Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.817
Filter
1.
Curr Microbiol ; 81(7): 201, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822823

ABSTRACT

Mucor representatives are mostly rapidly growing cosmopolitan soil saprotrophs of early diverged Mucoromycotina subphylum. Although this is the most speciose genus within the group, some lineages are still understudied. In this study, new species of Mucor was isolated from the post-mining area in southwestern Poland, where soil chemical composition analysis revealed high concentration of hydrocarbons and heavy metals. Phylogenetic analysis based on multigene phylogeny showed that the new isolate clusters distinctly from other Mucor species as a sister group to Mucor microsporus. New species Mucor thermorhizoides Abramczyk (Mucorales, Mucoromycota) is characterized by the extensive rhizoid production in elevated temperatures and formation of two layers of sporangiophores. It also significantly differs from M. microsporus in the shape of spores and the size of sporangia. M. thermorhizoides was shown to be able to grow in oligotrophic conditions at low temperatures. Together with M. microsporus they represent understudied and highly variable lineage of the Mucor genus.


Subject(s)
Mucor , Phylogeny , Soil Microbiology , Mucor/genetics , Mucor/classification , Mucor/isolation & purification , Poland , Mining , DNA, Fungal/genetics , Metals, Heavy
3.
Food Chem ; 452: 139525, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38718453

ABSTRACT

The primary inhibitory targets of phenyllactic acid (PLA, including D-PLA and L-PLA) on Mucor were investigated using Mucor racemosus LD3.0026 isolated from naturally spoiled cherry, as an indicator fungi. The results demonstrated that the minimum inhibitory concentration (MIC) of PLA against Mucor was 12.5 mmol·L-1. Results showed that the growing cells at the tip of the Mucor were not visibly deformed, and there was no damage to the cell wall following PLA treatment; however, PLA damaged the cell membrane and internal structure. The results of isobaric tags for relative and absolute quantification (iTRAQ) indicated that the Mucor mitochondrial respiratory chain may be the target of PLA, potentially inhibiting the energy supply of Mucor. These results indicate that the antifungal mechanism of PLA against mold is independent of its molecular configuration. The growth of Mucor is suppressed by PLA, which destroys the organelle structure in the mycelium and inhibits energy metabolism.


Subject(s)
Antifungal Agents , Mucor , Proteomics , Mucor/metabolism , Mucor/growth & development , Mucor/chemistry , Mucor/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Microbial Sensitivity Tests , Lactates/pharmacology , Lactates/metabolism , Fungal Proteins/metabolism , Fungal Proteins/chemistry
4.
J Mycol Med ; 34(2): 101480, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744060

ABSTRACT

OBJECTIVES: The present study aimed to assess the features, clinical characteristics, and species diversity among patients admitted to referral Hospitals for SARS-CoV-2 pneumonia and mucormycosis in Tehran, Iran, and the relationship between seasonal and species diversity was considered. METHODS: Confirmed COVID-19 patients with a positive reverse-transcriptase real-time (rRT-PCR) test for SARS-CoV2 were primarily included based on clinically suspected mucormycosis infection and confirmed by histopathology and mycology examination of biopsy specimens. The PCR technique was performed by the amplification of the high-affinity iron permease 1 (FTR1) gene for identification and discrimination between Rhizopus arrhizus and non- Rhizopus arrhizus isolates. In contrast, species identification of non-Rhizopus arrhizus was performed by sequencing of ITS rDNA region. RESULTS: Rhino-sino-orbital mucormycosis was identified in the majority of cases (n = 33), with 66 % and 34 % of the cases involving male and female patients, respectively. Rhizopus arrhizus was found to be the most prevalent (84.6 %), followed by Mucor circinelloides (7.6 %). Rhizopus arrhizus was the most prevalent species and present in all the seasons; however, Mucor circinelloides was only present in the autumn. The overall mortality of the total population was 24.6 % (16/ 65); the mortality rates occurring in patients diagnosed with rhino-sino-orbital infection and rhino-sinusal form were 21.4 % and 25 %, respectively. CONCLUSION: CAM can be a serious complication of severe COVID-19, especially in patients with uncontrolled diabetes. It is important to monitor the epidemiology of mucormycosis to raise awareness of the disease and improve diagnosis, treatment and prognosis, particularly in the setting of pandemic.


