Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.938
Filter
1.
Fish Shellfish Immunol ; 149: 109549, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599365

ABSTRACT

The study was designed to investigate the effects of replacing fish oil by algal oil and rapeseed oil on histomorphology indices of the intestine, skin and gill, mucosal barrier status and immune-related genes of mucin and antimicrobial peptide (AMP) genes in Atlantic salmon (Salmo salar). For these purposes, Atlantic salmon smolts were fed three different diets. The first was a control diet containing fish oil but no Schizochytrium oil. In the second diet, almost 50 % of the fish oil was replaced with algal oil, and in the third diet, fish oil was replaced entirely with algal oil. The algal oil contained mostly docosahexaenoic acid (DHA) and some eicosapentaenoic acid (EPA). The study lasted for 49 days in freshwater (FW), after which some fish from each diet group were transferred to seawater (SW) for a 48-h challenge test at 33 ppt to test their ability to tolerate high salinity. Samples of skin, gills, and mid intestine [both distal (DI) and anterior (AI) portions of the mid intestine] were collected after the feeding trial in FW and after the SW-challenge test to assess the effects of the diets on the structure and immune functions of the mucosal surfaces. The results showed that the 50 % VMO (Veramaris® algal oil) dietary group had improved intestinal, skin, and gill structures. Principal component analysis (PCA) of the histomorphological parameters demonstrated a significant effect of the algal oil on the intestine, skin, and gills. In particular, the mucosal barrier function of the intestine, skin, and gills was enhanced in the VMO 50 % dietary group after the SW challenge, as evidenced by increased mucous cell density. Immunolabelling of heat shock protein 70 (HSP70) in the intestine (both DI and AI) revealed downregulation of the protein expression in the 50 % VMO group and a corresponding upregulation in the 100 % VMO group compared to 0 % VMO. The reactivity of HSP70 in the epithelial cells was higher after the SW challenge compared to the FW phase. Immune-related genes related to mucosal defense, such as mucin genes [muc2, muc5ac1 (DI), muc5ac1 (AI), muc5ac2, muc5b (skin), and muc5ac1 (gills)], and antimicrobial peptide genes [def3 (DI), def3 (AI), and cath1 (skin)] were significantly upregulated in the 50 % VMO group. PCA of gene expression demonstrated the positive influences on gene regulation in the 50 % VMO dietary group. In conclusion, this study demonstrated the positive effect of substituting 50 % of fish oil with algal oil in the diets of Atlantic salmon. The findings of histomorphometry, mucosal mapping, immunohistochemistry, and immune-related genes connected to mucosal responses all support this conclusion.


Subject(s)
Animal Feed , Diet , Rapeseed Oil , Salmo salar , Animals , Salmo salar/immunology , Diet/veterinary , Rapeseed Oil/chemistry , Animal Feed/analysis , Mucous Membrane/immunology , Fish Oils/administration & dosage , Skin/immunology , Skin/drug effects , Seasons , Gills/immunology , Gills/drug effects , Intestines/drug effects , Intestines/immunology
2.
Front Immunol ; 15: 1243566, 2024.
Article in English | MEDLINE | ID: mdl-38686381

ABSTRACT

Background: Lichen planus pemphigoides (LPP), an association between lichen planus and bullous pemphigoid lesions, is a rare subepithelial autoimmune bullous disease. Mucous membrane involvement has been reported previously; however, it has never been specifically studied. Methods: We report on 12 cases of LPP with predominant or exclusive mucous membrane involvement. The diagnosis of LPP was based on the presence of lichenoid infiltrates in histology and immune deposits in the basement membrane zone in direct immunofluorescence and/or immunoelectron microscopy. Our systematic review of the literature, performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, highlights the clinical and immunological characteristics of LPP, with or without mucous membrane involvement. Results: Corticosteroids are the most frequently used treatment, with better outcomes in LPP with skin involvement alone than in that with mucous membrane involvement. Our results suggest that immunomodulators represent an alternative first-line treatment for patients with predominant mucous membrane involvement.


