Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.587
Filter
1.
PeerJ ; 12: e17421, 2024.
Article in English | MEDLINE | ID: mdl-38827308

ABSTRACT

Background: Rainfall-induced coastal runoff represents an important environmental impact in near-shore coral reefs that may affect coral-associated bacterial microbiomes. Shifts in microbiome community composition and function can stress corals and ultimately cause mortality and reef declines. Impacts of environmental stress may be site specific and differ between coral microbiome compartments (e.g., tissue versus mucus). Coastal runoff and associated water pollution represent a major stressor for near-shore reef-ecosystems in Guam, Micronesia. Methods: Acropora pulchra colonies growing on the West Hagåtña reef flat in Guam were sampled over a period of 8 months spanning the 2021 wet and dry seasons. To examine bacterial microbiome diversity and composition, samples of A. pulchra tissue and mucus were collected during late April, early July, late September, and at the end of December. Samples were collected from populations in two different habitat zones, near the reef crest (farshore) and close to shore (nearshore). Seawater samples were collected during the same time period to evaluate microbiome dynamics of the waters surrounding coral colonies. Tissue, mucus, and seawater microbiomes were characterized using 16S DNA metabarcoding in conjunction with Illumina sequencing. In addition, water samples were collected to determine fecal indicator bacteria (FIB) concentrations as an indicator of water pollution. Water temperatures were recorded using data loggers and precipitation data obtained from a nearby rain gauge. The correlation structure of environmental parameters (temperature and rainfall), FIB concentrations, and A. pulchra microbiome diversity was evaluated using a structural equation model. Beta diversity analyses were used to investigate spatio-temporal trends of microbiome composition. Results: Acropora pulchra microbiome diversity differed between tissues and mucus, with mucus microbiome diversity being similar to the surrounding seawater. Rainfall and associated fluctuations of FIB concentrations were correlated with changes in tissue and mucus microbiomes, indicating their role as drivers of A. pulchra microbiome diversity. A. pulchra tissue microbiome composition remained relatively stable throughout dry and wet seasons; tissues were dominated by Endozoicomonadaceae, coral endosymbionts and putative indicators of coral health. In nearshore A. pulchra tissue microbiomes, Simkaniaceae, putative obligate coral endosymbionts, were more abundant than in A. pulchra colonies growing near the reef crest (farshore). A. pulchra mucus microbiomes were more diverse during the wet season than the dry season, a distinction that was also associated with drastic shifts in microbiome composition. This study highlights the seasonal dynamics of coral microbiomes and demonstrates that microbiome diversity and composition may differ between coral tissues and the surface mucus layer.


Subject(s)
Anthozoa , Coral Reefs , Microbiota , Seasons , Animals , Anthozoa/microbiology , Microbiota/physiology , Microbiota/genetics , Mucus/microbiology , Seawater/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification
3.
BMC Biotechnol ; 24(1): 28, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38702622

ABSTRACT

Scientists know very little about the mechanisms underlying fish skin mucus, despite the fact that it is a component of the immune system. Fish skin mucus is an important component of defence against invasive infections. Recently, Fish skin and its mucus are gaining interest among immunologists. Characterization was done on the obtained silver nanoparticles Ag combined with Clarias gariepinus catfish epidermal mucus proteins (EMP-Ag-NPs) through UV-vis, FTIR, XRD, TEM, and SEM. Ag-NPs ranged in size from 4 to 20 nm, spherical in form and the angles were 38.10°, 44.20°, 64.40°, and 77.20°, Where wavelength change after formation of EMP-Ag-NPs as indicate of dark brown, the broad band recorded at wavelength at 391 nm. Additionally, the antimicrobial, antibiofilm and anticancer activities of EMP-Ag-NPs was assessed. The present results demonstrate high activity against unicellular fungi C. albicans, followed by E. faecalis. Antibiofilm results showed strong activity against both S. aureus and P. aeruginosa pathogens in a dose-dependent manner, without affecting planktonic cell growth. Also, cytotoxicity effect was investigated against normal cells (Vero), breast cancer cells (Mcf7) and hepatic carcinoma (HepG2) cell lines at concentrations (200-6.25 µg/mL) and current results showed highly anticancer effect of Ag-NPs at concentrations 100, 5 and 25 µg/mL exhibited rounding, shrinkage, deformation and granulation of Mcf7 and HepG2 with IC50 19.34 and 31.16 µg/mL respectively while Vero cells appeared rounded at concentration 50 µg/mL and normal shape at concentration 25, 12.5 and 6.25 µg/ml with IC50 35.85 µg/mL. This study evidence the potential efficacy of biologically generated Ag-NPs as a substitute medicinal agent against harmful microorganisms. Furthermore, it highlights their inhibitory effect on cancer cell lines.


