Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.615
Filter
1.
Medicine (Baltimore) ; 103(18): e38003, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701295

ABSTRACT

This study aims to investigate the ability of bone marrow imaging using third-generation dual-energy computed tomography (CT) virtual noncalcium (VNCa) to differentiate between multiple myeloma (MM) with diffuse bone marrow infiltration and red bone marrow (RBM). Bone marrow aspiration or follow-up results were used as reference. We retrospectively reviewed 188 regions of interests (ROIs) from 21 patients with confirmed MM and diffuse bone marrow infiltrations who underwent VNCa bone marrow imaging between May 2019 and September 2022. At the same time, we obtained 98 ROIs from 11 subjects with RBM for comparative study, and 189 ROIs from 20 subjects with normal yellow bone marrow for the control group. The ROIs were delineated by 2 radiologists independently, the interobservers reproducibility was evaluated by interclass correlation coefficients. The correlation with MRI grade results was analyzed by Spearman correlation coefficient. Receiver operating characteristic (ROC) curve analysis was used to determine the optimal threshold for differentiating between these groups and to assess diagnostic performance. There were statistically significant differences in VNCa CT values of bone marrow among the MM, RBM, and control groups (all P < .001), with values decreasing sequentially. A strong positive rank correlation was observed between normal bone marrow, subgroup MM with moderately and severe bone marrow infiltration divided by MRI and their corresponding CT values (ρ = 0.897, 95%CI: 0.822 to 0.942, P < .001). When the CT value of VNCa bone marrow was 7.15 HU, the area under the curve (AUC) value for differentiating RBM and MM was 0.723, with a sensitivity of 50.5% and a specificity of 89.8%. When distinguishing severe bone marrow infiltration of MM from RBM, the AUC value was 0.80 with a sensitivity 70.9% and a specificity 78.9%. The AUC values for MM, RBM, and the combined group compared to the control group were all >0.99, with all diagnostic sensitivity and specificity exceeding 95%. VNCa bone marrow imaging using third-generation dual-energy CT accurately differentiates MM lesions from normal bone marrow or RBM. It demonstrates superior diagnostic performance in distinguishing RBM from MM with diffuse bone marrow infiltration.


Subject(s)
Bone Marrow , Multiple Myeloma , Tomography, X-Ray Computed , Humans , Multiple Myeloma/diagnostic imaging , Multiple Myeloma/pathology , Multiple Myeloma/diagnosis , Male , Female , Middle Aged , Retrospective Studies , Bone Marrow/diagnostic imaging , Bone Marrow/pathology , Aged , Diagnosis, Differential , Tomography, X-Ray Computed/methods , Adult , ROC Curve , Reproducibility of Results , Sensitivity and Specificity
2.
Clin Exp Med ; 24(1): 95, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717497

ABSTRACT

The prognostication of survival trajectories in multiple myeloma (MM) patients presents a substantial clinical challenge. Leveraging transcriptomic and clinical profiles from an expansive cohort of 2,088 MM patients, sourced from the Gene Expression Omnibus and The Cancer Genome Atlas repositories, we applied a sophisticated nested lasso regression technique to construct a prognostic model predicated on 28 gene pairings intrinsic to cell death pathways, thereby deriving a quantifiable risk stratification metric. Employing a threshold of 0.15, we dichotomized the MM samples into discrete high-risk and low-risk categories. Notably, the delineated high-risk cohort exhibited a statistically significant diminution in survival duration, a finding which consistently replicated across both training and external validation datasets. The prognostic acumen of our cell death signature was further corroborated by TIME ROC analyses, with the model demonstrating robust performance, evidenced by AUC metrics consistently surpassing the 0.6 benchmark across the evaluated arrays. Further analytical rigor was applied through multivariate COX regression analyses, which ratified the cell death risk model as an independent prognostic determinant. In an innovative stratagem, we amalgamated this risk stratification with the established International Staging System (ISS), culminating in the genesis of a novel, refined ISS categorization. This tripartite classification system was subjected to comparative analysis against extant prognostic models, whereupon it manifested superior predictive precision, as reflected by an elevated C-index. In summation, our endeavors have yielded a clinically viable gene pairing model predicated on cellular mortality, which, when synthesized with the ISS, engenders an augmented prognostic tool that exhibits pronounced predictive prowess in the context of multiple myeloma.


