Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.092
Filter
1.
Eur J Med Res ; 29(1): 305, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824558

ABSTRACT

The prevalence of low-dose CT (LDCT) in lung cancer screening has gradually increased, and more and more lung ground glass nodules (GGNs) have been detected. So far, a consensus has been reached on the treatment of single pulmonary ground glass nodules, and there have been many guidelines that can be widely accepted. However, at present, more than half of the patients have more than one nodule when pulmonary ground glass nodules are found, which means that different treatment methods for nodules may have different effects on the prognosis or quality of life of patients. This article reviews the research progress in the diagnosis and treatment strategies of pulmonary multiple lesions manifested as GGNs.


Subject(s)
Lung Neoplasms , Multiple Pulmonary Nodules , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/therapy , Lung Neoplasms/pathology , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/diagnosis , Multiple Pulmonary Nodules/pathology , Multiple Pulmonary Nodules/therapy , Tomography, X-Ray Computed/methods , Lung/diagnostic imaging , Lung/pathology
2.
Chest ; 165(5): e133-e136, 2024 May.
Article in English | MEDLINE | ID: mdl-38724151

ABSTRACT

We describe the case of a young 33-year-old woman that was referred to our clinic for evidence of migrant cavitary nodules at CT scan, dyspnea, and blood sputum. Her physical examination showed translucent and thin skin, evident venous vascular pattern, vermilion of the lip thin, micrognathia, thin nose, and occasional Raynaud phenomenon. We prescribed another CT scan that showed multiple pulmonary nodules in both lungs, some of which had evidence of cavitation. Because bronchoscopy was not diagnostic, we decided to perform surgical lung biopsy. At histologic examination, we found the presence of irregularly shaped, but mainly not dendritic, foci of ossification that often contained bone marrow and were embedded or surrounded by tendinous-like fibrous tissue. After incorporating data from the histologic examination, we decided to perform genetic counseling and genetic testing with the use of whole-exome sequencing. The genetic test revealed a heterozygous de novo missense mutation of COL3A1 gene, which encodes for type III collagen synthesis, and could cause vascular Ehlers-Danlos syndrome.


Subject(s)
Collagen Type III , Hemoptysis , Tomography, X-Ray Computed , Humans , Female , Adult , Hemoptysis/etiology , Hemoptysis/diagnosis , Collagen Type III/genetics , Ehlers-Danlos Syndrome/diagnosis , Ehlers-Danlos Syndrome/complications , Ehlers-Danlos Syndrome/genetics , Diagnosis, Differential , Mutation, Missense , Multiple Pulmonary Nodules/diagnosis , Multiple Pulmonary Nodules/diagnostic imaging , Lung/diagnostic imaging , Lung/pathology
3.
Cancer Imaging ; 24(1): 60, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38720391

ABSTRACT

BACKGROUND: This study systematically compares the impact of innovative deep learning image reconstruction (DLIR, TrueFidelity) to conventionally used iterative reconstruction (IR) on nodule volumetry and subjective image quality (IQ) at highly reduced radiation doses. This is essential in the context of low-dose CT lung cancer screening where accurate volumetry and characterization of pulmonary nodules in repeated CT scanning are indispensable. MATERIALS AND METHODS: A standardized CT dataset was established using an anthropomorphic chest phantom (Lungman, Kyoto Kaguku Inc., Kyoto, Japan) containing a set of 3D-printed lung nodules including six diameters (4 to 9 mm) and three morphology classes (lobular, spiculated, smooth), with an established ground truth. Images were acquired at varying radiation doses (6.04, 3.03, 1.54, 0.77, 0.41 and 0.20 mGy) and reconstructed with combinations of reconstruction kernels (soft and hard kernel) and reconstruction algorithms (ASIR-V and DLIR at low, medium and high strength). Semi-automatic volumetry measurements and subjective image quality scores recorded by five radiologists were analyzed with multiple linear regression and mixed-effect ordinal logistic regression models. RESULTS: Volumetric errors of nodules imaged with DLIR are up to 50% lower compared to ASIR-V, especially at radiation doses below 1 mGy and when reconstructed with a hard kernel. Also, across all nodule diameters and morphologies, volumetric errors are commonly lower with DLIR. Furthermore, DLIR renders higher subjective IQ, especially at the sub-mGy doses. Radiologists were up to nine times more likely to score the highest IQ-score to these images compared to those reconstructed with ASIR-V. Lung nodules with irregular margins and small diameters also had an increased likelihood (up to five times more likely) to be ascribed the best IQ scores when reconstructed with DLIR. CONCLUSION: We observed that DLIR performs as good as or even outperforms conventionally used reconstruction algorithms in terms of volumetric accuracy and subjective IQ of nodules in an anthropomorphic chest phantom. As such, DLIR potentially allows to lower the radiation dose to participants of lung cancer screening without compromising accurate measurement and characterization of lung nodules.