Subject(s)
Biofilms , Catfishes , Metal Nanoparticles , Silver , Metal Nanoparticles/chemistry , Biofilms/drug effects , Biofilms/growth & development , Silver/chemistry , Silver/pharmacology , Animals , Humans , Mucus/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Vero Cells , Fish Proteins/pharmacology , Fish Proteins/chemistry , Fish Proteins/metabolism , Chlorocebus aethiops , Cell Line, Tumor , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Candida albicans/drug effects , Epidermis/metabolism
4.
Emerg Microbes Infect ; 13(1): 2352520, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38713593

ABSTRACT

Vaginal transmission from semen of male Ebola virus (EBOV) survivors has been implicated as a potential origin of Ebola virus disease (EVD) outbreaks. While EBOV in semen must traverse cervicovaginal mucus (CVM) to reach target cells, the behaviour of EBOV in CVM is poorly understood. CVM contains substantial quantities of IgG, and arrays of IgG bound to a virion can develop multiple Fc-mucin bonds, immobilizing the IgG/virion complex in mucus. Here, we measured the real-time mobility of fluorescent Ebola virus-like-particles (VLP) in 50 CVM specimens from 17 women, with and without ZMapp, a cocktail of 3 monoclonal IgGs against EBOV. ZMapp-mediated effective trapping of Ebola VLPs in CVM from a subset of women across the menstrual cycle, primarily those with Lactobacillus crispatus dominant microbiota. Our work underscores the influence of the vaginal microbiome on IgG-mucin crosslinking against EBOV and identifies bottlenecks in the sexual transmission of EBOV.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Vagina , Humans , Female , Ebolavirus/physiology , Vagina/virology , Hemorrhagic Fever, Ebola/virology , Hemorrhagic Fever, Ebola/transmission , Virion , Immunoglobulin G , Adult , Cervix Mucus/virology , Mucus/virology
5.
Sci Rep ; 14(1): 11779, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38783070

ABSTRACT

Most terrestrial mammals have a vomeronasal system to detect specific chemicals. The peripheral organ of this system is a vomeronasal organ (VNO) opening to the incisive duct, and its primary integrative center is an accessory olfactory bulb (AOB). The VNO in seals is thought to be degenerated like whales and manatees, unlike otariids, because of the absence of the AOB. However, olfaction plays pivotal roles in seals, and thus we conducted a detailed morphological evaluation of the vomeronasal system of three harbor seals (Phoca vitulina). The VNO lumen was not found, and the incisive duct did not open into the oral cavity but was recognized as a fossa on the anteroventral side of the nasal cavity. This fossa is rich in mucous glands that secrete acidic mucopolysaccharides, which might originate from the vomeronasal glands. The olfactory bulb consisted only of a main olfactory bulb that received projections from the olfactory mucosa, but an AOB region was not evident. These findings clarified that harbor seals do not have a VNO to detect some chemicals, but the corresponding region is a specialized secretory organ.