Subject(s)
Cell Death , Multiple Myeloma , Multiple Myeloma/pathology , Multiple Myeloma/genetics , Multiple Myeloma/mortality , Humans , Prognosis , Male , Female , Risk Assessment , Gene Expression Profiling , Middle Aged , Neoplasm Staging , Aged , Survival Analysis
3.
J Cancer Res Clin Oncol ; 150(5): 239, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713252

ABSTRACT

PURPOSE: Multiple myeloma (MM) is an incurable hematological malignancy characterized by clonal proliferation of malignant plasma B cells in bone marrow, and its pathogenesis remains unknown. The aim of this study was to determine the role of kinesin family member 22 (KIF22) in MM and elucidate its molecular mechanism. METHODS: The expression of KIF22 was detected in MM patients based upon the public datasets and clinical samples. Then, in vitro assays were performed to investigate the biological function of KIF22 in MM cell lines, and subcutaneous xenograft models in nude mice were conducted in vivo. Chromatin immunoprecipitation (ChIP) and luciferase reporter assay were used to determine the mechanism of KIF22-mediated regulation. RESULTS: The results demonstrated that the expression of KIF22 in MM patients was associated with several clinical features, including gender (P = 0.016), LDH (P < 0.001), ß2-MG (P = 0.003), percentage of tumor cells (BM) (P = 0.002) and poor prognosis (P < 0.0001). Furthermore, changing the expression of KIF22 mainly influenced the cell proliferation in vitro and tumor growth in vivo, and caused G2/M phase cell cycle dysfunction. Mechanically, KIF22 directly transcriptionally regulated cell division cycle 25C (CDC25C) by binding its promoter and indirectly influenced CDC25C expression by regulating the ERK pathway. KIF22 also regulated CDC25C/CDK1/cyclinB1 pathway. CONCLUSION: KIF22 could promote cell proliferation and cell cycle progression by transcriptionally regulating CDC25C and its downstream CDC25C/CDK1/cyclinB1 pathway to facilitate MM progression, which might be a potential therapeutic target in MM.


Subject(s)
CDC2 Protein Kinase , Cyclin B1 , DNA-Binding Proteins , Disease Progression , Kinesins , Mice, Nude , Multiple Myeloma , cdc25 Phosphatases , Humans , Kinesins/metabolism , Kinesins/genetics , Multiple Myeloma/pathology , Multiple Myeloma/metabolism , Multiple Myeloma/genetics , Animals , cdc25 Phosphatases/metabolism , cdc25 Phosphatases/genetics , Mice , Female , CDC2 Protein Kinase/metabolism , CDC2 Protein Kinase/genetics , Male , Cyclin B1/metabolism , Cyclin B1/genetics , Cell Proliferation , Cell Line, Tumor , Middle Aged , Prognosis , Gene Expression Regulation, Neoplastic , Signal Transduction , Mice, Inbred BALB C
4.
Recenti Prog Med ; 115(5): 238-242, 2024 May.
Article in English | MEDLINE | ID: mdl-38708535

ABSTRACT

Plasma cell multiple myeloma (MM) is a multiform clinical entity characterized by different laboratory hallmarks. This case shows a rare entity of plasma cell myeloma: the entire plasma cell population lack the CD138 expression. In this case, a careful analysis of laboratory finding, particular flow cytometry gating strategies and the use of other ancillary laboratory tests, guide the clinicians to correct diagnosis. The correct evaluation of pre-analytical phase and the correct gating strategy are the necessary conditions to produce robust and solid flow cytometric results. The diagnostic implications of CD138-negative plasma cell are strictly linked to stem cell-like clonogenic features, such as possible more aggressive clinical behaviour and increasing probability of chemotherapy resistance. At this time, clinical laboratory remains the main reference point to MM diagnosis.