Subject(s)
Deep Learning , Lung Neoplasms , Multiple Pulmonary Nodules , Phantoms, Imaging , Radiation Dosage , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/pathology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/pathology , Radiographic Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods
4.
Clin Respir J ; 18(5): e13769, 2024 May.
Article in English | MEDLINE | ID: mdl-38736274

ABSTRACT

BACKGROUND: Lung cancer is the leading cause of cancer-related death worldwide. This study aimed to establish novel multiclassification prediction models based on machine learning (ML) to predict the probability of malignancy in pulmonary nodules (PNs) and to compare with three published models. METHODS: Nine hundred fourteen patients with PNs were collected from four medical institutions (A, B, C and D), which were organized into tables containing clinical features, radiologic features and laboratory test features. Patients were divided into benign lesion (BL), precursor lesion (PL) and malignant lesion (ML) groups according to pathological diagnosis. Approximately 80% of patients in A (total/male: 632/269, age: 57.73 ± 11.06) were randomly selected as a training set; the remaining 20% were used as an internal test set; and the patients in B (total/male: 94/53, age: 60.04 ± 11.22), C (total/male: 94/47, age: 59.30 ± 9.86) and D (total/male: 94/61, age: 62.0 ± 11.09) were used as an external validation set. Logical regression (LR), decision tree (DT), random forest (RF) and support vector machine (SVM) were used to establish prediction models. Finally, the Mayo model, Peking University People's Hospital (PKUPH) model and Brock model were externally validated in our patients. RESULTS: The AUC values of RF model for MLs, PLs and BLs were 0.80 (95% CI: 0.73-0.88), 0.90 (95% CI: 0.82-0.99) and 0.75 (95% CI: 0.67-0.88), respectively. The weighted average AUC value of the RF model for the external validation set was 0.71 (95% CI: 0.67-0.73), and its AUC values for MLs, PLs and BLs were 0.71 (95% CI: 0.68-0.79), 0.98 (95% CI: 0.88-1.07) and 0.68 (95% CI: 0.61-0.74), respectively. The AUC values of the Mayo model, PKUPH model and Brock model were 0.68 (95% CI: 0.62-0.74), 0.64 (95% CI: 0.58-0.70) and 0.57 (95% CI: 0.49-0.65), respectively. CONCLUSIONS: The RF model performed best, and its predictive performance was better than that of the three published models, which may provide a new noninvasive method for the risk assessment of PNs.


Subject(s)
Lung Neoplasms , Machine Learning , Multiple Pulmonary Nodules , Aged , Female , Humans , Male , Middle Aged , Decision Trees , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Lung Neoplasms/diagnostic imaging , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/pathology , Multiple Pulmonary Nodules/diagnosis , Predictive Value of Tests , Retrospective Studies , ROC Curve , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/pathology , Solitary Pulmonary Nodule/diagnosis , Support Vector Machine , Tomography, X-Ray Computed/methods
5.
Ther Adv Respir Dis ; 18: 17534666241249150, 2024.
Article in English | MEDLINE | ID: mdl-38757612

ABSTRACT

BACKGROUND: Although electromagnetic navigation bronchoscopy (ENB) is highly sensitive in the diagnosis of peripheral pulmonary nodules (PPNs), its diagnostic yield for subgroups of smaller PPNs is under evaluation. OBJECTIVES: Diagnostic yield evaluation of biopsy using ENB for PPNs <2 cm. DESIGN: The diagnostic yield, sensitivity, specificity, positive predictive value, and negative predictive value of the ENB-mediated biopsy for PPNs were evaluated. METHODS: Patients who had PPNs with diameters <2 cm and underwent ENB-mediated biopsy between May 2015 and February 2020 were consecutively enrolled. The final diagnosis was made via pathological examination after surgery. RESULTS: A total of 82 lesions from 65 patients were analyzed. The median tumor size was 11 mm. All lesions were subjected to ENB-mediated biopsy, of which 29 and 53 were classified as malignant and benign, respectively. Subsequent segmentectomy, lobectomy, or wedge resection, following pathological examinations were performed on 64 nodules from 57 patients. The overall sensitivity, specificity, positive predictive value, and negative predictive value for nodules <2 cm were 53.3%, 91.7%, 92.3%, and 51.2%, respectively. The receiver operating curve showed an area under the curve of 0.721 (p < 0.001). Additionally, the sensitivity, specificity, positive predictive value, and negative predictive value were 62.5%, 100%, 100%, and 42.9%, respectively, for nodules with diameters equal to or larger than 1 cm; and 30.8%, 86.7%, 66.7%, and 59.1%, respectively, for nodules less than 1 cm. In the subgroup analysis, neither the lobar location nor the distance of the PPNs to the pleura affected the accuracy of the ENB diagnosis. However, the spiculated sign had a negative impact on the accuracy of the ENB biopsy (p = 0.010). CONCLUSION: ENB has good specificity and positive predictive value for diagnosing PPNs <2 cm; however, the spiculated sign may negatively affect ENB diagnostic accuracy. In addition, the diagnostic reliability may only be limited to PPNs equal to or larger than 1 cm.