Subject(s)
Nasal Cavity , Olfactory Bulb , Phoca , Vomeronasal Organ , Animals , Vomeronasal Organ/metabolism , Vomeronasal Organ/anatomy & histology , Phoca/metabolism , Phoca/anatomy & histology , Nasal Cavity/anatomy & histology , Nasal Cavity/metabolism , Olfactory Bulb/metabolism , Olfactory Bulb/anatomy & histology , Mucus/metabolism , Olfactory Mucosa/metabolism , Olfactory Mucosa/anatomy & histology , Male , Smell/physiology , Female
6.
Food Res Int ; 187: 114343, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763636

ABSTRACT

Human breast milk promotes maturation of the infant gastrointestinal barrier, including the promotion of mucus production. In the quest to produce next generation infant milk formula (IMF), we have produced IMF by membrane filtration (MEM-IMF). With a higher quantity of native whey protein, MEM-IMF more closely mimics human breast milk than IMF produced using conventional heat treatment (HT-IMF). After a 4-week dietary intervention in young pigs, animals fed a MEM-IMF diet had a higher number of goblet cells, acidic mucus and mucin-2 in the jejunum compared to pigs fed HT-IMF (P < 0.05). In the duodenum, MEM-IMF fed pigs had increased trypsin activity in the gut lumen, increased mRNA transcript levels of claudin 1 in the mucosal scrapings and increased lactase activity in brush border membrane vesicles than those pigs fed HT-IMF (P < 0.05). In conclusion, MEM-IMF is superior to HT-IMF in the promotion of mucus production in the young gut.


Subject(s)
Filtration , Infant Formula , Mucus , Animals , Infant Formula/chemistry , Mucus/metabolism , Swine , Whey Proteins/metabolism , Intestine, Small/metabolism , Trypsin/metabolism , Humans , Goblet Cells/metabolism , Claudin-1/metabolism , Claudin-1/genetics , Lactase/metabolism , Lactase/genetics , Mucin-2/metabolism , Mucin-2/genetics , Intestinal Mucosa/metabolism , Duodenum/metabolism , Jejunum/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Milk Proteins/metabolism , Milk Proteins/analysis
7.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732126

ABSTRACT

Enterohemorrhagic Escherichia coli (EHEC) is a critical public health concern due to its role in severe gastrointestinal illnesses in humans, including hemorrhagic colitis and the life-threatening hemolytic uremic syndrome. While highly pathogenic to humans, cattle, the main reservoir for EHEC, often remain asymptomatic carriers, complicating efforts to control its spread. Our study introduces a novel method to investigate EHEC using organoid-derived monolayers from adult bovine ileum and rectum. These polarized epithelial monolayers were exposed to EHEC for four hours, allowing us to perform comparative analyses between the ileal and rectal tissues. Our findings mirrored in vivo observations, showing a higher colonization rate in the rectum compared with the ileum (44.0% vs. 16.5%, p < 0.05). Both tissues exhibited an inflammatory response with increased expression levels of TNF-a (p < 0.05) and a more pronounced increase of IL-8 in the rectum (p < 0.01). Additionally, the impact of EHEC on the mucus barrier varied across these gastrointestinal regions. Innovative visualization techniques helped us study the ultrastructure of mucus, revealing a net-like mucin glycoprotein organization. While further cellular differentiation could enhance model accuracy, our research significantly deepens understanding of EHEC pathogenesis in cattle and informs strategies for the preventative measures and therapeutic interventions.


Subject(s)
Enterohemorrhagic Escherichia coli , Ileum , Organoids , Rectum , Animals , Cattle , Ileum/microbiology , Ileum/metabolism , Ileum/ultrastructure , Rectum/microbiology , Enterohemorrhagic Escherichia coli/pathogenicity , Organoids/metabolism , Organoids/microbiology , Mucus/metabolism , Escherichia coli Infections/microbiology , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/ultrastructure
8.
Expert Opin Drug Deliv ; 21(4): 553-572, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38720439