Subject(s)
Flow Cytometry , Multiple Myeloma , Plasma Cells , Syndecan-1 , Aged , Humans , Male , Flow Cytometry/methods , Multiple Myeloma/diagnosis , Multiple Myeloma/pathology , Plasma Cells/pathology , Syndecan-1/metabolism , Syndecan-1/analysis
6.
Hematology ; 29(1): 2352687, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38767507

ABSTRACT

OBJECTIVE: Examine Bach1 protein expression in bone marrow biopsy specimens obtained from newly diagnosed multiple myeloma (NDMM) and iron deficiency anemia (IDA) patients. Conduct a thorough analysis to explore the potential connection between Bach1 and the onset as well as treatment response of NDMM. METHODS: This study investigated Bach1 expression in bone marrow biopsy tissues from NDMM and IDA patients. Immunohistochemical staining and Image-pro Plus software were utilized for quantitatively obtaining the expression level of Bach1 protein. Arrange Bach1 expression levels from high to low, and use its median expression level as the threshold. Samples with Bach1 expression level above the median are categorized as the high-expression group, while those below the median are categorized as the low-expression group. Under this grouping, a detailed discussion was conducted to explore relationship of the Bach1 expression level with the patients' gender, ISS stage, and survival rate based on the Bortezomib (Btz) therapy. RESULTS: Our experiment indicates that the expression level of Bach1 in NDMM patients is significantly higher than in IDA patients. Furthermore, we discovered that patients in the high-expression group exhibit better prognosis compared to those in the low-expression group after Btz-treatment. Bioinformatics analysis further confirms this conclusion. CONCLUSION: By categorizing Bach1 expression level as high and low, our study offers a unique perspective on understanding the relationship between Bach1 and NDMM.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Multiple Myeloma , Humans , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Multiple Myeloma/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Male , Female , Middle Aged , Aged , Prognosis , Adult , Anemia, Iron-Deficiency/metabolism , Bortezomib/therapeutic use
7.
Cancer Rep (Hoboken) ; 7(5): e2102, 2024 May.
Article in English | MEDLINE | ID: mdl-38775249

ABSTRACT

BACKGROUND: Thalidomide-containing regimens cause adverse events (AEs) that may require a reduction in treatment intensity or even treatment discontinuation in patients with multiple myeloma. As thalidomide toxicity is dose-dependent, identifying the most appropriate dose for each patient is essential. AIMS: This study aimed to investigate the effects of a thalidomide dose step-up strategy on treatment response and progression-free survival (PFS). METHODS AND RESULTS: This prospective observational study included 93 patients with newly diagnosed multiple myeloma (NDMM) who received bortezomib, thalidomide, and dexamethasone (VTD). The present study assessed the incidence of thalidomide dose reduction and discontinuation, the overall dose intensity, and their effects on therapeutic efficacy. Furthermore, this study used Cox proportional hazard models to analyze the factors contributing to thalidomide intolerability. The results showed the overall response rates in all patients and the evaluable patients were 78.5% and 98.7%, respectively. The median PFS in the study cohort was not reached. The most common thalidomide-related AEs were constipation (32.3%) and skin rash (23.7%), resulting in dose reduction and discontinuation rates of 22.6% and 21.5%, respectively. The responders had a significantly higher average thalidomide dose intensity than the nonresponders (88.6% vs. 42.9%, p < .001). CONCLUSION: The thalidomide dose step-up approach is a viable option for patients with NDMM receiving VTD induction therapy with satisfactory efficacy and tolerability. However, thalidomide intolerance may lead to dose reduction or discontinuation due to unpredictable AEs, leading to lower dose intensity and potentially inferior treatment outcomes. In addition to a dose step-up strategy, optimal supportive care is critical for patients with multiple myeloma receiving VTD induction therapy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Bortezomib , Dexamethasone , Multiple Myeloma , Thalidomide , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/mortality , Multiple Myeloma/diagnosis , Multiple Myeloma/pathology , Thalidomide/administration & dosage , Thalidomide/adverse effects , Female , Dexamethasone/administration & dosage , Dexamethasone/adverse effects , Male , Bortezomib/administration & dosage , Bortezomib/adverse effects , Prospective Studies , Aged , Middle Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Adult , Induction Chemotherapy/methods , Induction Chemotherapy/adverse effects , Progression-Free Survival , Aged, 80 and over , Dose-Response Relationship, Drug
8.
Cell Commun Signal ; 22(1): 258, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711131

