relevant intermolecular forces for complex stabilization. Furthermore, it was observed that FN-19 has a binding energy (ΔEMM) value similar to tropolone, a tyrosinase inhibitor. Therefore, the data obtained in this study will be useful for designing and developing novel coumarin-based analogs targeting the tyrosinase enzyme.


Subject(s)
Coumarins , Enzyme Inhibitors , Melanoma , Monophenol Monooxygenase , Tyrosine 3-Monooxygenase , Humans , Coumarins/chemistry , Coumarins/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Kinetics , Melanoma/drug therapy , Molecular Docking Simulation , Molecular Structure , Monophenol Monooxygenase/antagonists & inhibitors , Structure-Activity Relationship , Tyrosine 3-Monooxygenase/antagonists & inhibitors
20.
Sci Rep ; 13(1): 2578, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36782003

ABSTRACT

In the present study, a series of aryl-substituted thioqunoline conjugated to thiosemicarbazide were rationally designed and synthesized. The formation of target compounds was confirmed by spectral characterization techniques such as IR, 1H-NMR, 13C-NMR, ESI-MS, and elemental analysis. Among the synthesized derivatives, compound 10g bearing para-chlorophenyl moiety was proved to be the most potent tyrosinase inhibitor with an IC50 value of 25.75 ± 0.19 µM. Compound 10g as the most potent derivative exhibited a noncompetitive inhibition pattern against tyrosinase in the kinetic study. Furthermore, the in silico cavity detection, as well as the molecular docking assessments, were performed to follow the behavior of 10g within the proposed binding site. Besides, the toxicity of 10g and its potency to reduce the melanin content on A375 cell lines were also measured. Consequently, aryl-substituted thioqunolines conjugated to thiosemicarbazide might be a promising candidate in the cosmetics, medicine, and food industry as tyrosinase inhibitors.


Subject(s)
Agaricales , Enzyme Inhibitors , Monophenol Monooxygenase , Agaricales/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Melanins , Molecular Docking Simulation , Molecular Structure , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...