Subject(s)
Lichen Planus , Mucous Membrane , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Adrenal Cortex Hormones/therapeutic use , Lichen Planus/drug therapy , Lichen Planus/pathology , Lichen Planus/immunology , Lichen Planus/diagnosis , Mucous Membrane/pathology , Mucous Membrane/immunology , Pemphigoid, Bullous/immunology , Pemphigoid, Bullous/drug therapy , Pemphigoid, Bullous/pathology , Pemphigoid, Bullous/diagnosis
3.
Nature ; 628(8009): 854-862, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570678

ABSTRACT

The intestinal immune system is highly adapted to maintaining tolerance to the commensal microbiota and self-antigens while defending against invading pathogens1,2. Recognizing how the diverse network of local cells establish homeostasis and maintains it in the complex immune environment of the gut is critical to understanding how tolerance can be re-established following dysfunction, such as in inflammatory disorders. Although cell and molecular interactions that control T regulatory (Treg) cell development and function have been identified3,4, less is known about the cellular neighbourhoods and spatial compartmentalization that shapes microorganism-reactive Treg cell function. Here we used in vivo live imaging, photo-activation-guided single-cell RNA sequencing5-7 and spatial transcriptomics to follow the natural history of T cells that are reactive towards Helicobacter hepaticus through space and time in the settings of tolerance and inflammation. Although antigen stimulation can occur anywhere in the tissue, the lamina propria-but not embedded lymphoid aggregates-is the key microniche that supports effector Treg (eTreg) cell function. eTreg cells are stable once their niche is established; however, unleashing inflammation breaks down compartmentalization, leading to dominance of CD103+SIRPα+ dendritic cells in the lamina propria. We identify and validate the putative tolerogenic interaction between CD206+ macrophages and eTreg cells in the lamina propria and identify receptor-ligand pairs that are likely to govern the interaction. Our results reveal a spatial mechanism of tolerance in the lamina propria and demonstrate how knowledge of local interactions may contribute to the next generation of tolerance-inducing therapies.


Subject(s)
Intestinal Mucosa , Mucous Membrane , T-Lymphocytes, Regulatory , Animals , Female , Male , Mice , Antigens, CD/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Gene Expression Profiling , Helicobacter hepaticus/immunology , Helicobacter Infections/immunology , Helicobacter Infections/microbiology , Immune Tolerance/immunology , Inflammation/immunology , Inflammation/microbiology , Inflammation/pathology , Integrin alpha Chains/metabolism , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Macrophages/immunology , Macrophages/metabolism , Mice, Inbred C57BL , Mucous Membrane/cytology , Mucous Membrane/immunology , Receptors, Immunologic/metabolism , Receptors, Immunologic/immunology , Single-Cell Gene Expression Analysis , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/cytology , Transcriptome
4.
Vet Immunol Immunopathol ; 271: 110742, 2024 May.
Article in English | MEDLINE | ID: mdl-38547603

ABSTRACT

Probiotics as dietary additives can improve weight gain, feed efficiency, and disease resistance in cultured fish. In this research, we evaluated and compared the effects of Bacillus subtilis on immunity, mucosal tissue morphology, immune-related gene transcriptions, and intestinal microbiota in flounder (Paralichthys olivaceus) by a 30-day feeding experiment based on a continuous feeding schedule (E1) and a discontinuous feeding schedule (E2). As a result, the use of B. subtilis exerted the best positive effects on survival rate, enzyme activity, mucosal tissue morphology, immune-related gene transcriptions, and intestinal microbiota in flounders. Alkaline phosphatase (AKP), lysozyme (LZM), and superoxide dismutase (SOD) activities in the liver of E2 were higher than those of E1 (P < 0.05). Furthermore, the villi length in the intestinal tract and the fold length in the stomach of E2 were also higher than in E1 (P < 0.05). The il-1 expression levels in the spleen were significantly increased in E2 (P < 0.05) compared to E1. We performed 16 S rRNA sequencing analysis to find that Bacillus in E1 (1.06%) and E2 (1.01%) had higher relative abundances than in E0 (0.053%) at the end of the experiments, indicating that short-term application of B. subtilis with the continuous or discontinuous feeding method can allow both the adaptation of the ecosystem to the presence of probiotics by the establishment of new species in the gut microbiota and the ability these new probiotic species to perform corresponding functions. No significant differences in the ability of probiotic establishment were observed between E1 and E2. Our findings provided a unique perspective to explore the mechanism of immune enhancement with probiotics and to screen the optimal administration strategy in aquaculture application for probiotic use. Together, these results point to some level of enhancement in immune status by continuous and discontinuous feeding after a short-term feeding period, which could be used as a prophylactic strategy for flounder health management.