ABSTRACT

Although bortezomib (BTZ) is the cornerstone of anti-multiple myeloma (MM) therapy, the inevitable primary and secondary drug resistance still seriously affects the prognosis of patients. New treatment strategies are in need. Sodium-calcium exchanger 1 (NCX1) is a calcium-permeable ion transporter on the membrane, and our previous studies showed that low NCX1 confers inferior viability in MM cells and suppressed osteoclast differentiation. However, the effect of NCX1 on BTZ sensitivity of MM and its possible mechanism remain unclear. In this study, we investigated the effect of NCX1 on BTZ sensitivity in MM, focusing on cellular processes of autophagy and cell viability. Our results provide evidence that NCX1 expression correlates with MM disease progression and low NCX1 expression increases BTZ sensitivity. NCX1/Ca2+ triggered autophagic flux through non-canonical NFκB pathway in MM cells, leading to attenuated the sensitivity of BTZ. Knockdown or inhibition of NCX1 could potentiate the anti-MM activity of BTZ in vitro and vivo, and inhibition of autophagy sensitized NCX1-overexpressing MM cells to BTZ. In general, this work implicates NCX1 as a potential therapeutic target in MM with BTZ resistance and provides novel mechanistic insights into its vital role in combating BTZ resistance.


Subject(s)
Autophagy , Bortezomib , Multiple Myeloma , Sodium-Calcium Exchanger , Sodium-Calcium Exchanger/metabolism , Sodium-Calcium Exchanger/genetics , Humans , Autophagy/drug effects , Animals , Bortezomib/pharmacology , Multiple Myeloma/pathology , Multiple Myeloma/metabolism , Multiple Myeloma/genetics , Cell Line, Tumor , Mice , Calcium/metabolism , Drug Resistance, Neoplasm/genetics , NF-kappa B/metabolism , Cell Survival/drug effects
9.
Nat Commun ; 15(1): 4139, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755155

ABSTRACT

The natural history of multiple myeloma is characterized by its localization to the bone marrow and its interaction with bone marrow stromal cells. The bone marrow stromal cells provide growth and survival signals, thereby promoting the development of drug resistance. Here, we show that the interaction between bone marrow stromal cells and myeloma cells (using human cell lines) induces chromatin remodeling of cis-regulatory elements and is associated with changes in the expression of genes involved in the cell migration and cytokine signaling. The expression of genes involved in these stromal interactions are observed in extramedullary disease in patients with myeloma and provides the rationale for survival of myeloma cells outside of the bone marrow microenvironment. Expression of these stromal interaction genes is also observed in a subset of patients with newly diagnosed myeloma and are akin to the transcriptional program of extramedullary disease. The presence of such adverse stromal interactions in newly diagnosed myeloma is associated with accelerated disease dissemination, predicts the early development of therapeutic resistance, and is of independent prognostic significance. These stromal cell induced transcriptomic and epigenomic changes both predict long-term outcomes and identify therapeutic targets in the tumor microenvironment for the development of novel therapeutic approaches.