ABSTRACT

INTRODUCTION: Intranasal administration is an effective drug delivery routes in modern pharmaceutics. However, unlike other in vivo biological barriers, the nasal mucosal barrier is characterized by high turnover and selective permeability, hindering the diffusion of both particulate drug delivery systems and drug molecules. The in vivo fate of administrated nanomedicines is often significantly affected by nano-biointeractions. AREAS COVERED: The biological barriers that nanomedicines encounter when administered intranasally are introduced, with a discussion on the factors influencing the interaction between nanomedicines and the mucus layer/mucosal barriers. General design strategies for nanomedicines administered via the nasal route are further proposed. Furthermore, the most common methods to investigate the characteristics and the interactions of nanomedicines when in presence of the mucus layer/mucosal barrier are briefly summarized. EXPERT OPINION: Detailed investigation of nanomedicine-mucus/mucosal interactions and exploration of their mechanisms provide solutions for designing better intranasal nanomedicines. Designing and applying nanomedicines with mucus interaction properties or non-mucosal interactions should be customized according to the therapeutic need, considering the target of the drug, i.e. brain, lung or nose. Then how to improve the precise targeting efficiency of nanomedicines becomes a difficult task for further research.


Subject(s)
Administration, Intranasal , Drug Delivery Systems , Mucus , Nanomedicine , Nasal Mucosa , Nasal Mucosa/metabolism , Humans , Animals , Mucus/metabolism , Permeability , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/metabolism , Drug Design , Nanoparticles
9.
J Biomed Opt ; 29(4): 046004, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38690122

ABSTRACT

Significance: Assessing the nanostructure of polymer solutions and biofluids is broadly useful for understanding drug delivery and disease progression and for monitoring therapy. Aim: Our objective is to quantify bronchial mucus solids concentration (wt. %) during hypertonic saline (HTS) treatment in vitro via nanostructurally constrained diffusion of gold nanorods (GNRs) monitored by polarization-sensitive optical coherence tomography (PS-OCT). Approach: Using PS-OCT, we quantified GNR translational (DT) and rotational (DR) diffusion coefficients within polyethylene oxide solutions (0 to 3 wt. %) and human bronchial epithelial cell (hBEC) mucus (0 to 6.4 wt. %). Interpolation of DT and DR data is used to develop an assay to quantify mucus concentration. The assay is demonstrated on the mucus layer of an air-liquid interface hBEC culture during HTS treatment. Results: In polymer solutions and mucus, DT and DR monotonically decrease with increasing concentration. DR is more sensitive than DT to changes above 1.5 wt. % of mucus and exhibits less intrasample variability. Mucus on HTS-treated hBEC cultures exhibits dynamic mixing from cilia. A region of hard-packed mucus is revealed by DR measurements. Conclusions: The extended dynamic range afforded by simultaneous measurement of DT and DR of GNRs using PS-OCT enables resolving concentration of the bronchial mucus layer over a range from healthy to disease in depth and time during HTS treatment in vitro.


Subject(s)
Gold , Mucus , Nanotubes , Tomography, Optical Coherence , Tomography, Optical Coherence/methods , Humans , Nanotubes/chemistry , Gold/chemistry , Mucus/chemistry , Mucus/metabolism , Diffusion , Bronchi/diagnostic imaging , Epithelial Cells/chemistry , Epithelial Cells/metabolism , Saline Solution, Hypertonic/pharmacology , Saline Solution, Hypertonic/chemistry , Cells, Cultured
10.
Parasitol Res ; 123(5): 212, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38755287