Subject(s)
Animal Feed , Bacillus subtilis , Flounder , Gastrointestinal Microbiome , Probiotics , Animals , Probiotics/administration & dosage , Probiotics/pharmacology , Flounder/immunology , Flounder/microbiology , Animal Feed/analysis , Feeding Methods/veterinary , Mucous Membrane/immunology , Mucous Membrane/microbiology , Transcription, Genetic
5.
Cell Rep ; 43(4): 113977, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38512869

ABSTRACT

Next-generation vaccines may be delivered via the skin and mucosa. The stratified squamous epithelium (SSE) represents the outermost layer of the skin (epidermis) and type II mucosa (epithelium). Langerhans cells (LCs) have been considered the sole antigen-presenting cells (APCs) to inhabit the SSE; however, it is now clear that dendritic cells (DCs) are also present. Importantly, there are functional differences in how LCs and DCs take up and process pathogens as well as their ability to activate and polarize T cells, though whether DCs participate in neuroimmune interactions like LCs is yet to be elucidated. A correct definition and functional characterization of APCs in the skin and anogenital tissues are of utmost importance for the design of better vaccines and blocking pathogen transmission. Here, we provide a historical perspective on the evolution of our understanding of the APCs that inhabit the SSE, including a detailed review of the most recent literature.


Subject(s)
Dendritic Cells , Langerhans Cells , Vaccines , Langerhans Cells/immunology , Humans , Dendritic Cells/immunology , Animals , Vaccines/immunology , Mucous Membrane/immunology , Mucous Membrane/cytology , Epithelial Cells/immunology , Skin/immunology
6.
J Allergy Clin Immunol ; 153(5): 1169-1180, 2024 May.
Article in English | MEDLINE | ID: mdl-38369030

ABSTRACT

The epithelial lining of the respiratory tract and intestine provides a critical physical barrier to protect host tissues against environmental insults, including dietary antigens, allergens, chemicals, and microorganisms. In addition, specialized epithelial cells communicate directly with hematopoietic and neuronal cells. These epithelial-immune and epithelial-neuronal interactions control host immune responses and have important implications for inflammatory conditions associated with defects in the epithelial barrier, including asthma, allergy, and inflammatory bowel diseases. In this review, we discuss emerging research that identifies the mechanisms and impact of epithelial-immune and epithelial-neuronal cross talk in regulating immunity, inflammation, and tissue homeostasis at mucosal barrier surfaces. Understanding the regulation and impact of these pathways could provide new therapeutic targets for inflammatory diseases at mucosal sites.


Subject(s)
Epithelial Cells , Homeostasis , Inflammation , Neurons , Humans , Homeostasis/immunology , Animals , Inflammation/immunology , Epithelial Cells/immunology , Neurons/immunology , Cell Communication/immunology , Immunity, Mucosal , Intestinal Mucosa/immunology , Mucous Membrane/immunology
7.
Semin Immunopathol ; 45(4-6): 509-519, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38305897

ABSTRACT

The mucosal surface is in constant contact with foreign antigens and is regulated by unique mechanisms that are different from immune responses in the peripheral organs. For the last several decades, only adaptive immune cells such as helper T (Th) cells, Th1, Th2, or Th17 were targeted to study a wide variety of immune responses in the mucosal tissues. However, since their discovery, innate lymphoid cells (ILCs) have been attracting attention as a unique subset of immune cells that provide border defense with various functions and tissue specificity. ILCs are classified into different groups based on cell differentiation and functions. Group 3 innate lymphoid cells (ILC3s) are particularly in close proximity to mucosal surfaces and therefore have the opportunity to be exposed to a variety of bacteria including pathogenic bacteria. In recent years, studies have also provided much evidence that ILC3s contribute to disease pathogenesis as well as the defense of mucosal surfaces by rapidly responding to pathogens and coordinating other immune cells. As the counterpart of helper T cells, ILC3s together with other ILC subsets establish the immune balance between adaptive and innate immunity in protecting us from invasion or encounter with non-self-antigens for maintaining a complex homeostasis. In this review, we summarize recent advances in our understanding of ILCs, with a particular focus on the function of ILC3s in their involvement in bacterial infection and disease pathogenesis.


Subject(s)
Immunity, Innate , Lymphocytes , Humans , Animals , Lymphocytes/immunology , Lymphocytes/metabolism , Disease Susceptibility , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Mucous Membrane/immunology , Mucous Membrane/metabolism , Immunity, Mucosal
9.
Sci Immunol ; 8(86): eadj9555, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37540737

ABSTRACT

Tissue-resident memory T cells accumulate in mucosal sites during infancy and then mature through childhood.