Subject(s)
COVID-19 , Mucormycosis , SARS-CoV-2 , Humans , Mucormycosis/epidemiology , Mucormycosis/microbiology , Mucormycosis/diagnosis , COVID-19/complications , COVID-19/epidemiology , Iran/epidemiology , Male , Female , Middle Aged , Adult , Aged , SARS-CoV-2/genetics , Rhizopus/isolation & purification , Rhizopus/genetics , Young Adult , Mucor/isolation & purification , Mucor/genetics , Referral and Consultation/statistics & numerical data , Seasons , Orbital Diseases/microbiology , Orbital Diseases/epidemiology
5.
PLoS One ; 19(5): e0302311, 2024.
Article in English | MEDLINE | ID: mdl-38814929

ABSTRACT

This study aimed to enhance sludge dewatering through sequential bioleaching, employing the filamentous fungus Mucor sp. ZG-3 and the iron-oxidizing bacterium Acidithiobacillus ferrooxidans LX5. The mechanism by which Mucor sp. ZG-3 alleviates sludge dissolved organic matter (DOM) inhibition of A. ferrooxidans LX5 was investigated, and the optimal addition of energy source for enhanced sludge dewaterability during sequential bioleaching was determined. Sludge dissolved organic carbon (DOC) decreased to 272 mg/L with a 65.2% reduction by Mucor sp. ZG-3 in 3 days, and the degraded fraction of sludge DOM was mainly low-molecular-weight DOM (L-DOM) which inhibited the oxidization of Fe2+ by A. ferrooxidans LX5. By degrading significant inhibitory low-molecular-weight organic acids, Mucor sp. ZG-3 alleviated DOM inhibition of A. ferrooxidans LX5. In the sequential bioleaching process, the optimal concentration of FeSO4·7H2O for A. ferrooxidans LX5 was 4 g/L, resulting in the minimum specific resistance to filtration (SRF) of 2.60×1011 m/kg, 40.0% lower than that in the conventional bioleaching process with 10 g/L energy source. Moreover, the sequential bioleaching process increased the sludge zeta potential (from -31.8 to -9.47 mV) and median particle size (d50) of the sludge particle (from 17.90 to 27.44 µm), contributing to enhanced sludge dewaterability. Inoculation of Mucor sp. ZG-3 during the bioleaching process reduced the demand for energy sources by A. ferrooxidans LX5 while improving sludge dewaterability performance.


Subject(s)
Mucor , Sewage , Mucor/metabolism , Sewage/microbiology , Biodegradation, Environmental , Water/chemistry , Water/metabolism , Organic Chemicals/metabolism
6.
Sci Rep ; 14(1): 11352, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762506

ABSTRACT

The biological control of gastrointestinal (GI) parasites using predatory fungi has been recently proposed as an accurate and sustainable approach in birds. The current study aimed to assess for the first time the efficacy of using the native ovicidal fungus Mucor circinelloides (FMV-FR1) in reducing coccidia parasitism in peacocks. For this purpose, an in vivo trial was designed in the resident peacock collection (n = 58 birds) of the São Jorge Castle, at Lisbon, Portugal. These animals presented an initial severe infection by coccidia of the genus Eimeria (20106 ± 8034 oocysts per gram of feces, OPG), and thus received commercial feed enriched with a M. circinelloides suspension (1.01 × 108 spores/kg feed), thrice-weekly. Fresh feces were collected every 15 days to calculate the coccidia shedding, using the Mini-FLOTAC technique. The same bird flock served simultaneously as control (t0 days) and test groups (t15-t90 days). The average Eimeria sp. shedding in peacocks decreased up to 92% following fungal administrations, with significant reduction efficacies of 78% (p = 0.004) and 92% (p = 0.012) after 45 and 60 days, respectively. Results from this study suggest that the administration of M. circinelloides spores to birds is an accurate solution to reduce their coccidia parasitism.