ABSTRACT

The metastrongyloid nematode Angiostrongylus cantonensis causes eosinophilic meningitis in a variety of homeothermic hosts including humans. Third-stage infectious larvae develop in gastropods as intermediate hosts. Humans are usually infected by intentional or incidental ingestion of an infected mollusk or paratenic host (poikilothermic vertebrates and invertebrates). The infection may also hypothetically occur through ingestion of food or water contaminated by third-stage larvae spontaneously released from gastropods. Larvae are thought to be released in greater numbers from the intermediate host exposed to stress. This study aimed to compare larval release from stressed with unstressed gastropods. Experimentally infected Limax maximus and Lissachatina fulica were exposed to a stress stimulus (shaking on an orbital shaker). The mucus was collected before and after the stress and examined microscopically and by qPCR for the presence of A. cantonensis larvae and their DNA. In the case of L. maximus, no larvae were detected microscopically in the mucus, but qPCR analysis confirmed the presence of A. cantonensis DNA in all experimental replicates, without clear differences between stressed and non-stressed individuals. In contrast, individual larvae of A. cantonensis were found in mucus from Li. fulica after stress exposure, which also reflects an increased number of DNA-positive mucus samples after stress. Stress stimuli of intensity similar to the transport or handling of mollusks can stimulate the release of larvae from highly infected intermediate hosts. However, these larvae are released in small numbers. The exact number of larvae required to trigger neuroangiostrongyliasis is unknown. Therefore, caution is essential when interacting with potential intermediate hosts in regions where A. cantonensis is endemic.


Subject(s)
Angiostrongylus cantonensis , Larva , Stress, Physiological , Animals , Angiostrongylus cantonensis/physiology , Larva/physiology , Gastropoda/parasitology , Strongylida Infections/parasitology , Mucus , Real-Time Polymerase Chain Reaction
11.
Gut Microbes ; 16(1): 2356270, 2024.
Article in English | MEDLINE | ID: mdl-38797998

ABSTRACT

High-fat diets alter gut barrier integrity, leading to endotoxemia by impacting epithelial functions and inducing endoplasmic reticulum (ER) stress in intestinal secretory goblet cells. Indeed, ER stress, which is an important contributor to many chronic diseases such as obesity and obesity-related disorders, leads to altered synthesis and secretion of mucins that form the protective mucus barrier. In the present study, we investigated the relative contribution of omega-3 polyunsaturated fatty acid (PUFAs)-modified microbiota to alleviating alterations in intestinal mucus layer thickness and preserving gut barrier integrity. Male fat-1 transgenic mice (exhibiting endogenous omega-3 PUFAs tissue enrichment) and wild-type (WT) littermates were fed either an obesogenic high-fat diet (HFD) or a control diet. Unlike WT mice, HFD-fed fat-1 mice were protected against mucus layer alterations as well as an ER stress-mediated decrease in mucin expression. Moreover, cecal microbiota transferred from fat-1 to WT mice prevented changes in the colonic mucus layer mainly through colonic ER stress downregulation. These findings highlight a novel feature of the preventive effects of omega-3 fatty acids against intestinal permeability in obesity-related conditions.


Subject(s)
Colon , Diet, High-Fat , Endoplasmic Reticulum Stress , Fatty Acids, Omega-3 , Gastrointestinal Microbiome , Intestinal Mucosa , Mice, Transgenic , Animals , Diet, High-Fat/adverse effects , Mice , Male , Fatty Acids, Omega-3/metabolism , Colon/microbiology , Colon/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Obesity/metabolism , Obesity/microbiology , Mucus/metabolism , Mice, Inbred C57BL , Mucins/metabolism , Goblet Cells/metabolism , Fecal Microbiota Transplantation
12.
Aging (Albany NY) ; 16(9): 7902-7914, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38709270

ABSTRACT

BACKGROUND: Traditional bandages, gauze, and cotton balls are increasingly insufficient for addressing complex war injuries characterized by severe bleeding and diverse wound conditions. The giant salamander, a species of high medical value, secretes a unique mucus when stimulated, which has potential applications in wound care. MATERIALS: Giant salamander skin mucus gel dressing wrapped with bone marrow mesenchymal stem cells (BMSCs-GSSM-gel) was prepared and validated. Skin wound injury of rabbit and mouse models were established. Hematoxylin and Eosin, Masson's trichrome, and Sirius red staining were performed. The platelet aggregation rate and coagulation items were measured. Transcriptome sequencing was performed to find potential differential expression genes. RESULTS: Preparation and characterization of BMSCs-GSSM-gel were performed, and BMSCs-GSSM-gel particles with a diameter of about 200 nm were obtained. BMSCs-GSSM-gel accelerated wound healing in both rabbit and mouse models. BMSCs-GSSM-gel significantly promoted hemostasis via increasing platelet aggregation rate and fibrinogen, but decreasing activated partial thromboplastin time, thrombin time, and prothrombin time. BMSCs-GSSM-gel treatment significantly impacted several genes associated with cell adhesion, inflammatory response, collagen-containing extracellular matrix, and the positive regulation of cell migration based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Integrin Subunit Beta 4 (ITGB4), Integrin Subunit Alpha 3 (ITGA3), and Laminin Subunit Beta 3 (LAMB3) might be involved in the wound healing process by BMSCs-GSSM-gel. CONCLUSIONS: We proved the BMSCs-GSSM-gel greatly improved the skin wound healing, and it might play a crucial role in the application fields of skin damage repair.