Subject(s)
Memory T Cells , Mucous Membrane , Child , Child, Preschool , Humans , Memory T Cells/immunology , Mucous Membrane/immunology
10.
Science ; 376(6596): 950-955, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35617395

ABSTRACT

Associations between the dynamic community of microbes (the microbiota) and the host they colonize appear to be vital for ensuring host health. Microbe-host communication is actively maintained across physiological barriers of various body sites and is mediated by a range of bidirectional secreted proteins and small molecules. So far, a range of "omics" methods have succeeded in revealing the multiplicity of associations between members of a microbiota and a wide range of host processes and diseases. Although these advances point to possibilities for treating disease, there has not been much translational success thus far. We know little about which organisms are key contributors to host health, the importance of strain differences, and the activities of much of the chemical "soup" that is produced by the microbiota. Adding to this complexity are emerging hints of the role of interkingdom interactions between bacteria, phages, protozoa, and/or fungi in regulating the microbiota-host interactions. Functional approaches, although experimentally challenging, could be the next step to unlocking the power of the microbiota.


Subject(s)
Gastrointestinal Microbiome , Host Microbial Interactions , Animals , Humans , Immunity, Mucosal , Mucous Membrane/immunology , Mucous Membrane/microbiology
11.
Front Immunol ; 13: 800295, 2022.
Article in English | MEDLINE | ID: mdl-35197976

ABSTRACT

Trichuriasis is one of the most common neglected tropical diseases of the world's poorest people. A recombinant vaccine composed of Tm-WAP49, an immunodominant antigen secreted by adult Trichuris stichocytes into the mucosa of the cecum to which the parasite attaches, is under development. The prototype is being evaluated in a mouse model of Trichuris muris infection, with the ultimate goal of producing a mucosal vaccine through intranasal delivery. Intranasal immunization of mice with Tm-WAP49 formulated with the adjuvant OCH, a truncated analog of alpha-GalCer with adjuvanticity to stimulate natural killer T cells (NKT) and mucosal immunity, induced significantly high levels of IgG and its subclasses (IgG1 and IgG2a) in immunized mice. This also resulted in a significant reduction of worm burden after challenge with T. muris-infective eggs. The addition of QS-21 adjuvant to this vaccine formulation further reduced worm counts. The improved protection from the dual-adjuvanted vaccine correlated with higher serum antibody responses (IgG, IgG1, IgG2a, IgA) as well as with the induction of antigen-specific IgA in the nasal mucosa. It was also associated with the robust cellular responses including functional subsets of CD4 T cells producing IL-4, and cytotoxic CD8 T cells expressing granzyme B. The worm reduction achieved by mucosal immunization was higher than that induced by subcutaneous immunization. Intranasal immunization also induced a significantly higher nasal mucosa-secreted antigen-specific IgA response, as well as higher functional cellular responses including CD4+IL4+ (Th1) and CD8+GnzB+ (Th2) T cells, and antigen-specific INFγ-producing T cells in both spleen and MLNs and antibody-producing B cells (CD19+B220+/B220+GL7+). Mucosal immunization further induced long-term T lymphocyte memory with increased central (CD62L+CD44+) and effector (CD62L-CD44+) memory subsets of both CD4 and CD8 T cells at 60 days after the last immunization. In summary, intranasal immunization with recombinant Tm-WAP49 protein induced strong protection versus murine trichuriasis. It represents a promising vaccination approach against intestinal nematodes.


Subject(s)
Trichuriasis/immunology , Adjuvants, Immunologic/pharmacology , Administration, Intranasal , Animals , Antibody Formation/drug effects , CD8-Positive T-Lymphocytes/immunology , Female , Immunity, Cellular/drug effects , Immunity, Mucosal/immunology , Immunization , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Mice , Mice, Inbred AKR , Mice, Inbred BALB C , Mucous Membrane/immunology , Th1 Cells/immunology , Trichuris/immunology , Vaccination/methods , Vaccines, Synthetic
12.
Viruses ; 14(2)2022 01 19.
Article in English | MEDLINE | ID: mdl-35215783