Subject(s)
Coccidiosis , Feces , Mucor , Animals , Coccidiosis/veterinary , Coccidiosis/parasitology , Feces/parasitology , Feces/microbiology , Eimeria , Coccidia , Poultry Diseases/parasitology , Poultry Diseases/microbiology , Poultry Diseases/prevention & control
7.
Antimicrob Agents Chemother ; 68(5): e0154523, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38557112

ABSTRACT

Ibrexafungerp (formerly SCY-078) is the first member of the triterpenoid class that prevents the synthesis of the fungal cell wall polymer ß-(1,3)-D-glucan by inhibiting the enzyme glucan synthase. We evaluated the in vivo efficacy of ibrexafungerp against pulmonary mucormycosis using an established murine model. Neutropenic mice were intratracheally infected with either Rhizopus delemar or Mucor circinelloides. Treatment with placebo (diluent control), ibrexafungerp (30 mg/kg, PO BID), liposomal amphotericin B (LAMB 10 mg/kg IV QD), posaconazole (PSC 30 mg/kg PO QD), or a combination of ibrexafungerp plus LAMB or ibrexafungerp plus PSC began 16 h post-infection and continued for 7 days for ibrexafungerp or PSC and through day 4 for LAMB. Ibrexafungerp was as effective as LAMB or PSC in prolonging median survival (range: 15 days to >21 days) and enhancing overall survival (30%-65%) vs placebo (9 days and 0%; P < 0.001) in mice infected with R. delemar. Furthermore, median survival and overall percent survival resulting from the combination of ibrexafungerp plus LAMB were significantly greater compared to all monotherapies (P ≤ 0.03). Similar survival results were observed in mice infected with M. circinelloides. Monotherapies also reduce the lung and brain fungal burden by ~0.5-1.0log10 conidial equivalents (CE)/g of tissue vs placebo in mice infected with R. delemar (P < 0.05), while a combination of ibrexafungerp plus LAMB lowered the fungal burden by ~0.5-1.5log10 CE/g compared to placebo or any of the monotherapy groups (P < 0.03). These results are promising and warrant continued investigation of ibrexafungerp as a novel treatment option against mucormycosis.


Subject(s)
Amphotericin B , Antifungal Agents , Glycosides , Mucormycosis , Neutropenia , Triterpenes , Animals , Amphotericin B/therapeutic use , Amphotericin B/pharmacology , Mucormycosis/drug therapy , Mice , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , Triterpenes/pharmacology , Triterpenes/therapeutic use , Neutropenia/drug therapy , Neutropenia/complications , Disease Models, Animal , Drug Therapy, Combination , Female , Rhizopus/drug effects , Lung Diseases, Fungal/drug therapy , Lung Diseases, Fungal/microbiology , Mucor/drug effects , Triazoles/therapeutic use , Triazoles/pharmacology
8.
Bioresour Technol ; 398: 130540, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38452954

ABSTRACT

This study aimed to improve the lipid and biomass yields of Mucor circinelloides WJ11 by implementing four different fed-batch fermentation strategies, varied in time and glucose concentration (S1-S4). The S1 fermentation strategy yielded the highest biomass, lipid, and fatty acid content (22 ± 0.7 g/L, 53 ± 1.2 %, and 28 ± 1.6 %) after 120 and 144 h, respectively. The γ-linolenic acid titer of 0.75 ± 0.0 g/L was greatest in S3 after 48 h. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to analyze the transcription of key genes involved in lipid accumulation. The glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and ATP-citrate lyase genes showed increased expression levels. Fourier-transform infrared (FTIR) spectroscopy was used to analyze the biochemical profile during fermentation strategies. Optimal abiotic factors for production efficiency included pH 6.5, 25-26 °C, 15 % (v/v) inoculum, 500 rpm, 20 %-30 % dissolved oxygen, and 120 h fermentation. Glucose co-feeding offers valuable insights to develop effective fermentation strategies for lipid production.


Subject(s)
Fatty Acids , Mucor , Fermentation , Biomass , Mucor/metabolism , Fatty Acids/metabolism , Glucose/metabolism
9.
Microbiol Spectr ; 12(5): e0407823, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38534121