Subject(s)
Mesenchymal Stem Cells , Skin , Wound Healing , Animals , Rabbits , Mesenchymal Stem Cells/metabolism , Skin/injuries , Skin/metabolism , Mice , Mucus/metabolism , Integrins/metabolism , Integrins/genetics , Gels , Mesenchymal Stem Cell Transplantation/methods , Male
14.
Toxins (Basel) ; 16(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38787061

ABSTRACT

Peptide toxins from marine invertebrates have found use as drugs and in biotechnological applications. Many marine habitats, however, remain underexplored for natural products, and the Southern Ocean is among them. Here, we report toxins from one of the top predators in Antarctic waters: the nemertean worm Parborlasia corrugatus (McIntosh, 1876). Transcriptome mining revealed a total of ten putative toxins with a cysteine pattern similar to that of alpha nemertides, four nemertide-beta-type sequences, and two novel full-length parborlysins. Nemertean worms express toxins in the epidermal mucus. Here, the expression was determined by liquid chromatography combined with mass spectrometry. The findings include a new type of nemertide, 8750 Da, containing eight cysteines. In addition, we report the presence of six cysteine-containing peptides. The toxicity of tissue extracts and mucus fractions was tested in an Artemia assay. Notably, significant activity was observed both in tissue and the high-molecular-weight mucus fraction, as well as in a parborlysin fraction. Membrane permeabilization experiments display the membranolytic activity of some peptides, most prominently the parborlysin fraction, with an estimated EC50 of 70 nM.


Subject(s)
Peptides , Animals , Antarctic Regions , Peptides/toxicity , Peptides/chemistry , Marine Toxins/toxicity , Marine Toxins/chemistry , Marine Toxins/analysis , Mucus/metabolism , Mucus/chemistry , Artemia
15.
Nat Commun ; 15(1): 3900, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724552

ABSTRACT

By incompletely understood mechanisms, type 2 (T2) inflammation present in the airways of severe asthmatics drives the formation of pathologic mucus which leads to airway mucus plugging. Here we investigate the molecular role and clinical significance of intelectin-1 (ITLN-1) in the development of pathologic airway mucus in asthma. Through analyses of human airway epithelial cells we find that ITLN1 gene expression is highly induced by interleukin-13 (IL-13) in a subset of metaplastic MUC5AC+ mucus secretory cells, and that ITLN-1 protein is a secreted component of IL-13-induced mucus. Additionally, we find ITLN-1 protein binds the C-terminus of the MUC5AC mucin and that its deletion in airway epithelial cells partially reverses IL-13-induced mucostasis. Through analysis of nasal airway epithelial brushings, we find that ITLN1 is highly expressed in T2-high asthmatics, when compared to T2-low children. Furthermore, we demonstrate that both ITLN-1 gene expression and protein levels are significantly reduced by a common genetic variant that is associated with protection from the formation of mucus plugs in T2-high asthma. This work identifies an important biomarker and targetable pathways for the treatment of mucus obstruction in asthma.