ABSTRACT

Sterilizing immunity after vaccination is desirable to prevent the spread of infection from vaccinees, which can be especially dangerous in hospital settings while managing frail patients. Sterilizing immunity requires neutralizing antibodies at the site of infection, which for respiratory viruses such as SARS-CoV-2 implies the occurrence of neutralizing IgA in mucosal secretions. Systemic vaccination by intramuscular delivery induces no or low-titer neutralizing IgA against vaccine antigens. Mucosal priming or boosting, is needed to provide sterilizing immunity. On the other side of the coin, sterilizing immunity, by zeroing interhuman transmission, could confine SARS-CoV-2 in animal reservoirs, preventing spontaneous attenuation of virulence in humans as presumably happened with the endemic coronaviruses. We review here the pros and cons of each vaccination strategy, the current mucosal SARS-CoV-2 vaccines under development, and their implications for public health.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunity, Mucosal/immunology , Mucous Membrane/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Disease Models, Animal , Humans , Immunoglobulin G/immunology , Mice , Spike Glycoprotein, Coronavirus/immunology , Virulence
13.
Sci Immunol ; 7(67): eabe8931, 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35030034

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are innate-like T lymphocytes that aid in protection against bacterial pathogens at mucosal surfaces through the release of inflammatory cytokines and cytotoxic molecules. Recent evidence suggests that MAIT cells can also provide B cell help. In this study, we describe a population of CXCR5+ T follicular helper (Tfh)­like MAIT cells (MAITfh) that have the capacity to provide B cell help within mucosal lymphoid organs. MAITfh cells are preferentially located near germinal centers in human tonsils and express the classical Tfh-associated transcription factor, B cell lymphoma 6 (BCL-6), the costimulatory markers inducible T cell costimulatory (ICOS) and programmed death receptor 1 (PD-1), and interleukin-21 (IL-21). We demonstrate the ability of MAIT cells to provide B cell help in vivo after mucosal challenge with Vibrio cholerae. Specifically, we show that adoptive transfer of MAIT cells into αß T cell­deficient mice promoted B cell differentiation and increased serum V. cholerae­specific IgA responses. Our data demonstrate the capacity of MAIT cells to participate in adaptive immune responses and suggest that MAIT cells may be potential targets for mucosal vaccines.


Subject(s)
Antibodies/immunology , B-Lymphocytes/immunology , Mucosal-Associated Invariant T Cells/immunology , Mucous Membrane/immunology , Adolescent , Adult , Animals , Antibody Formation/immunology , Child , Child, Preschool , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mucous Membrane/microbiology , Vibrio cholerae/immunology
14.
Clin Exp Allergy ; 52(2): 324-333, 2022 02.
Article in English | MEDLINE | ID: mdl-34570395

ABSTRACT

BACKGROUND: Deaths attributed to Coronavirus Disease 2019 (COVID-19) are mainly due to severe hypoxemic respiratory failure. Although the inflammatory storm has been considered the main pathogenesis of severe COVID-19, hypersensitivity may be another important mechanism involved in severe cases, which have a perfect response to corticosteroids (CS). METHOD: We detected the serum level of anti-SARS-CoV-2-spike S1 protein-specific IgE (SP-IgE) and anti-SARS-CoV-2 nucleocapsid protein-specific IgE (NP-IgE) in COVID-19. Correlation of levels of specific IgE and clinical severity were analysed. Pulmonary function test and bronchial provocation test were conducted in early convalescence of COVID-19. We also obtained histological samples via endoscopy to detect the evidence of mast cell activation. RESULT: The levels of serum SP-IgE and NP-IgE were significantly higher in severe cases, and were correlated with the total lung severity scores (TLSS) and the PaO2 /FiO2 ratio. Nucleocapsid protein could be detected in both airway and intestinal tissues, which was stained positive together with activated mast cells, binded with IgE. Airway hyperresponsiveness (AHR) exists in the early convalescence of COVID-19. After the application of CS in severe COVID-19, SP-IgE and NP-IgE decreased, but maintained at a high level. CONCLUSION: Hypersensitivity may be involved in severe COVID-19.


Subject(s)
Bronchi/immunology , COVID-19/immunology , Coronavirus Nucleocapsid Proteins/immunology , Duodenum/immunology , Hypersensitivity/immunology , Immunoglobulin E/immunology , Mast Cells/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Bronchi/metabolism , Bronchi/pathology , COVID-19/metabolism , COVID-19/pathology , COVID-19/physiopathology , Case-Control Studies , Coronavirus Nucleocapsid Proteins/metabolism , Duodenum/metabolism , Duodenum/pathology , Female , Humans , Hypersensitivity/metabolism , Hypersensitivity/pathology , Hypersensitivity/physiopathology , Lung/physiopathology , Male , Mast Cells/metabolism , Mast Cells/pathology , Middle Aged , Mucous Membrane/immunology , Mucous Membrane/metabolism , Mucous Membrane/pathology , Phosphoproteins/immunology , Phosphoproteins/metabolism , Recovery of Function , Respiratory Hypersensitivity/physiopathology , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Spike Glycoprotein, Coronavirus/metabolism , Young Adult
15.
J Leukoc Biol ; 111(1): 209-221, 2022 01.
Article in English | MEDLINE | ID: mdl-33857344