Subject(s)
Chromatin Assembly and Disassembly , Gene Expression Regulation, Neoplastic , Mesenchymal Stem Cells , Multiple Myeloma , Tumor Microenvironment , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Multiple Myeloma/metabolism , Humans , Tumor Microenvironment/genetics , Cell Line, Tumor , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Transcription, Genetic , Bone Marrow Cells/metabolism , Cell Movement/genetics , Stromal Cells/metabolism , Stromal Cells/pathology , Female , Male
10.
Blood ; 143(20): 2015-2016, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753353
11.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731936

ABSTRACT

Multiple myeloma is a malignancy characterized by the accumulation of malignant plasma cells in bone marrow and the production of monoclonal immunoglobulin. A hallmark of cancer is the evasion of immune surveillance. Histone deacetylase inhibitors have been shown to promote the expression of silenced molecules and hold potential to increase the anti-MM efficacy of immunotherapy. The aim of the present work was to assess the potential effect of tinostamustine (EDO-S101), a first-in-class alkylating deacetylase inhibitor, in combination with daratumumab, an anti-CD38 monoclonal antibody (mAb), through different preclinical studies. Tinostamustine increases CD38 expression in myeloma cell lines, an effect that occurs in parallel with an increment in CD38 histone H3 acetylation levels. Also, the expression of MICA and MICB, ligands for the NK cell activating receptor NKG2D, augments after tinostamustine treatment in myeloma cell lines and primary myeloma cells. Pretreatment of myeloma cell lines with tinostamustine increased the sensitivity of these cells to daratumumab through its different cytotoxic mechanisms, and the combination of these two drugs showed a higher anti-myeloma effect than individual treatments in ex vivo cultures of myeloma patients' samples. In vivo data confirmed that tinostamustine pretreatment followed by daratumumab administration significantly delayed tumor growth and improved the survival of mice compared to individual treatments. In summary, our results suggest that tinostamustine could be a potential candidate to improve the efficacy of anti-CD38 mAbs.


Subject(s)
ADP-ribosyl Cyclase 1 , Antibodies, Monoclonal , Multiple Myeloma , NK Cell Lectin-Like Receptor Subfamily K , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Humans , ADP-ribosyl Cyclase 1/metabolism , ADP-ribosyl Cyclase 1/antagonists & inhibitors , Animals , Antibodies, Monoclonal/pharmacology , Mice , Cell Line, Tumor , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Xenograft Model Antitumor Assays , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Membrane Glycoproteins/metabolism , Drug Synergism , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/genetics , Up-Regulation/drug effects
12.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732105

ABSTRACT

Multiple myeloma is an incurable plasma cell malignancy. Most patients end up relapsing and developing resistance to antineoplastic drugs, like bortezomib. Antibiotic tigecycline has activity against myeloma. This study analyzed tigecycline and bortezomib combination on cell lines and plasma cells from myeloma patients. Apoptosis, autophagic vesicles, mitochondrial mass, mitochondrial superoxide, cell cycle, and hydrogen peroxide were studied by flow cytometry. In addition, mitochondrial antioxidants and electron transport chain complexes were quantified by reverse transcription real-time PCR (RT-qPCR) or western blot. Cell metabolism and mitochondrial activity were characterized by Seahorse and RT-qPCR. We found that the addition of tigecycline to bortezomib reduces apoptosis in proportion to tigecycline concentration. Supporting this, the combination of both drugs counteracts bortezomib in vitro individual effects on the cell cycle, reduces autophagy and mitophagy markers, and reverts bortezomib-induced increase in mitochondrial superoxide. Changes in mitochondrial homeostasis and MYC upregulation may account for some of these findings. These data not only advise to avoid considering tigecycline and bortezomib combination for treating myeloma, but caution on the potential adverse impact of treating infections with this antibiotic in myeloma patients under bortezomib treatment.