ABSTRACT

Parasiticide fungi are considered an accurate, sustainable, and safe solution for the biocontrol of animal gastrointestinal (GI) parasites. This research provides an initial characterization of the virulence of the native parasiticide fungus Mucor circinelloides (FMV-FR1) and an assessment of its impact on birds' gut microbes. The genome of this fungus was sequenced to identify the genes coding for virulence factors. Also, this fungus was checked for the phenotypic expression of proteinase, lecithinase, DNase, gelatinase, hemolysin, and biofilm production. Finally, an in vivo trial was developed based on feeding M. circinelloides spores to laying hens and peacocks three times a week. Bird feces were collected for 3 months, with total genomic DNA being extracted and subjected to long-read 16S and 25S-28S sequencing. Genes coding for an iron permease (FTR1), iron receptors (FOB1 and FOB2), ADP-ribosylation factors (ARFs) (ARF2 and ARF6), and a GTPase (CDC42) were identified in this M. circinelloides genome. Also, this fungus was positive only for lecithinase activity. The field trial revealed a fecal microbiome dominated by Firmicutes and Proteobacteria in laying hens, and Firmicutes and Bacteroidetes in peacocks, whereas the fecal mycobiome of both bird species was mainly composed of Ascomycetes and Basidiomycetes fungi. Bacterial and fungal alpha-diversities did not differ between sampling time points after M. circinelloides administrations (P = 0.62 and P = 0.15, respectively). Although findings from this research suggest the lack of virulence of this M. circinelloides parasiticide isolate, more complementary in vitro and in vivo research is needed to conclude about the safety of its administration to birds, aiming at controlling their GI parasites.IMPORTANCEA previous study revealed that the native Mucor circinelloides isolate (FMV-FR1) can develop parasiticide activity toward coccidia oocysts, one of the most pathogenic GI parasites in birds. However, ensuring its safety for birds is of utmost importance, namely by studying its virulence profile and potential effect on commensal gut microbes. This initial study revealed that although this M. circinelloides isolate had genes coding for four types of virulence factors-iron permease, iron receptors, ADP-ribosylation factors, and GTPase-and only expressed phenotypically the enzyme lecithinase, the administration of its spores to laying hens and peacocks did not interfere with the abundances and diversities of their gut commensal bacteria and fungi. Although overall results suggest the lack of virulence of this M. circinelloides isolate, more complementary research is needed to conclude about the safety of its administration to birds in the scope of parasite biocontrol programs.


Subject(s)
Chickens , Gastrointestinal Microbiome , Mucor , Virulence Factors , Mucor/genetics , Mucor/pathogenicity , Animals , Chickens/microbiology , Virulence , Virulence Factors/genetics , Virulence Factors/metabolism , Feces/microbiology , Female
10.
Food Res Int ; 181: 114118, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38448091

ABSTRACT

Meat dry aging consists in storing unpackaged meat in a cold room, and at a specific and controlled relative humidity (RH), for a period of 1 to 5 weeks or more. This practice has become widespread in recent years due to its positive effect on the tenderness of the meat but also on other organoleptic characteristics and therefore its market value. The objective of this work was to study the bacterial and fungal microbiota of dry-aged beef at the commercial stage by both culture-dependent and -independent approaches. Fifty-eight samples of dry-aged meat from different producer types (meat processing plants, artisanal and supermarket butchers) were studied. The dry-aging conditions (temperature, RH) of the meats, as well as the surface pH and aw, were measured. The main microbial groups were enumerated by culture on various dedicated media. Concerning fungi, isolates of yeasts and molds (n = 257) were identified after dereplication by FTIR spectroscopy and/or sequencing of taxonomically relevant genes (26S rDNA, ITS, ß-tubulin, actin). Metagenetic analyzes targeting the V3-V4 regions of 16S rDNA and ITS2 were also performed. Overall, ripening practices were diversified with temperatures and RH between 0.5 and 2.8 °C (median = 2 °C) and 47 and 88 % (median = 70 %), respectively. The aerobic colony count varied between 1.97 and 10.91 log10 CFU/g (median = 8.32 log10 CFU/g) and was similar to that of Pseudomonas spp., indicating that this bacterial group was dominant. Yeast populations varied between <2 and 9.41 log10 CFU/g, while molds showed abundances between <2 and 7.7 log10 TFU/g, the highest values being found in meats matured with a high RH. Bacterial and mold counts were positively correlated with the dry-aging RH and, to a lesser extent, temperature. The main yeast species were Candida zeylanoides and Yarrowia alimentaria as well as Itersonilia pannonica (identified only in metagenetics). The dominant mold species were psychrophilic or psychrotrophic species, namely Mucor complex flavus and Helycostylum elegans/pulchrum that have already been shown to be associated with dry-aged beef meat. This study has identified the main microorganisms associated with dry-aged meat in France, which raises the question of their role in the organoleptic quality of these higher value products.


