Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106.476
Filter
1.
PLoS One ; 19(5): e0300227, 2024.
Article in English | MEDLINE | ID: mdl-38696419

ABSTRACT

Aging is associated with a wide range of physiological and behavioral changes in many species. Zebrafish, like humans, rodents, and birds, exhibits gradual senescence, and thus may be a useful model organism for identifying evolutionarily conserved mechanisms related to aging. Here, we compared behavior in the novel tank test of young (6-month-old) and middle aged (12-month-old) zebrafish from two strains (TL and TU) and both sexes. We find that this modest age difference results in a reduction in locomotor activity in male fish. We also found that background strain modulated the effects of age on predator avoidance behaviors related to anxiety: older female TL fish increased bottom dwelling whereas older male TU fish decreased thigmotaxis. Although there were no consistent effects of age on either short-term (within session) or long-term (next day) habituation to the novel tank, strain affected the habituation response. TL fish tended to increase their distance from the bottom of the tank whereas TU fish had no changes in bottom distance but instead tended to increase thigmotaxis. Our findings support the use of zebrafish for the study of how age affects locomotion and how genetics interacts with age and sex to alter exploratory and emotional behaviors in response to novelty.


Subject(s)
Aging , Zebrafish , Animals , Zebrafish/physiology , Female , Male , Aging/physiology , Behavior, Animal/physiology , Locomotion/physiology , Motor Activity/physiology , Exploratory Behavior/physiology
2.
BMC Geriatr ; 24(1): 452, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783168

ABSTRACT

PURPOSE: The purpose of this study was to produce a valid and reliable Persian version of the Rapid Assessment of Physical Activity (RAPA) questionnaire, which previously has been shown to be valid and reliable for assessing physical activity among older adults. METHODS: Permission was obtained from the scale developer, who provided a copy of the the Linguistic Validation of the RAPA Qestionnaire, which utilizes a forward-backward translation methodology. Content validity, face validity, and construct validity of the questionnaire were then determined. Comparison of known groups (older adults with more or less than 50% balance confidence) was used to assess construct validity and the Leiden-Padua (LEIPAD) quality of life questionnaire were used to assess convergent validity. Three hundred older adults, who were members of the Qom retirement centers, participated in the study. Thirty participants completed the RAPA twice with a one-week interval to determine test-retest reliability. RESULTS: Results of comparisons of known groups showed that the mean RAPA score of the older people with greater balance confidence was significantly higher. Significant correlations between most of the scores obtained from both RAPA and the LEIPAD questionnaires confirmed the convergent validity of the questionnaire. Intraclass Correlation Coefficient (ICC) was as high as 0.94 showing that the test-retest reliability was good. CONCLUSION: This study showed the Persian RAPA is a reliable and valid instrument for measuring physical activity among older individuals in both research and clinical contexts.


Subject(s)
Motor Activity , Humans , Male , Female , Surveys and Questionnaires/standards , Aged , Reproducibility of Results , Middle Aged , Motor Activity/physiology , Translations , Aged, 80 and over , Language , Exercise/physiology , Time Factors , Iran
3.
Med Eng Phys ; 128: 104154, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697881

ABSTRACT

Brain-computer interfaces (BCIs) are used to understand brain functioning and develop therapies for neurological and neurodegenerative disorders. Therefore, BCIs are crucial in rehabilitating motor dysfunction and advancing motor imagery applications. For motor imagery, electroencephalogram (EEG) signals are used to classify the subject's intention of moving a body part without actually moving it. This paper presents a two-stage transformer-based architecture that employs handcrafted features and deep learning techniques to enhance the classification performance on benchmarked EEG signals. Stage-1 is built on parallel convolution based EEGNet, multi-head attention, and separable temporal convolution networks for spatiotemporal feature extraction. Further, for enhanced classification, in stage-2, additional features and embeddings extracted from stage-1 are used to train TabNet. In addition, a novel channel cluster swapping data augmentation technique is also developed to handle the issue of limited samples for training deep learning architectures. The developed two-stage architecture offered an average classification accuracy of 88.5 % and 88.3 % on the BCI Competition IV-2a and IV-2b datasets, respectively, which is approximately 3.0 % superior over similar recent reported works.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Signal Processing, Computer-Assisted , Humans , Imagination/physiology , Deep Learning , Motor Activity/physiology , Movement , Neural Networks, Computer
4.
Behav Brain Res ; 468: 115035, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38703793