Subject(s)
Asthma , GPI-Linked Proteins , Interleukin-13 , Lectins , Mucin 5AC , Mucus , Child , Humans , Asthma/genetics , Asthma/metabolism , Cytokines , Epithelial Cells/metabolism , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Interleukin-13/genetics , Interleukin-13/metabolism , Lectins/genetics , Lectins/metabolism , Mucin 5AC/genetics , Mucin 5AC/metabolism , Mucus/metabolism , Nasal Mucosa/metabolism , Polymorphism, Genetic , Respiratory Mucosa/metabolism
16.
Comput Biol Med ; 176: 108540, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38728996

ABSTRACT

Colonic motility plays a vital role in maintaining proper digestive function. The rhythmic contractions and relaxations facilitate various types of motor functions that generate both propulsive and non-propulsive motility modes which in turn generate shear stresses on the epithelial surface. However, the interplay between colonic mucus, shear stress, and epithelium remains poorly characterized. Here, we present a colonic computational model that describes the potential roles of mucus and shear stress in both homeostasis and ulcerative colitis (UC). Our model integrates several key features, including the properties of the mucus bilayer and faeces, intraluminal pressure, and crypt characteristics to predict the time-space mosaic of shear stress. We show that the mucus thickness which could vary based on the severity of UC, may significantly reduce the amount of shear stress applied to the colonic crypts and effect faecal velocity. Our model also reveals an important spatial shear stress variance in homeostatic colonic crypts that suggests shear stress may have a modulatory role in epithelial cell migration, differentiation, apoptosis, and immune surveillance. Together, our study uncovers the rather neglected roles of mucus and shear stress in intestinal cellular processes during homeostasis and inflammation.


Subject(s)
Colon , Gastrointestinal Motility , Homeostasis , Models, Biological , Mucus , Humans , Colon/physiology , Gastrointestinal Motility/physiology , Mucus/metabolism , Mucus/physiology , Homeostasis/physiology , Inflammation/metabolism , Inflammation/physiopathology , Computer Simulation , Stress, Mechanical , Colitis, Ulcerative/physiopathology , Colitis, Ulcerative/metabolism
17.
Nat Commun ; 15(1): 4578, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811586

ABSTRACT

Modulation of the cervix by steroid hormones and commensal microbiome play a central role in the health of the female reproductive tract. Here we describe organ-on-a-chip (Organ Chip) models that recreate the human cervical epithelial-stromal interface with a functional epithelial barrier and production of mucus with biochemical and hormone-responsive properties similar to living cervix. When Cervix Chips are populated with optimal healthy versus dysbiotic microbial communities (dominated by Lactobacillus crispatus and Gardnerella vaginalis, respectively), significant differences in tissue innate immune responses, barrier function, cell viability, proteome, and mucus composition are observed that are similar to those seen in vivo. Thus, human Cervix Organ Chips represent physiologically relevant in vitro models to study cervix physiology and host-microbiome interactions, and hence may be used as a preclinical testbed for development of therapeutic interventions to enhance women's health.


Subject(s)
Cervix Uteri , Host Microbial Interactions , Immunity, Innate , Microbiota , Humans , Female , Cervix Uteri/microbiology , Cervix Uteri/immunology , Microbiota/immunology , Host Microbial Interactions/immunology , Gardnerella vaginalis/immunology , Lactobacillus crispatus/immunology , Mucus/immunology , Mucus/microbiology , Mucus/metabolism , Lab-On-A-Chip Devices
18.
Sci Rep ; 14(1): 7665, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38561398

ABSTRACT

The integrity of the intestinal mucus barrier is crucial for human health, as it serves as the body's first line of defense against pathogens. However, postnatal development of the mucus barrier and interactions between maturity and its ability to adapt to external challenges in neonatal infants remain unclear. In this study, we unveil a distinct developmental trajectory of the mucus barrier in preterm piglets, leading to enhanced mucus microstructure and reduced mucus diffusivity compared to term piglets. Notably, we found that necrotizing enterocolitis (NEC) is associated with increased mucus diffusivity of our large pathogen model compound, establishing a direct link between the NEC condition and the mucus barrier. Furthermore, we observed that addition of sodium decanoate had varying effects on mucus diffusivity depending on maturity and health state of the piglets. These findings demonstrate that regulatory mechanisms governing the neonatal mucosal barrier are highly complex and are influenced by age, maturity, and health conditions. Therefore, our results highlight the need for specific therapeutic strategies tailored to each neonatal period to ensure optimal gut health.