Subject(s)
Apoptosis , Bortezomib , Mitochondria , Multiple Myeloma , Reactive Oxygen Species , Tigecycline , Bortezomib/pharmacology , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Tigecycline/pharmacology , Mitochondria/metabolism , Mitochondria/drug effects , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Autophagy/drug effects , Mitophagy/drug effects , Cell Cycle/drug effects
13.
JCI Insight ; 9(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38713510

ABSTRACT

Multiple myeloma is a largely incurable and life-threatening malignancy of antibody-secreting plasma cells. An effective and widely available animal model that recapitulates human myeloma and related plasma cell disorders is lacking. We show that busulfan-conditioned human IL-6-transgenic (hIL-6-transgenic) NSG (NSG+hIL6) mice reliably support the engraftment of malignant and premalignant human plasma cells, including from patients diagnosed with monoclonal gammopathy of undetermined significance, pre- and postrelapse myeloma, plasma cell leukemia, and amyloid light chain amyloidosis. Consistent with human disease, NSG+hIL6 mice engrafted with patient-derived myeloma cells developed serum M spikes, and a majority developed anemia, hypercalcemia, and/or bone lesions. Single-cell RNA sequencing showed nonmalignant and malignant cell engraftment, the latter expressing a wide array of mRNAs associated with myeloma cell survival and proliferation. Myeloma-engrafted mice given CAR T cells targeting plasma cells or bortezomib experienced reduced tumor burden. Our results establish NSG+hIL6 mice as an effective patient-derived xenograft model for study and preclinical drug development of multiple myeloma and related plasma cell disorders.


Subject(s)
Disease Models, Animal , Interleukin-6 , Multiple Myeloma , Animals , Multiple Myeloma/immunology , Multiple Myeloma/pathology , Humans , Mice , Interleukin-6/metabolism , Mice, Transgenic , Bortezomib/pharmacology , Bortezomib/therapeutic use , Male , Female , Plasma Cells/immunology , Monoclonal Gammopathy of Undetermined Significance/immunology , Monoclonal Gammopathy of Undetermined Significance/pathology
14.
Sci Rep ; 14(1): 11176, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750071

ABSTRACT

Multiple Myeloma (MM) is a hematological malignancy characterized by the clonal proliferation of plasma cells within the bone marrow. Diagnosing MM presents considerable challenges, involving the identification of plasma cells in cytology examinations on hematological slides. At present, this is still a time-consuming manual task and has high labor costs. These challenges have adverse implications, which rely heavily on medical professionals' expertise and experience. To tackle these challenges, we present an investigation using Artificial Intelligence, specifically a Machine Learning analysis of hematological slides with a Deep Neural Network (DNN), to support specialists during the process of diagnosing MM. In this sense, the contribution of this study is twofold: in addition to the trained model to diagnose MM, we also make available to the community a fully-curated hematological slide dataset with thousands of images of plasma cells. Taken together, the setup we established here is a framework that researchers and hospitals with limited resources can promptly use. Our contributions provide practical results that have been directly applied in the public health system in Brazil. Given the open-source nature of the project, we anticipate it will be used and extended to diagnose other malignancies.


Subject(s)
Multiple Myeloma , Humans , Bone Marrow/pathology , Brazil , Hematology/methods , Machine Learning , Multiple Myeloma/diagnosis , Multiple Myeloma/pathology , Neural Networks, Computer , Plasma Cells/pathology
15.
Cancer Med ; 13(9): e7232, 2024 May.
Article in English | MEDLINE | ID: mdl-38698679

ABSTRACT

BACKGROUND: Comparative investigations evaluating the efficacy of pomalidomide-based (Pom-based) versus daratumumab-based (Dara-based) therapies in patients with relapsed/refractory multiple myeloma (RRMM) remain scarce, both in randomized controlled trials and real-world studies. METHODS: This retrospective cohort study included 140 RRMM patients treated with Pom-based or Dara-based or a combination of pomalidomide and daratumumab (DPd) regimens in a Chinese tertiary hospital between December 2018 and July 2023. RESULTS: The overall response rates (ORR) for Pom-based (n = 48), Dara-based (n = 68), and DPd (n = 24) groups were 57.8%, 84.6%, and 75.0%, respectively (p = 0.007). At data cutoff on August 1, 2023, the median progression-free survival (PFS) was 5.7 months (95% CI: 5.0-6.5) for the Pom-based group, 10.5 months (5.2-15.8) for the Dara-based group, and 6.7 months (4.0-9.3) for the DPd group (p = 0.056). Multivariate analysis identified treatment regimens (Dara-based vs. Pom-based, DPd vs. Pom-based) and Eastern Cooperative Oncology Group performance status (ECOG PS) as independent prognostic factors for PFS. In the subgroups of patients aged >65 years, with ECOG PS ≥2, lines of therapy ≥2, extramedullary disease or double-refractory disease (refractory to both lenalidomide and proteasome inhibitors), the superiority of Dara-based regimens over Pom-based regimens was not evident. A higher incidence of infections was observed in patients receiving Dara-based and DPd regimens (Pom-based 39.6% vs. Dara-based 64.7% vs. DPd 70.8%, p = 0.009). CONCLUSIONS: In real-world settings, Pom-based, Dara-based, and DPd therapies exhibited favorable efficacy in patients with RRMM. Dara-based therapy yielded superior clinical response and PFS compared to Pom-based therapy.