ABSTRACT

Parkinson's Disease is a progressive neurodegenerative disorder characterized by motor symptoms resulting from the loss of nigrostriatal dopaminergic neurons. Kisspeptins (KPs) are a family of neuropeptides that are encoded by the Kiss-1 gene, which exert their physiological effects through interaction with the GPR54 receptor. In the current investigation, we investigated the prospective protective effects of central KP-54 treatments on nigrostriatal dopaminergic neurons and consequent motor performance correlates in 6-hydroxydopamine (6-OHDA)-lesioned rats. Male adult Sprague Dawley rats underwent stereotaxic injection of 6-OHDA into the right medial forebrain bundle to induce hemiparkinsonism. Following surgery, rats received chronic central treatments of nasal or intracerebroventricular KP-54 (logarithmically increasing doses) for seven consecutive days. Motor performance was evaluated seven days post-surgery utilizing the open field test and catalepsy test. The levels of dopamine in the striatum were determined with mass spectrometry. Immunohistochemical analysis was conducted to assess the immunoreactivities of tyrosine hydroxylase (TH) and the GPR54 in the substantia nigra. The dose-response curve revealed a median effective dose value of ≈3 nmol/kg for both central injections. Due to its non-invasive and effective nature, nasal administration was utilized in the second phase of our study. Chronic administration of KP-54 (3nmol/kg, nasally) significantly protected 6-OHDA-induced motor deficits. Nasal KP-54 attenuated the loss of nigrostriatal dopaminergic neurons induced by 6-OHDA. Additionally, significant correlations were observed between motor performance and nigrostriatal dopamine levels. Immunohistochemical analysis demonstrated the localization of the GPR54 within TH-positive nigral cells. These findings suggest the potential efficacy of central KP-54 on motor impairments in hemiparkinsonism.


Subject(s)
Administration, Intranasal , Corpus Striatum , Dopamine , Dopaminergic Neurons , Kisspeptins , Oxidopamine , Parkinsonian Disorders , Rats, Sprague-Dawley , Substantia Nigra , Animals , Male , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Dopamine/metabolism , Oxidopamine/pharmacology , Rats , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Kisspeptins/administration & dosage , Kisspeptins/pharmacology , Kisspeptins/metabolism , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Disease Models, Animal , Motor Activity/drug effects , Tyrosine 3-Monooxygenase/metabolism
5.
BMC Public Health ; 24(1): 1340, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38760757

ABSTRACT

INTRODUCTION: Sleep disorders have a significant negative impact on mental and physical health, especially among the elderly. Various factors can affect the sleep quality of elderly people. The aim of this research to investigate the effect of urban and rural environments on the sleep quality of elderly people with emphasis on physical activity. METHOD: Four hundred and thirty-nine elderly people (226 city residents and 213 village residents) in urban and rural areas of Bushehr (Southern Iran), volunteered to participate in the present study. Information was collected via the General information questionnaire and Petersburg Sleep Questionnaire. RESULT: The results showed that active elderly women (p < 0.001), and total active elderly (male + female) (p < 0.001) living in urban areas compared to inactive elderly and also in rural areas active elderly women (p < 0.001), active elderly men (p < 0.001) and total active elderly (male + female) (p < 0.001) had better overall sleep quality in compared to inactive elderly. Also, elderly men (p < 0.001) and the total elderly (male + female) (p < 0.001) living in urban areas had better sleep quality than the elderly in rural areas. CONCLUSION: Based on the findings, it can be concluded that the way of life (being active) as well as the living environment can affect the sleep quality of elderly people, so that active elderly people and also elderly people living in urban environments had better sleep quality.


Subject(s)
Rural Population , Sleep Quality , Urban Population , Humans , Female , Male , Aged , Iran/epidemiology , Rural Population/statistics & numerical data , Urban Population/statistics & numerical data , Surveys and Questionnaires , Aged, 80 and over , Motor Activity , Middle Aged
6.
J Neuroeng Rehabil ; 21(1): 82, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769565