Subject(s)
Bronchoscopy , Electromagnetic Phenomena , Lung Neoplasms , Multiple Pulmonary Nodules , Predictive Value of Tests , Humans , Bronchoscopy/methods , Male , Female , Middle Aged , Aged , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Multiple Pulmonary Nodules/pathology , Multiple Pulmonary Nodules/diagnosis , Multiple Pulmonary Nodules/surgery , Retrospective Studies , Tumor Burden , Adult , Solitary Pulmonary Nodule/pathology , Solitary Pulmonary Nodule/diagnosis , Solitary Pulmonary Nodule/surgery , Solitary Pulmonary Nodule/diagnostic imaging , Reproducibility of Results , Aged, 80 and over , Image-Guided Biopsy/methods
6.
Zhonghua Yi Xue Za Zhi ; 104(18): 1584-1589, 2024 May 14.
Article in Chinese | MEDLINE | ID: mdl-38742345

ABSTRACT

Objective: To explore the value of detection of epidermal growth factor receptor (EGFR) gene amplification in peripheral blood rare cells in the assessment of benign and malignant pulmonary nodules. Methods: A total of 262 patients with pulmonary nodules were selected as the retrospectively study subjects from the Second Affiliated Hospital of Army Military Medical University and Peking Union Medical College Hospital from July 2022 to August 2023. There were 98 males and 164 females, with the age range from 16 to 79 (52.1±12.1) years. The EGFR gene amplification testing was performed on the rare cells enriched from patients' peripheral blood, and the clinical manifestations, CT imaging features, histopathological and/or pathological cytological confirmed results of patients were collected. The receiver operating characteristic (ROC) curve was used to determine the optimal cut-off value of the method of detection of EGFR gene amplification in peripheral blood rare cells, and its diagnostic efficacy was evaluated. Results: Among the 262 patients, 143 were malignant pulmonary nodules and 119 were benign pulmonary nodules. The differences between malignant pulmonary nodules and benign pulmonary nodules in nodule diameter and nodule density were statistically significant (both P<0.001), while the differences in age, gender and nodule number were not statistically significant (all P>0.05). The number [M (Q1, Q3)] of EGFR gene amplification positive rare cells in patients with malignant pulmonary nodule was 8 (6, 11), which was higher than that in patients with benign pulmonary nodule [2 (1, 4), P<0.001]. The ROC curve results showed that when the optimal cut-off value was 5 (that was, the number of EGFR gene amplification positive rare cells was>5), the area under the curve (AUC) of the detection of EGFR gene amplification in peripheral blood rare cells for discrimination of benign and malignant pulmonary lesions was 0.816 (95%CI: 0.761-0.870), with a sensitivity of 83.2%, a specificity of 80.7%, and an accuracy of 82.1%. Based on the analysis of the diameter of the nodules, the AUC for distinguishing between benign and malignant pulmonary nodules with diameter 5-9 mm and 10-30 mm was 0.797 (95%CI: 0.707-0.887) and 0.809 (95%CI: 0.669-0.949), respectively, with sensitivity, specificity and accuracy reached 75% or above. Based on the analysis of nodule density, the AUC for distinguishing between benign and malignant solid nodule and subsolid nodule was 0.845 (95%CI: 0.751-0.939) and 0.790 (95%CI: 0.701-0.880), respectively, with sensitivity, specificity and accuracy reached 75% or above. Based on the analysis of nodule number, the AUC for distinguishing between benign and malignant solitary pulmonary nodule and multiple pulmonary nodule was 0.830 (95%CI: 0.696-0.965) and 0.817 (95%CI: 0.758-0.877), respectively, with sensitivity, specificity and accuracy reached 80% or above. Conclusion: The detection of EGFR gene amplification in peripheral blood rare cells contributes to the evaluation of benign and malignant pulmonary nodules, and can be used in the auxiliary diagnosis of benign and malignant pulmonary nodules.