Subject(s)
Microbiota , Mucor , Mycobiome , Animals , Cattle , France , DNA, Ribosomal
11.
BMC Vet Res ; 20(1): 63, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38388939

ABSTRACT

BACKGROUND: The combined application of predatory fungi and antiparasitic drugs is a sustainable approach for the integrated control of animal gastrointestinal (GI) parasites. However, literature addressing the possible interference of antiparasitic drugs on the performance of these fungi is still scarce. This research aimed to assess the in vitro susceptibility of six native coccidicidal fungi isolates of the species Mucor circinelloides and one Mucor lusitanicus isolate to several antiparasitic drugs commonly used to treat GI parasites' infections in birds, namely anthelminthics such as Albendazole, Fenbendazole, Levamisole and Ivermectin, and anticoccidials such as Lasalocid, Amprolium and Toltrazuril (drug concentrations of 0.0078-4 µg/mL), using 96-well microplates filled with RPMI 1640 medium, and also on Sabouraud Agar (SA). RESULTS: This research revealed that the exposition of all Mucor isolates to the tested anthelminthic and anticoccidial drug concentrations did not inhibit their growth. Fungal growth was recorded in RPMI medium, after 48 h of drug exposure, as well as on SA medium after exposure to the maximum drug concentration. CONCLUSIONS: Preliminary findings from this research suggest the potential compatibility of these Mucor isolates with antiparasitic drugs for the integrated control of avian intestinal parasites. However, further in vitro and in vivo studies are needed to confirm this hypothesis.


Subject(s)
Antiparasitic Agents , Mucor , Animals , Antiparasitic Agents/pharmacology , Ivermectin/pharmacology , Albendazole
12.
Appl Microbiol Biotechnol ; 108(1): 223, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38376614

ABSTRACT

Pork backfat (PB) contains excessive saturated fatty acids (SFAs), but lacks polyunsaturated fatty acids (PUFAs). Excessive SFAs can be used as a substrate for the growth of certain microorganisms that convert them into PUFAs and monounsaturated fatty acids (MUFAs), and the added value of PB can be enhanced. In this study, Mucor circinelloides CBS 277.49 and Lactiplantacillus plantarum CGMCC 24189 were co-cultured for conversion of PB into fermented pork backfat (FPB) with high level of PUFAs. Our results showed that the content of γ-linolenic acid (GLA) and linoleic acid (LA) in the surface of FPB reached 9.04 ± 0.14 mg/g and 107.31 ± 5.16 mg/g for 7-day fermentation, respectively. To convert the internal SFAs of PB, ultrasound combined with papain was used to promote the penetrative growth of M. circinelloides into the internal PB, and the GLA level in the third layer of fat reached 2.58 ± 0.31 mg/g FPB. The internal growth of M. circinelloides in PB was promoted by adjusting the oxygen rate and ventilation rate through the wind velocity sensor. When the oxygen rate is 2 m/s and the ventilation rate is 18 m3/h, the GLA level in the third layer of fat reached 4.13 ± 1.01 mg/g FPB. To further improve the level of PUFAs in PB, FPB was produced by M. circinelloides at 18 °C. The GLA content on the surface of FPB reached 15.73 ± 1.13 mg/g FPB, and the GLA yield in the second and third layers of fat reached 8.68 ± 1.77 mg/g FPB and 6.13 ± 1.28 mg/g FPB, the LA yield in the second and third layers of fat reached 105.45 ± 5.01 mg/g FPB and 98.46 ± 4.14 mg/g FPB, respectively. These results suggested that excessive SFAs in PB can be converted into PUFAs and provided a new technique for improving PUFAs in FPB. KEY POINTS: • This article achieved the conversion of PUFAs in pork backfat by Mucor circinelloides CBS 277.49 and Lactiplantacillus plantarum CGMCC 24189. • This article solved the internal growth of M. circinelloides CBS277.49 in pork backfat by ultrasound combined with papain. • This article proposed an innovative of promoting the internal growth of M. circinelloides and increasing the PUFAs production by oxygen ventilation in pork backfat.