ABSTRACT

Communication between the nervous and immune systems serves a key role in host-protective immunity at mucosal barrier sites including the respiratory tract. In these tissues, neuroimmune interactions operate in bidirectional circuits that can sense and respond to mechanical, chemical, and biologic stimuli. Allergen- or helminth-induced products can produce airway inflammation by direct action on nociceptive afferents and adjacent tissues. The activity of nociceptive afferents can regulate innate and adaptive immune responses via neuropeptides and neurotransmitter signaling. This review will summarize recent work investigating the role of neuropeptides CGRP, VIP, neuromedins, substance P, and neurotransmitters dopamine and the B2-adrenoceptor agonists epinepherine/norepinepherine, each of which influence type 2 immunity by instructing mast cell, innate lymphoid cell type 2, dendritic cell, and T cell responses, both in the airway and the draining lymph node. Afferents in the airway also contain receptors for alarmins and cytokines, allowing their activity to be modulated by immune cell secreted products, particularly those secreted by mast cells. Taken together, we propose that further investigation of how immunoregulatory neuropeptides shape respiratory inflammation in experimental systems may reveal novel therapeutic targets for addressing the increasing prevalence of chronic airway disease in humans.


Subject(s)
Hypersensitivity/immunology , Inflammation/immunology , Neuroimmunomodulation , Neuropeptides/immunology , Animals , Humans , Immunity, Innate , Mucous Membrane/immunology , Respiratory System/immunology
16.
Mol Med Rep ; 25(2)2022 Feb.
Article in English | MEDLINE | ID: mdl-34958108

ABSTRACT

Life stress may influence symptom onset and severity in certain gastrointestinal disorders in association with a dysregulated intestinal barrier. It has been widely accepted that stress triggers the hypothalamus­pituitary­adrenal (HPA) axis, releasing corticosterone, which promotes intestinal permeability. In response, colonic inflammation alters mucosal immune homeostasis and destroys the colonic architecture, leading to severe intestinal diseases. Endogenous substance P (SP) does not inhibit the initial extent of the HPA axis response to restraint stress, but it reduces the duration of the stress, suggesting that SP plays an important role in the transition between acute and chronic stress. The present study aimed to investigate the effect of two groups of mice exposed to stress, including acute and chronic stress. The corticosterone was evaluated by ELISA, colon samples were obtained to detected polymorphonuclear cells by hematoxylin and eosin staining, goblet and mast cells were identified by immunocytochemistry and cytokine­producing CD4+ T cells were analyzed by flow cytometry assays, adhesion proteins in the colon epithelium by western blotting and serum SP levels by ELISA. The results demonstrated an increase in the number of polymorphonuclear, goblet and mast cells, a decrease in claudin­1 expression and an elevation in E­cadherin expression during acute stress. Increased E­cadherin expression was also detected during chronic stress. Moreover, it was found that acute stress caused a shift towards a predominantly anti­inflammatory immune response (T helper 2 cells), as shown by the increase in the percentage of CD4+/IL­6+ and CD4+/IL4+ lymphocytes in the lamina propria and the increase in serum SP. In conclusion, this response promoted colonic protection during acute stress.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Colon/immunology , Interleukin-4/metabolism , Mucous Membrane/immunology , Stress Disorders, Traumatic, Acute/immunology , Substance P/blood , Animals , Cadherins/metabolism , Claudin-1/metabolism , Colon/metabolism , Colon/pathology , Corticosterone/blood , Disease Models, Animal , Goblet Cells/metabolism , Inflammation , Male , Mast Cells/metabolism , Mice, Inbred BALB C , Mucous Membrane/metabolism , Stress Disorders, Traumatic, Acute/metabolism
17.
Sci Rep ; 11(1): 23514, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34873252