ABSTRACT

BACKGROUND: Assessments of arm motor function are usually based on clinical examinations or self-reported rating scales. Wrist-worn accelerometers can be a good complement to measure movement patterns after stroke. Currently there is limited knowledge of how accelerometry correlate to clinically used scales. The purpose of this study was therefore to evaluate the relationship between intermittent measurements of wrist-worn accelerometers and the patient's progression of arm motor function assessed by routine clinical outcome measures during a rehabilitation period. METHODS: Patients enrolled in in-hospital rehabilitation following a stroke were invited. Included patients were asked to wear wrist accelerometers for 24 h at the start (T1) and end (T2) of their rehabilitation period. On both occasions arm motor function was assessed by the modified Motor Assessment Scale (M_MAS) and the Motor Activity Log (MAL). The recorded accelerometry was compared to M_MAS and MAL. RESULTS: 20 patients were included, of which 18 completed all measurements and were therefore included in the final analysis. The resulting Spearman's rank correlation coefficient showed a strong positive correlation between measured wrist acceleration in the affected arm and M-MAS and MAL values at T1, 0.94 (p < 0.05) for M_MAS and 0.74 (p < 0.05) for the MAL values, and a slightly weaker positive correlation at T2, 0.57 (p < 0.05) for M_MAS and 0.46 - 0.45 (p = 0.06) for the MAL values. However, no correlation was seen for the difference between the two sessions. CONCLUSIONS: The results confirm that the wrist acceleration can differentiate between the affected and non-affected arm, and that there is a positive correlation between accelerometry and clinical measures. Many of the patients did not change their M-MAS or MAL scores during the rehabilitation period, which may explain why no correlation was seen for the difference between measurements during the rehabilitation period. Further studies should include continuous accelerometry throughout the rehabilitation period to reduce the impact of day-to-day variability.


Subject(s)
Accelerometry , Arm , Stroke Rehabilitation , Humans , Accelerometry/instrumentation , Male , Female , Middle Aged , Aged , Stroke Rehabilitation/methods , Stroke Rehabilitation/instrumentation , Arm/physiopathology , Arm/physiology , Wrist/physiology , Wearable Electronic Devices , Motor Activity/physiology , Adult , Stroke/physiopathology , Stroke/diagnosis , Aged, 80 and over
7.
Exp Brain Res ; 242(6): 1495-1505, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704771

ABSTRACT

Post-error slowing (PES), the tendency to slow down a behavioral response after a previous error, has typically been investigated during simple cognitive tasks using response time as a measure of PES magnitude. More recently, PES was investigated during a single reach-to-grasp task to determine where post-error adjustments are employed in a more ecological setting. Kinematic analyses in the previous study detected PES during pre-movement planning and within the grasping component of movement execution. In the current study (N = 22), we increased the cognitive demands of a reach-to-grasp task by adding a choice between target and distractor locations to further explore PES, and other post-error adjustments, under different task conditions. We observed a significant main effect of task condition on overall reaction time (RT); however, it did not significantly impact PES or other post-error adjustments. Nonetheless, the results of this study suggest post-error adjustment is a flexible process that can be observed during pre-movement planning and within the onset and magnitude of the reaching component, as well as in the magnitudes of the grasping component. Considering the sum of the results in the context of existing literature, we conclude that the findings add support to a functional account of error reactivity, such that post-error adjustments are implemented intentionally to improve performance.


Subject(s)
Hand Strength , Psychomotor Performance , Reaction Time , Humans , Psychomotor Performance/physiology , Male , Female , Adult , Young Adult , Reaction Time/physiology , Hand Strength/physiology , Biomechanical Phenomena/physiology , Movement/physiology , Motor Activity/physiology
8.
BMC Public Health ; 24(1): 1283, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730396

ABSTRACT

BACKGROUND: Although prior studies have demonstrated that children with high levels of fundamental movement skill (FMS) are more active throughout the day, little is known about children's FMS and their physical activity (PA) during different segments of the school day (e.g., recess, lunch break, and physical education). The present study focused on FMS and moderate-to-vigorous PA (MVPA) during school day and identifies the association between children's FMS and MVPA during different segments of the school day in China. METHODS: A total of 322 children (boys n = 163, girls n = 159; Mage = 8.12, SD = 1.22 years) from four elementary schools involved in this study. Children's FMS and MVPA were measured using the Test of Gross Motor Development-2nd edition (TGMD-2) and hip-mounted accelerometers. Data such as height, weight, and socio-economic status (SES) were also obtained. Multilevel mixed regression models were used to examine the cross-sectional associations between FMS and MVPA. Models were adjusted for gender, age, standardized body mass index, and SES. RESULTS: Children engaged in 32.19 min of MVPA during the whole school day. Boys were more active than girls and had higher object-control skills competency. Locomotor skills were positively associated with children's long recess (B = 1.063) and short recess time (B = 1.502) MVPA. Object-control skills were positively correlated with children's MVPA time during long recess (B = 1.244) and physical education (PE) lessons (B = 1.171). CONCLUSION: The findings highlight the importance of developing both locomotor and object-control skills in elementary schools to lead more MVPA engagement during different segments of the school day.