Subject(s)
Mucor , Pork Meat , Red Meat , Swine , Animals , Papain , Fatty Acids, Unsaturated , Linoleic Acid , Oxygen
13.
Environ Res ; 249: 118385, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38331140

ABSTRACT

Silkworm pupae, by-product of sericulture industry, is massively discarded. The degradation rate of silkworm pupae protein is critical to further employment, which reduces the impact of waste on the environment. Herein, magnetic Janus mesoporous silica nanoparticles immobilized proteinase K mutant T206M and Mucor circinelloides aspartic protease were employed in the co-degradation. The thermostability of T206M improved by enhancing structural rigidity (t1/2 by 30 min and T50 by 5 °C), prompting the degradation efficiency. At 65 °C and pH 7, degradation rate reached the highest of 61.7%, which improved by 26% compared with single free protease degradation. Besides, the immobilized protease is easy to separate and reuse, which maintains 50% activity after 10 recycles. Therefore, immobilized protease co-degradation was first applied to the development and utilization of silkworm pupae resulting in the release of promising antioxidant properties and reduces the environmental impact by utilizing a natural and renewable resource.


Subject(s)
Bombyx , Endopeptidase K , Magnetite Nanoparticles , Mucor , Pupa , Bombyx/metabolism , Animals , Mucor/enzymology , Magnetite Nanoparticles/chemistry , Endopeptidase K/metabolism , Enzymes, Immobilized/metabolism , Enzymes, Immobilized/chemistry , Aspartic Acid Proteases/metabolism , Aspartic Acid Proteases/chemistry , Insect Proteins/metabolism , Insect Proteins/chemistry
15.
Sci Rep ; 14(1): 806, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38191628

ABSTRACT

Layered double hydroxides have recently gained wide interest as promising multifunctional nanomaterials. In this work, a multifunctional ternary Zn-Co-Fe LDH was prepared and characterized using XRD, FTIR, BET, TEM, SEM, and EDX. This LDH showed a typical XRD pattern with a crystallite size of 3.52 nm and a BET surface area of 155.9 m2/g. This LDH was investigated, for the first time, as an adsorbent for moxifloxacin, a common fluoroquinolones antibiotic, showing a maximum removal efficiency and equilibrium time of 217.81 mg/g and 60 min, respectively. Its antifungal activity, for the first time, was investigated against Penicillium notatum, Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, and Mucor fungi at various concentrations (1000-1.95 µg/mL). This LDH was found to be effective against a variety of fungal strains, particularly Penicillium and Mucor species and showed zones of inhibition of 19.3 and 21.6 mm for Penicillium and Mucor, respectively, with an inhibition of 85% for Penicillium species and 68.3% for Mucormycosis. The highest antifungal efficacy results were obtained at very low MIC concentrations (33.3 and 62 µg/ml) against Penicillium and Mucor, respectively. The results of this study suggest a promising multifunctional potential of this LDH for water and wastewater treatment and disinfection applications.


Subject(s)
Antifungal Agents , Penicillium , Antifungal Agents/pharmacology , Moxifloxacin/pharmacology , Disinfection , Hydroxides , Mucor , Zinc
16.
Article in English | MEDLINE | ID: mdl-38185464

ABSTRACT

In the oleaginous fungus Mucor circinelloides, lipid accumulation is regulated by nitrogen metabolism, which is regulated by the areA gene, a member of the GATA zinc finger transporter family and a major regulator for nitrogen metabolism. However, the role of areA in lipid accumulation in this fungus has not been reported. In order to explore the regulatory effect of areA gene on nitrogen metabolism and lipid accumulation in M. circinelloides, we constructed areA gene knockout and overexpression strains. Then, the recombinant strains were cultured and their biochemical indexes were measured. Simultaneously, transcriptomic studies on the recombinant strains were conducted to infer the regulatory mechanism of areA. The results showed that the areA knockout strain accumulated more lipid, which is 42 % higher than the control. While the areA overexpressing strain obtained the higher biomass accumulation (23 g/L) and used up the nitrogen source in the medium earlier than the control strain and knockout strain. Transcriptome data analysis showed that nr and nit-6 genes related to nitrogen metabolism were up-regulated. And the expression levels of key genes acc and aclY were higher in the areA knockout strain than others, which was positively correlated with the increased lipid accumulation. In addition, in knockout strains, protein catabolism tended to provide substrates for the lipid production, and the expression levels of the related genes were also higher than others. These results indicated that the areA gene not only controls the transcription level of genes related to nitrogen metabolism but also affects lipid accumulation.