Subject(s)
Decanoic Acids , Enterocolitis, Necrotizing , Mucus , Infant, Newborn , Animals , Humans , Swine , Inflammation , Dietary Supplements , Enterocolitis, Necrotizing/drug therapy , Intestinal Mucosa
19.
J Theor Biol ; 587: 111824, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38604595

ABSTRACT

The human gut microbiota relies on complex carbohydrates (glycans) for energy and growth, primarily dietary fiber and host-derived mucins. We introduce a mathematical model of a glycan generalist and a mucin specialist in a two-compartment chemostat model of the human colon. Our objective is to characterize the influence of dietary fiber and mucin supply on the abundance of mucin-degrading species within the gut ecosystem. Current mathematical gut reactor models that include the enzymatic degradation of glycans do not differentiate between glycan types and their degraders. The model we present distinguishes between a generalist that can degrade both dietary fiber and mucin, and a specialist species that can only degrade mucin. The integrity of the colonic mucus barrier is essential for overall human health and well-being, with the mucin specialist Akkermanisa muciniphila being associated with a healthy mucus layer. Competition, particularly between the specialist and generalists like Bacteroides thetaiotaomicron, may lead to mucus layer erosion, especially during periods of dietary fiber deprivation. Our model treats the colon as a gut reactor system, dividing it into two compartments that represent the lumen and the mucus of the gut, resulting in a complex system of ordinary differential equations with a large and uncertain parameter space. To understand the influence of model parameters on long-term behavior, we employ a random forest classifier, a supervised machine learning method. Additionally, a variance-based sensitivity analysis is utilized to determine the sensitivity of steady-state values to changes in model parameter inputs. By constructing this model, we can investigate the underlying mechanisms that control gut microbiota composition and function, free from confounding factors.


Subject(s)
Dietary Fiber , Gastrointestinal Microbiome , Models, Biological , Mucins , Mucus , Mucins/metabolism , Dietary Fiber/metabolism , Humans , Gastrointestinal Microbiome/physiology , Mucus/metabolism , Colon/metabolism , Colon/microbiology , Polysaccharides/metabolism
20.
Nat Commun ; 15(1): 3502, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664378

ABSTRACT

Beneficial gut bacteria are indispensable for developing colonic mucus and fully establishing its protective function against intestinal microorganisms. Low-fiber diet consumption alters the gut bacterial configuration and disturbs this microbe-mucus interaction, but the specific bacteria and microbial metabolites responsible for maintaining mucus function remain poorly understood. By using human-to-mouse microbiota transplantation and ex vivo analysis of colonic mucus function, we here show as a proof-of-concept that individuals who increase their daily dietary fiber intake can improve the capacity of their gut microbiota to prevent diet-mediated mucus defects. Mucus growth, a critical feature of intact colonic mucus, correlated with the abundance of the gut commensal Blautia, and supplementation of Blautia coccoides to mice confirmed its mucus-stimulating capacity. Mechanistically, B. coccoides stimulated mucus growth through the production of the short-chain fatty acids propionate and acetate via activation of the short-chain fatty acid receptor Ffar2, which could serve as a new target to restore mucus growth during mucus-associated lifestyle diseases.


Subject(s)
Colon , Dietary Fiber , Fatty Acids, Volatile , Gastrointestinal Microbiome , Intestinal Mucosa , Receptors, Cell Surface , Animals , Dietary Fiber/metabolism , Fatty Acids, Volatile/metabolism , Mice , Colon/metabolism , Colon/microbiology , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Male , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Female , Mice, Inbred C57BL , Mucus/metabolism , Fecal Microbiota Transplantation , Symbiosis , Propionates/metabolism , Clostridiales/metabolism , Acetates/metabolism , Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...