Subject(s)
Motor Skills , Schools , Humans , Female , Male , Child , China , Motor Skills/physiology , Cross-Sectional Studies , Exercise , Accelerometry , Motor Activity/physiology , Physical Education and Training
9.
Eur J Pharmacol ; 975: 176635, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38734296

ABSTRACT

BACKGROUND: Degeneration of the nigrostriatal dopaminergic pathway has been seen as a significant cause of movement disability in Parkinson's disease (PD) patients. However, the exact reason for these degenerative changes has remained obscure. In recent years, incretins have been neuroprotective in various pathologies. In the current study, we have investigated the neuroprotective potential of alogliptin (Alo), a dipeptidyl peptidase-IV (DPP-IV) inhibitor, in a lipopolysaccharide (LPS) induced experimental model of PD. EXPERIMENTAL APPROACH: LPS (5µg/5 µl) was infused intranigrally to induce PD in experimental rats. Post-LPS infusion, these animals were treated with Alo for 21 days in three successive dosages of 10, 20, and 40 mg/kg/day/per oral. The study is well supported with the determinations of motor functions biochemical, neurochemical, and histological analysis. KEY RESULTS: Intranigral infusion of LPS in rats produced motor deficit. It was accompanied by oxidative stress, elevation in neuroinflammatory cytokines, altered neurochemistry, and degenerative changes in the striatal brain region. While Alo abrogated LPS-induced biochemical/neurochemical alterations, improved motor functions, and preserved neuronal morphology in LPS-infused rats. CONCLUSION: The observed neuroprotective potential of Alo may be due to its antioxidant and anti-inflammatory actions and its ability to modulate monoaminergic signals. Nonetheless, current findings suggest that improving the availability of incretins through DPP-IV inhibition is a promising strategy for treating Parkinson's disease.


Subject(s)
Dipeptidyl-Peptidase IV Inhibitors , Lipopolysaccharides , Neuroprotective Agents , Oxidative Stress , Piperidines , Uracil , Animals , Uracil/analogs & derivatives , Uracil/pharmacology , Uracil/therapeutic use , Piperidines/pharmacology , Piperidines/therapeutic use , Male , Rats , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Oxidative Stress/drug effects , Rats, Wistar , Disease Models, Animal , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/pathology , Cytokines/metabolism , Motor Activity/drug effects , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Corpus Striatum/pathology
10.
Cell Rep ; 43(5): 114199, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38728138

ABSTRACT

Implantable electrode arrays are powerful tools for directly interrogating neural circuitry in the brain, but implementing this technology in the spinal cord in behaving animals has been challenging due to the spinal cord's significant motion with respect to the vertebral column during behavior. Consequently, the individual and ensemble activity of spinal neurons processing motor commands remains poorly understood. Here, we demonstrate that custom ultraflexible 1-µm-thick polyimide nanoelectronic threads can conduct laminar recordings of many neuronal units within the lumbar spinal cord of unrestrained, freely moving mice. The extracellular action potentials have high signal-to-noise ratio, exhibit well-isolated feature clusters, and reveal diverse patterns of activity during locomotion. Furthermore, chronic recordings demonstrate the stable tracking of single units and their functional tuning over multiple days. This technology provides a path for elucidating how spinal circuits compute motor actions.


Subject(s)
Electrodes, Implanted , Spinal Cord , Animals , Spinal Cord/physiology , Mice , Action Potentials/physiology , Motor Activity/physiology , Neurons/physiology , Locomotion/physiology , Mice, Inbred C57BL , Male
11.
Article in English | MEDLINE | ID: mdl-38791763

ABSTRACT

How hands-on gardening impacts behaviors including healthy eating and physical activity during early childhood can be of critical importance for preventing the early onset of obesity. This study investigates how participating in hands-on gardening impacts preschoolers' (3-5 years old) physical activity (measured by accelerometers) in childcare centers in the semi-arid climate zone. The research was conducted in eight licensed childcare centers located in West Texas with 149 children (n = 149). Four childcare centers in the experimental group received hands-on garden interventions; the other four in the control group did not. In both experimental (intervention) and control (non-intervention) centers, children wore Actigraph GT3X+ accelerometers continuously for 5 days before and for 5 days after intervention (a total of 10 days). Results show that the duration of sedentary behavior of children in the experimental (intervention) group significantly decreased compared to children in the control (non-intervention) group. The finding suggests that the positive effects of childcare hands-on gardening on physical activity extend to semi-arid climate zones where gardening is challenging due to high temperatures and lack of annual rainfall. The research emphasizes the critical need to incorporate hands-on gardening in childcare centers as an obesity prevention strategy nationally in the US and beyond.