Subject(s)
Lipid Metabolism , Mucor , Lipid Metabolism/genetics , Mucor/genetics , Mucor/metabolism , Lipids , Nitrogen/metabolism
17.
Article in English | MEDLINE | ID: mdl-38052250

ABSTRACT

Lipid biosynthesis is a significant metabolic response to nitrogen starvation in oleaginous fungi. The oleaginous fungus Mucor circinelloides copes with nitrogen stress by degrading AMP through AMP deaminase (AMPD). However, the mechanism of AMPD in regulating lipogenesis remains largely unclear. To elucidate the mechanism of AMPD in lipid synthesis in this M. circinelloides, we identified two genes (ampd1 and ampd2) encoding AMPD and constructed an ampd double knockout mutant. The engineered M. circinelloides strain elevated cell growth and lipid accumulation, as well as the content of oleic acid (OA) and gamma-linolenic acid (GLA). In addition to the expected increase in transcription levels of genes associated with lipid and TAG synthesis, we observed suppression of lipid degradation and reduced amino acid biosynthesis. This suggested that the deletion of AMPD genes induces the redirection of carbon towards lipid synthesis pathways. Moreover, the pathways related to nitrogen metabolism, including nitrogen assimilation and purine metabolism (especially energy level), were also affected in order to maintain homeostasis. Further analysis discovered that the transcription factors (TFs) related to lipid accumulation were also regulated. This study provides new insights into lipid biosynthesis in M. circinelloides, indicating that the trigger for lipid accumulation is not entirely AMPD-dependent and suggest that there may be additional mechanisms involved in the initiation of lipogenesis.


Subject(s)
AMP Deaminase , Lipid Metabolism , Mucor , Lipid Metabolism/genetics , AMP Deaminase/genetics , AMP Deaminase/metabolism , Nitrogen/metabolism , Lipids
18.
O.F.I.L ; 34(1): 92-94, 2024.
Article in Spanish | IBECS | ID: ibc-232632

ABSTRACT

El tratamiento de las infecciones fúngicas invasivas, tanto la aspergilosis invasora como la mucormicosis supone un importante desafío clínico por el reducido número de agentes antifúngicos azólicos disponibles y por la gravedad clínica. Debido a esta elevada mortalidad, es necesario un diagnóstico temprano y un tratamiento agresivo, no sólo debe ser médico sino también quirúrgico. Presentamos un caso de mucormicosis maxilofacial en un paciente sin antecedentes clínicos de interés. Se trata de un paciente de 40 años con bultoma en región submandibular derecha de aparición más o menos súbita. Refiere parestesias en labio inferior hemilabio derecho con desviación del mismo a la derecha, de un año. Extracción del molar sin complicaciones aparentes. Los resultados de la primera biopsia muestran tejidos blandos con microorganismos micóticos compatibles con mucormicosis. En la exploración clínica se palpa inflamación a nivel de la zona submandibular derecha, no dolorosa. Resto: buen estado general. Comienza tratamiento con fluconazol, y posteriormente con isavuconazol durante 43 días. Los resultados de la segunda biopsia (junio-21): proceso linfoproliferativo B de alto grado compatible con linfoma difuso de células grandes B de centro germinal. Se realiza PET/TC compatible con infiltración ganglionar laterocervical derecha alta y submentoniana con probable afectación de partes blandas y más dudosa amigdalar palatina bilateral de su proceso linfoproliferativo de base. En enero-22: estudio PET/CT que muestra respuesta metabólica completa (Deauville 1) de su proceso linfoproliferativo de base. (AU)


The treatment of invasive fungal infections, both invasive aspergillosis and mucormycosis, represents an important clinical challenge due to the small number of available azole antifungal agents and the clinical severity. Due to this high mortality, early diagnosis and aggressive treatment are necessary, not only medical but also surgical. We present a case of maxillofacial mucormycosis in a patient with no clinical history of interest. This is a 40-year-old patient with a lump in the right submandibular region of more or less sudden onset. Refers paresthesias in the lower lip right hemilip with deviation of the same to the right of a year. Molar extraction without apparent complications. The results of the first biopsy show soft tissues with fungal organisms consistent with mucormycosis. In the clinical examination, inflammation was palpated at the level of the right submandibular area, which was not painful. Rest: good general condition. He begins treatment with fluconazole, and later with isavuconazole for 43 days. The results of the second biopsy (June 21): high-grade B-lymphoproliferative process compatible with diffuse large B-cell lymphoma of the germinal center. PET/CT compatible with high right laterocervical and submental lymph node infiltration with probable soft tissue involvement and more doubtful bilateral palatine tonsillar involvement of its underlying lymphoproliferative process was performed. On January-22: PET/CT study showing complete metabolic response (Deauville 1) of his underlying lymphoproliferative process. (AU)