Subject(s)
Antibodies, Monoclonal , Antineoplastic Combined Chemotherapy Protocols , Multiple Myeloma , Thalidomide , Thalidomide/analogs & derivatives , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/mortality , Multiple Myeloma/pathology , Thalidomide/therapeutic use , Male , Female , Retrospective Studies , Middle Aged , Aged , China , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antibodies, Monoclonal/therapeutic use , Progression-Free Survival , Aged, 80 and over , Treatment Outcome , Adult , Neoplasm Recurrence, Local/drug therapy , Drug Resistance, Neoplasm
16.
Cells ; 13(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38786100

ABSTRACT

Current treatment strategies for multiple myeloma (MM) are highly effective, but most patients develop relapsed/refractory disease (RRMM). The anti-CD38/CD3xCD28 trispecific antibody SAR442257 targets CD38 and CD28 on MM cells and co-stimulates CD3 and CD28 on T cells (TCs). We evaluated different key aspects such as MM cells and T cells avidity interaction, tumor killing, and biomarkers for drug potency in three distinct cohorts of RRMM patients. We found that a significantly higher proportion of RRMM patients (86%) exhibited aberrant co-expression of CD28 compared to newly diagnosed MM (NDMM) patients (19%). Furthermore, SAR442257 mediated significantly higher TC activation, resulting in enhanced MM killing compared to bispecific functional knockout controls for all relapse cohorts (Pearson's r = 0.7). Finally, patients refractory to anti-CD38 therapy had higher levels of TGF-ß (up to 20-fold) compared to other cohorts. This can limit the activity of SAR442257. Vactoserib, a TGF-ß inhibitor, was able to mitigate this effect and restore sensitivity to SAR442257 in these experiments. In conclusion, SAR442257 has high potential for enhancing TC cytotoxicity by co-targeting CD38 and CD28 on MM and CD3/CD28 on T cells.


Subject(s)
ADP-ribosyl Cyclase 1 , Multiple Myeloma , T-Lymphocytes , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Multiple Myeloma/immunology , ADP-ribosyl Cyclase 1/metabolism , ADP-ribosyl Cyclase 1/antagonists & inhibitors , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/drug effects , CD3 Complex/metabolism , CD28 Antigens/metabolism , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Cell Line, Tumor , Recurrence
17.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791247

ABSTRACT

Over the last decades, the survival of multiple myeloma (MM) patients has considerably improved. However, despite the availability of new treatments, most patients still relapse and become therapy-resistant at some point in the disease evolution. The mutation profile has an impact on MM patients' outcome, while typically evolving over time. Because of the patchy bone marrow (BM) infiltration pattern, the analysis of a single bone marrow sample can lead to an underestimation of the known genetic heterogeneity in MM. As a result, interest is shifting towards blood-derived liquid biopsies, which allow for a more comprehensive and non-invasive genetic interrogation without the discomfort of repeated BM aspirations. In this review, we compare the application potential for mutation profiling in MM of circulating-tumor-cell-derived DNA, cell-free DNA and extracellular-vesicle-derived DNA, while also addressing the challenges associated with their use.