Subject(s)
Child Day Care Centers , Gardening , Humans , Child, Preschool , Male , Female , Texas , Exercise , Accelerometry , Sedentary Behavior , Climate , Motor Activity
12.
Sci Rep ; 14(1): 12132, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802497

ABSTRACT

The striatum plays a crucial role in providing input to the basal ganglia circuit and is implicated in the pathological process of Parkinson's disease (PD). Disruption of the dynamic equilibrium in the basal ganglia loop can be attributed to the abnormal functioning of the medium spiny neurons (MSNs) within the striatum, potentially acting as a trigger for PD. Exercise has been shown to mitigate striatal neuronal dysfunction through neuroprotective and neurorestorative effects and to improve behavioral deficits in PD model mice. In addition, this effect is offset by the activation of MSNs expressing dopamine D2 receptors (D2-MSNs). In the current study, we investigated the underlying neurobiological mechanisms of this effect. Our findings indicated that exercise reduces the power spectral density of the beta-band in the striatum and decreases the overall firing frequency of MSNs, particularly in the case of striatal D2-MSNs. These observations were consistent with the results of molecular biology experiments, which revealed that aerobic training specifically enhanced the expression of striatal dopamine D2 receptors (D2R). Taken together, our results suggest that aerobic training aimed at upregulating striatal D2R expression to inhibit the functional activity of D2-MSNs represents a potential therapeutic strategy for the amelioration of motor dysfunction in PD.


Subject(s)
Corpus Striatum , Disease Models, Animal , Parkinson Disease , Physical Conditioning, Animal , Receptors, Dopamine D2 , Animals , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D2/genetics , Corpus Striatum/metabolism , Mice , Parkinson Disease/therapy , Parkinson Disease/metabolism , Parkinson Disease/physiopathology , Male , Neurons/metabolism , Mice, Inbred C57BL , Motor Activity/physiology , Medium Spiny Neurons
13.
J Integr Neurosci ; 23(5): 106, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38812384

ABSTRACT

BACKGROUND: The accuracy of decoding fine motor imagery (MI) tasks remains relatively low due to the dense distribution of active areas in the cerebral cortex. METHODS: To enhance the decoding of unilateral fine MI activity in the brain, a weight-optimized EEGNet model is introduced that recognizes six types of MI for the right upper limb, namely elbow flexion/extension, wrist pronation/supination and hand opening/grasping. The model is trained with augmented electroencephalography (EEG) data to learn deep features for MI classification. To address the sensitivity issue of the initial model weights to classification performance, a genetic algorithm (GA) is employed to determine the convolution kernel parameters for each layer of the EEGNet network, followed by optimization of the network weights through backpropagation. RESULTS: The algorithm's performance on the three joint classification is validated through experiment, achieving an average accuracy of 87.97%. The binary classification recognition rates for elbow joint, wrist joint, and hand joint are respectively 93.92%, 90.2%, and 94.64%. Thus, the product of the two-step accuracy value is obtained as the overall capability to distinguish the six types of MI, reaching an average accuracy of 81.74%. Compared to commonly used neural networks and traditional algorithms, the proposed method outperforms and significantly reduces the average error of different subjects. CONCLUSIONS: Overall, this algorithm effectively addresses the sensitivity of network parameters to initial weights, enhances algorithm robustness and improves the overall performance of MI task classification. Moreover, the method is applicable to other EEG classification tasks; for example, emotion and object recognition.