ABSTRACT

Inflammatory cytokines augment humoral responses by stimulating antibody production and inducing class-switching. In women, genital inflammation (GI) significantly modifies HIV risk. However, the impact of GI on mucosal antibodies remains undefined. We investigated the impact of GI, pre-HIV infection, on antibody isotypes and IgG subclasses in the female genital tract. Immunoglobulin (Ig) isotypes, IgG subclasses and 48 cytokines were measured prior to HIV infection in cervicovaginal lavages (CVL) from 66 HIV seroconverters (cases) and 66 matched HIV-uninfected women (controls) enrolled in the CAPRISA 004 and 008 1% tenofovir gel trials. Pre-HIV infection, cases had significantly higher genital IgM (4.13; IQR, 4.04-4.19) compared to controls (4.06; IQR, 3.90-4.20; p = 0.042). More than one-quarter of cases (27%) had GI compared to just over one-tenth (12%) in controls. Significantly higher IgG1, IgG3, IgG4 and IgM (all p < 0.05) were found in women stratified for GI compared to women without. Adjusted linear mixed models showed several pro-inflammatory, chemotactic, growth factors, and adaptive cytokines significantly correlated with higher titers of IgM, IgA and IgG subclasses (p < 0.05). The strong and significant positive correlations between mucosal antibodies and markers of GI suggest that GI may impact mucosal antibody profiles. These findings require further investigation to establish a plausible biological link between the local inflammatory milieu and its consequence on these genital antibodies.


Subject(s)
Antibodies/immunology , Genitalia, Female/immunology , HIV Antibodies/immunology , Inflammation/immunology , Mucous Membrane/immunology , Adolescent , Case-Control Studies , Cytokines/immunology , Double-Blind Method , Female , Genitalia, Female/virology , Humans , Immunoglobulins/immunology , Inflammation/virology , Mucous Membrane/virology , Retrospective Studies , Tenofovir/immunology
18.
Front Immunol ; 12: 785072, 2021.
Article in English | MEDLINE | ID: mdl-34956215

ABSTRACT

Background: The vasodilator neuropeptide calcitonin gene-related peptide (CGRP) plays both detrimental and protective roles in different pathologies. CGRP is also an essential component of the neuro-immune dialogue between nociceptors and mucosal immune cells. We previously discovered that CGRP is endowed with anti-viral activity and strongly inhibits human immunodeficiency virus type 1 (HIV-1) infection, by suppressing Langerhans cells (LCs)-mediated HIV-1 trans-infection in-vitro and mucosal HIV-1 transmission ex-vivo. This inhibition is mediated via activation of the CGRP receptor non-canonical NFκB/STAT4 signaling pathway that induces a variety of cooperative mechanisms. These include CGRP-mediated increase in the expression of the LC-specific pathogen recognition C-type lectin langerin and decrease in LC-T-cell conjugates formation. The clinical utility of CGRP and modalities of CGRP receptor activation, for inhibition of mucosal HIV-1 transmission, remain elusive. Methods: We tested the capacity of CGRP to inhibit HIV-1 infection in-vivo in humanized mice. We further compared the anti-HIV-1 activities of full-length native CGRP, its metabolically stable analogue SAX, and several CGRP peptide fragments containing its binding C-terminal and activating N-terminal regions. These agonists were evaluated for their capacity to inhibit LCs-mediated HIV-1 trans-infection in-vitro and mucosal HIV-1 transmission in human mucosal tissues ex-vivo. Results: A single CGRP intravaginal topical treatment of humanized mice, followed by HIV-1 vaginal challenge, transiently restricts the increase in HIV-1 plasma viral loads but maintains long-lasting higher CD4+ T-cell counts. Similarly to CGRP, SAX inhibits LCs-mediated HIV-1 trans-infection in-vitro, but with lower potency. This inhibition is mediated via CGRP receptor activation, leading to increased expression of both langerin and STAT4 in LCs. In contrast, several N-terminal and N+C-terminal bivalent CGRP peptide fragments fail to increase langerin and STAT4, and accordingly lack anti-HIV-1 activities. Finally, like CGRP, treatment of human inner foreskin tissue explants with SAX, followed by polarized inoculation with cell-associated HIV-1, completely blocks formation of LC-T-cell conjugates and HIV-1 infection of T-cells. Conclusion: Our results show that CGRP receptor activation by full-length CGRP or SAX is required for efficient inhibition of LCs-mediated mucosal HIV-1 transmission. These findings suggest that formulations containing CGRP, SAX and/or their optimized agonists/analogues could be harnessed for HIV-1 prevention.