Subject(s)
Humans , Adult , Mucormycosis , Rhizopus , Mucor , Amphotericin B , General Surgery
19.
Curr Microbiol ; 81(1): 47, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38135799

ABSTRACT

Mucormycosis is uncommon, yet it is more prevalent among individuals with underlying health conditions and those who are immunocompromised. Chitosan is studied because of its appealing properties and diverse applications. The purpose of this work is to synthesize chitosan nanoparticles (CSNPs) by ionic gelation method at various pH levels and test them against Mucor and other filamentous fungus. Field Emission Scanning Electron Microscope, Zeta sizer, Zeta potential, and Fourier Transformed Infrared Spectroscopy were used to characterize CSNPs. Hydrodynamic size increased considerably with increasing pH. Our CSNPs were tested against fungal isolates of Aspergillus Flavus RCMB 02783, Aspergillus Fumigatus RCMB 02564, and Aspergillus Niger RCMB 02588, Penicillium Notatum (NCPF 2881) and   (M. circinelloides CNRMA 03.894) causing mucromycosis. Antifungal activity was investigated using Minimum inhibitory concentration (MIC), Minimum Fungicidal concentration (MFC), Disc diffusion assay, and Antifungal inhibitory percentages methods. The best antifungal efficacy results were obtained through CSNPs prepared at pH = 4.4 at very low concentration for MIC (1.03 or 2.75 µg/mL) with 100% M. circinelloides inhibition followed by pH = 4.6 with MIC (73 or 208 µg/mL) and 93%  M. cirecinelloides inhibition %. Future usage of these materials in masks or wound dressing to avoid fungal infections, including mucormycosis following COVID-19, penicillium, and aspergillosis toxicity and infections.


Subject(s)
Chitosan , Mucormycosis , Nanoparticles , Penicillium chrysogenum , Humans , Antifungal Agents/pharmacology , Mucormycosis/drug therapy , Mucormycosis/microbiology , Mucor , Chitosan/pharmacology , Aspergillus niger , Microbial Sensitivity Tests , Hydrogen-Ion Concentration
20.
J Microbiol ; 61(12): 1043-1062, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38114662

ABSTRACT

Mucormycosis is a lethal and difficult-to-treat fungal infection caused by fungi of the order Mucorales. Mucor lusitanicus, a member of Mucorales, is commonly used as a model to understand disease pathogenesis. However, transcriptional control of hyphal growth and virulence in Mucorales is poorly understood. This study aimed to investigate the role of Tec proteins, which belong to the TEA/ATTS transcription factor family, in the hyphal development and virulence of M. lusitanicus. Unlike in the genome of Ascomycetes and Basidiomycetes, which have a single Tec homologue, in the genome of Mucorales, two Tec homologues, Tec1 and Tec2, were found, except in that of Phycomyces blakesleeanus, with only one Tec homologue. tec1 and tec2 overexpression in M. lusitanicus increased mycelial growth, mitochondrial content and activity, expression of the rhizoferrin synthetase-encoding gene rfs, and virulence in nematodes and wax moth larvae but decreased cAMP levels and protein kinase A (PKA) activity. Furthermore, tec1- and tec2-overexpressing strains required adequate mitochondrial metabolism to promote the virulent phenotype. The heterotrimeric G beta subunit 1-encoding gene deletant strain (Δgpb1) increased cAMP-PKA activity, downregulation of both tec genes, decreased both virulence and hyphal development, but tec1 and tec2 overexpression restored these defects. Overexpression of allele-mutated variants of Tec1(S332A) and Tec2(S168A) in the putative phosphorylation sites for PKA increased both virulence and hyphal growth of Δgpb1. These findings suggest that Tec homologues promote mycelial development and virulence by enhancing mitochondrial metabolism and rhizoferrin accumulation, providing new information for the rational control of the virulent phenotype of M. lusitanicus.


Subject(s)
Mucor , Transcription Factors , Transcription Factors/genetics , Virulence/genetics , Oxidative Stress , Fungal Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...