Subject(s)
Electroencephalography , Imagination , Neural Networks, Computer , Upper Extremity , Humans , Electroencephalography/methods , Upper Extremity/physiology , Imagination/physiology , Adult , Deep Learning , Motor Activity/physiology , Young Adult , Male , Machine Learning
14.
Behav Brain Res ; 468: 115024, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38705283

ABSTRACT

Motor adaptations are responsible for recalibrating actions and facilitating the achievement of goals in a constantly changing environment. Once consolidated, the decay of motor adaptation is a process affected by available sensory information during deadaptation. However, the cortical response to task error feedback during the deadaptation phase has received little attention. Here, we explored changes in brain cortical responses due to feedback of task-related error during deadaptation. Twelve healthy volunteers were recruited for the study. Right hand movement and EEG were recorded during repetitive trials of a hand reaching movement. A visuomotor rotation of 30° was introduced to induce motor adaptation. Volunteers participated in two experimental sessions organized in baseline, adaptation, and deadaptation blocks. In the deadaptation block, the visuomotor rotation was removed, and visual feedback was only provided in one session. Performance was quantified using angle end-point error, averaged speed, and movement onset time. A non-parametric spatiotemporal cluster-level permutation test was used to analyze the EEG recordings. During deadaptation, participants experienced a greater error reduction when feedback of the cursor was provided. The EEG responses showed larger activity in the left centro-frontal parietal areas during the deadaptation block when participants received feedback, as opposed to when they did not receive feedback. Centrally distributed clusters were found for the adaptation and deadaptation blocks in the absence of visual feedback. The results suggest that visual feedback of the task-related error activates cortical areas related to performance monitoring, depending on the accessible sensory information.


Subject(s)
Adaptation, Physiological , Electroencephalography , Feedback, Sensory , Psychomotor Performance , Humans , Male , Female , Adult , Psychomotor Performance/physiology , Adaptation, Physiological/physiology , Young Adult , Feedback, Sensory/physiology , Cerebral Cortex/physiology , Hand/physiology , Movement/physiology , Motor Activity/physiology
15.
J Therm Biol ; 121: 103866, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38718621

ABSTRACT

To find out whether a social subterranean rodent-the northern mole vole (Ellobius talpinus)-hibernates in winter, nine individuals from Southern Siberia were captured in late autumn and implanted with loggers [that constantly recorded body temperature (Tb) and locomotor activity] and then released. Eight of them were recaptured the following spring. From October to April, the animals' Tb never dropped below 33 °C, although cosinor analysis revealed a decrease in mesor values and in the amplitude of daily fluctuations of Tb and activity in winter months. Spectral density of circadian rhythms of both indexes also diminished in winter. The magnitude of Tb and fluctuations of activity differed between the two studied familial groups, probably due to their unequal numbers of individuals, which could affect the total heat production. The levels and patterns of temperature and activity fluctuations observed in winter rule out the possibility of hibernation in this species.


Subject(s)
Arvicolinae , Body Temperature , Seasons , Animals , Arvicolinae/physiology , Locomotion , Circadian Rhythm , Male , Hibernation/physiology , Female , Motor Activity
16.
Ecol Evol Physiol ; 97(2): 97-117, 2024.
Article in English | MEDLINE | ID: mdl-38728689

ABSTRACT

AbstractHow traits at multiple levels of biological organization evolve in a correlated fashion in response to directional selection is poorly understood, but two popular models are the very general "behavior evolves first" (BEF) hypothesis and the more specific "morphology-performance-behavior-fitness" (MPBF) paradigm. Both acknowledge that selection often acts relatively directly on behavior and that when behavior evolves, other traits will as well but most with some lag. However, this proposition is exceedingly difficult to test in nature. Therefore, we studied correlated responses in the high-runner (HR) mouse selection experiment, in which four replicate lines have been bred for voluntary wheel-running behavior and compared with four nonselected control (C) lines. We analyzed a wide range of traits measured at generations 20-24 (with a focus on new data from generation 22), coinciding with the point at which all HR lines were reaching selection limits (plateaus). Significance levels (226 P values) were compared across trait types by ANOVA, and we used the positive false discovery rate to control for multiple comparisons. This meta-analysis showed that, surprisingly, the measures of performance (including maximal oxygen consumption during forced exercise) showed no evidence of having diverged between the HR and C lines, nor did any of the life history traits (e.g., litter size), whereas body mass had responded (decreased) at least as strongly as wheel running. Overall, results suggest that the HR lines of mice had evolved primarily by changes in motivation rather than performance ability at the time they were reaching selection limits. In addition, neither the BEF model nor the MPBF model of hierarchical evolution provides a particularly good fit to the HR mouse selection experiment.