Subject(s)
Calcitonin Gene-Related Peptide/pharmacology , HIV Infections/prevention & control , Peptide Fragments/pharmacology , T-Lymphocytes/drug effects , Animals , Calcitonin Gene-Related Peptide/therapeutic use , Dipeptides/pharmacology , Disease Models, Animal , Female , HEK293 Cells , HIV Infections/diagnosis , HIV Infections/transmission , HIV Infections/virology , HIV-1/isolation & purification , HIV-1/pathogenicity , Healthy Volunteers , Humans , Mice , Mucous Membrane/drug effects , Mucous Membrane/immunology , Mucous Membrane/virology , Peptide Fragments/therapeutic use , Primary Cell Culture , Quinazolines/pharmacology , T-Lymphocytes/immunology , T-Lymphocytes/virology , Tissue Culture Techniques
19.
Front Immunol ; 12: 750808, 2021.
Article in English | MEDLINE | ID: mdl-34917075

ABSTRACT

Endometrial immune response is highly associated with the homeostatic balance of the uterus and embryo development; however, the underlying molecular regulatory mechanisms are not fully elucidated. Herein, the porcine endometrium showed significant variation in mucosal immunity in proliferative and secretory phases by single-cell RNA sequencing. The loose arrangement and high motility of the uterine epithelium in the proliferative phase gave opportunities for epithelial cells and dendritic cells to cross talk with colonizing microbial community, guiding lymphocyte migration into the mucosal and glandular epithelium. The migrating lymphocytes were primarily NK and CD8+ T cells, which were robustly modulated by the chemokine signaling. In the secretory phase, the significantly strengthened mechanical mucosal barrier and increased immunoglobulin A alleviated the migration of lymphocytes into the epithelium when the neuro-modulation, mineral uptake, and amino acid metabolism were strongly upregulated. The noticeably increased intraepithelial lymphocytes were positively modulated by the bacteria in the uterine cavity. Our findings illustrated that significant mucosal immunity variation in the endometrium in the proliferative and secretory phases was closely related to intraepithelial lymphocyte migration, which could be modulated by the colonizing bacteria after cross talk with epithelial cells with higher expressions of chemokine.


Subject(s)
Endometrium/immunology , Endometrium/microbiology , Estrous Cycle/immunology , Immunity, Mucosal/physiology , Microbiota/immunology , Animals , Female , Mucous Membrane/immunology , Mucous Membrane/microbiology , Swine
20.
Front Immunol ; 12: 778455, 2021.
Article in English | MEDLINE | ID: mdl-34868050

ABSTRACT

Introduction: Acetylsalicylic acid (ASA) is a well-known and safe anti-inflammatory. At low-dose, it is prescribed to prevent secondary cardiovascular events in those with pre-existing conditions and to prevent preeclampsia. Little is known about how low-dose ASA affects the immune response. In this study, we followed women to assess how ASA use modifies T cells immune phenotypes in the blood and at the genital tract. Methods: HIV uninfected women from Kenya were enrolled in this study and followed for one month to assess baseline responses including systemic/mucosal baseline immune activation. Participants then received 81mg of ASA daily for 6 weeks to assess changes to T cell immune activation (systemic and mucosal) relative to baseline levels. Results: The concentration of ASA measured in the blood was 58% higher than the level measured at the female genital tract. In the blood, the level of ASA was inversely correlated with the following: the proportion of Th17 expressing HLA-DR (p=0.04), the proportion of effector CD4+ T cells expressing CCR5 (p=0.03) and the proportion of CD8+Tc17 expressing CCR5 (p=0.04). At the genital tract, ASA use correlated with a decreased of activated CD4+T cells [CD4+CCR5+CD161+ (p=0.02) and CD4+CCR5+CD95+ (p=0.001)]. Conclusion: This study shows that ASA use impacts the immune response in both the systemic and genital tract compartments. This could have major implications for the prevention of infectious diseases such as HIV, in which the virus targets activated T cells to establish an infection. This could inform guidelines on ASA use in women. Clinical Trial Registration: ClinicalTrials.gov, identifier NCT02079077.


Subject(s)
Aspirin/administration & dosage , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Adult , Anti-Inflammatory Agents/pharmacology , Biomarkers , Cytokines/metabolism , Female , HIV Infections/epidemiology , HIV Infections/immunology , HIV Infections/prevention & control , HIV Infections/virology , Humans , Immunity, Mucosal , Kenya/epidemiology , Leukocytes, Mononuclear , Male , Middle Aged , Mucous Membrane/immunology , Mucous Membrane/metabolism , Mucous Membrane/virology , T-Lymphocytes/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...