Subject(s)
Multiple Myeloma , Mutation , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Multiple Myeloma/diagnosis , Humans , Liquid Biopsy/methods , Circulating Tumor DNA/genetics , Cell-Free Nucleic Acids/genetics , Biomarkers, Tumor/genetics , DNA Mutational Analysis/methods , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism
18.
Nat Commun ; 15(1): 4144, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755140

ABSTRACT

Multiple Myeloma is an incurable plasma cell malignancy with a poor survival rate that is usually treated with immunomodulatory drugs (iMiDs) and proteosome inhibitors (PIs). The malignant plasma cells quickly become resistant to these agents causing relapse and uncontrolled growth of resistant clones. From whole genome sequencing (WGS) and RNA sequencing (RNA-seq) studies, different high-risk translocation, copy number, mutational, and transcriptional markers can be identified. One of these markers, PHF19, epigenetically regulates cell cycle and other processes and is already studied using RNA-seq. In this study, we generate a large (325,025 cells and 49 patients) single cell multi-omic dataset and jointly quantify ATAC- and RNA-seq for each cell and matched genomic profiles for each patient. We identify an association between one plasma cell subtype with myeloma progression that we call relapsed/refractory plasma cells (RRPCs). These cells are associated with chromosome 1q alterations, TP53 mutations, and higher expression of PHF19. We also identify downstream regulation of cell cycle inhibitors in these cells, possible regulation by the transcription factor (TF) PBX1 on chromosome 1q, and determine that PHF19 may be acting primarily through this subset of cells.


Subject(s)
Chromosomes, Human, Pair 1 , DNA-Binding Proteins , Multiple Myeloma , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Multiple Myeloma/drug therapy , Humans , Chromosomes, Human, Pair 1/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Plasma Cells/metabolism , Mutation , Neoplasm Recurrence, Local/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Drug Resistance, Neoplasm/genetics , Gene Amplification
20.
Sci Rep ; 14(1): 11593, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773213

ABSTRACT

Multiple myeloma (MM) progression involves diminished tumor antigen presentation and an immunosuppressive microenvironment, characterized by diminished expression of major histocompatibility complexes (MHC) class I molecule and elevated programmed death ligand 1 (PDL1) in MM cells, along with an enriched population of regulatory T cells (Tregs). To investigate Treg's influence on MM cells, we established a co-culture system using Tregs from MM patients and the MM cell lines (MM.1S and SK-MM-1) in vitro and assessed the effects of intervening in the relevant pathways connecting Tregs and MM cells in vivo. In vitro, Tregs induced transforming growth factor beta-1 (TGF-ß1) production, downregulated MHC I members, and increased PDL1 expression in MM cells. Treg-derived TGF-ß1 suppressed the cGAS-STING pathway, contributing to the loss of MHC I molecule expression and PDL1 upregulation. Correspondingly, neutralizing TGF-ß1 or activating the cGAS-STING pathway restored MHC I and PDL1 expression, effectively countering the pro-tumorigenic effect of Tregs on MM cells in vivo. These data elucidated how Tregs influence tumor antigen presentation and immunosuppressive signal in MM cells, potentially providing therapeutic strategies, such as neutralizing TGF-ß1 or activating the cGAS-STING pathway, to address the immune escape and immunosuppressive dynamics in MM.


Subject(s)
B7-H1 Antigen , Histocompatibility Antigens Class I , Membrane Proteins , Multiple Myeloma , Nucleotidyltransferases , Signal Transduction , T-Lymphocytes, Regulatory , Transforming Growth Factor beta1 , Humans , Multiple Myeloma/metabolism , Multiple Myeloma/immunology , Multiple Myeloma/pathology , Multiple Myeloma/genetics , Transforming Growth Factor beta1/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Cell Line, Tumor , Animals , Down-Regulation , Mice , Female , Coculture Techniques , Male , Gene Expression Regulation, Neoplastic
SELECTION OF CITATIONS
SEARCH DETAIL
...