Subject(s)
Selection, Genetic , Animals , Mice , Biological Evolution , Running/physiology , Running/psychology , Behavior, Animal/physiology , Male , Female , Motor Activity/physiology , Physical Conditioning, Animal/physiology
18.
Sci Rep ; 14(1): 7778, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565587

ABSTRACT

Laboratory animals are typically maintained under 12-h light and 12-h dark (12:12 LD) conditions with a daytime light intensity of ~ 200 lx. In this study, we designed an apparatus that allowed mice to self-select the room light intensity by nose poking. We measured the behavioral rhythms of the mice under this self-controlled light regimen. The mice quickly learned the relationship between their nose pokes and the resulting changes in the light intensity. Under these conditions, the mice exhibited free-running circadian behavior with a period of 24.5 ± 0.4 h. This circadian period was ~ 1 h longer than that of the same strain of mice when they were kept in constant darkness (DD) after 12:12 LD entrainment, and the lengthened period lasted for at least 30 days. The rhythm of the light intensity controlled by the mice also exhibited a similar period, but the phase of the illuminance rhythm preceded the phase of the locomotor activity rhythm. Mice that did not have access to the light controller were also entrained to the illuminance cycle produced by the mice that did have access to the light controller, but with a slightly delayed phase. The rhythm was likely controlled by the canonical circadian clock because mice with tau mutations in the circadian clock gene CSNK1E exhibited short periods of circadian rhythm under the same conditions. These results indicate that the free-running period of mice in the wild may differ from what they exhibit if they are attuned by forced light cycles in laboratories because mice in their natural habitats can self-control their exposure to ambient light, similar to our experimental conditions.


Subject(s)
Circadian Rhythm , Motor Activity , Mice , Animals , Light , Photoperiod , Darkness
19.
Lab Anim (NY) ; 53(4): 86, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570664
20.
PLoS One ; 19(4): e0301088, 2024.
Article in English | MEDLINE | ID: mdl-38578729

ABSTRACT

BACKGROUND: The issue of low physical activity (PA) levels among the youth is a longstanding concern. Smartphone applications offer a promising avenue for delivering interventions that are both accessible and engaging. Up to now, there appears to be a gap in the literature, with no systematic reviews assessing the efficacy of smartphone apps in encouraging increased physical activity among healthy young adults. OBJECTIVE: To synthesize the effects of a smartphone app-based intervention on PA and PA-related psychological correlates in healthy young adults (18-35 years old). METHODS: A search was conducted on eighteen databases: PubMed, Medline, Web of Science, SPORTDiscus, Scopus, Academic Search Premier, Communication and Mass Media Complete, Article First, Biomed Central, BioOne, EBSCOHost, JSTOR, ProQuest, SAGE Reference Online, ScienceDirect, SpringerLink, Taylor&Francis, and Wiley Online. The search covered the period up until December 2023. This research included all randomized controlled trials (RCTs) that evaluated the effectiveness of smartphone app-based interventions on PA and PA related psychological outcomes in healthy young adults. The overall impact was determined by vote counting based on the direction of effect and aggregating p values. The quality of the evidence was evaluated using an 8-item scale. This study has been registered in the PROSPERO database with the identification number CRD42023390033. RESULTS: A total of 8403 articles were retrieved, and based on the predefined inclusion and exclusion criteria, seven articles were selected for inclusion. Among these articles, four high-quality RCTs were identified, and the results of vote counting and combining p values methods suggested that smartphone-based app interventions did not demonstrate significant effectiveness in improving PA and PA-related psychological outcomes. However, some improvements were observed. The analysis results, which were categorized into fitness apps and health apps based on the characteristics of the interventions, also failed to demonstrate significant intervention effects. CONCLUSION: The findings indicate that, currently, there are no significant effects of smartphone app interventions on improving PA and PA-related psychological outcomes in healthy young adults aged 18-35 years. It is important to note that these findings should be interpreted with caution due to the limited number of included studies. Future research should focus on employing high-quality study designs to determine the true effects of interventions and analyze various smartphone app interventions. These analyses should encompass different app characteristics (e.g., fitness app and health app), various combinations (e.g., fitness app alone and fitness app in combination with other interventions), diverse intervention goals (e.g., PA and PA along with other outcomes), and multiple intervention characteristics (e.g., frequency and duration).


Subject(s)
Mobile Applications , Adolescent , Young Adult , Humans , Adult , Motor Activity , Exercise/psychology , Communication , Bibliometrics , Smartphone
SELECTION OF CITATIONS
SEARCH DETAIL
...