Subject(s)
ErbB Receptors , Lung Neoplasms , Humans , Male , Female , Middle Aged , ErbB Receptors/genetics , Lung Neoplasms/genetics , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology , Retrospective Studies , Aged , Adult , Gene Amplification , Adolescent , ROC Curve , Sensitivity and Specificity , Multiple Pulmonary Nodules/genetics , Multiple Pulmonary Nodules/diagnosis , Young Adult
7.
J Cardiothorac Surg ; 19(1): 304, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816751

ABSTRACT

BACKGROUND: This retrospective study aimed to compare the efficacy and safety of one-stage computed tomography (OSCT)- to that of two-stage computed tomography (TSCT)-guided localization for the surgical removal of small lung nodules. METHODS: We collected data from patients with ipsilateral pulmonary nodules who underwent localization before surgical removal at Veteran General Hospital Kaohsiung between October 2017 and January 2022. The patients were divided into the OSCT and TSCT groups. RESULTS: We found that OSCT significantly reduced the localization time and risky time compared to TSCT, and the success rate of localization and incidence of pneumothorax were similar in both groups. However, the time spent under general anesthesia was longer in the OSCT group than in the TSCT group. CONCLUSIONS: The OSCT-guided approach to localize pulmonary nodules in hybrid operation room is a safe and effective technique for the surgical removal of small lung nodules.


Subject(s)
Lung Neoplasms , Tomography, X-Ray Computed , Humans , Retrospective Studies , Male , Tomography, X-Ray Computed/methods , Female , Middle Aged , Lung Neoplasms/surgery , Lung Neoplasms/diagnostic imaging , Aged , Pneumonectomy/methods , Multiple Pulmonary Nodules/surgery , Multiple Pulmonary Nodules/diagnostic imaging , Solitary Pulmonary Nodule/surgery , Solitary Pulmonary Nodule/diagnostic imaging , Surgery, Computer-Assisted/methods
8.
Clin Chest Med ; 45(2): 249-261, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38816086

ABSTRACT

Early detection with accurate classification of solid pulmonary nodules is critical in reducing lung cancer morbidity and mortality. Computed tomography (CT) remains the most widely used imaging examination for pulmonary nodule evaluation; however, other imaging modalities, such as PET/CT and MRI, are increasingly used for nodule characterization. Current advances in solid nodule imaging are largely due to developments in machine learning, including automated nodule segmentation and computer-aided detection. This review explores current multi-modality solid pulmonary nodule detection and characterization with discussion of radiomics and risk prediction models.


Subject(s)
Lung Neoplasms , Solitary Pulmonary Nodule , Tomography, X-Ray Computed , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology , Solitary Pulmonary Nodule/diagnostic imaging , Positron Emission Tomography Computed Tomography , Magnetic Resonance Imaging , Multiple Pulmonary Nodules/diagnostic imaging , Early Detection of Cancer/methods
9.
Clin Chest Med ; 45(2): 263-277, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38816087

ABSTRACT

Subsolid nodules are heterogeneously appearing and behaving entities, commonly encountered incidentally and in high-risk populations. Accurate characterization of subsolid nodules, and application of evolving surveillance guidelines, facilitates evidence-based and multidisciplinary patient-centered management.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Solitary Pulmonary Nodule/diagnosis , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/pathology , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/diagnosis , Multiple Pulmonary Nodules/pathology , Diagnosis, Differential
10.
PLoS One ; 19(5): e0302641, 2024.
Article in English | MEDLINE | ID: mdl-38753596

ABSTRACT

The development of automated tools using advanced technologies like deep learning holds great promise for improving the accuracy of lung nodule classification in computed tomography (CT) imaging, ultimately reducing lung cancer mortality rates. However, lung nodules can be difficult to detect and classify, from CT images since different imaging modalities may provide varying levels of detail and clarity. Besides, the existing convolutional neural network may struggle to detect nodules that are small or located in difficult-to-detect regions of the lung. Therefore, the attention pyramid pooling network (APPN) is proposed to identify and classify lung nodules. First, a strong feature extractor, named vgg16, is used to obtain features from CT images. Then, the attention primary pyramid module is proposed by combining the attention mechanism and pyramid pooling module, which allows for the fusion of features at different scales and focuses on the most important features for nodule classification. Finally, we use the gated spatial memory technique to decode the general features, which is able to extract more accurate features for classifying lung nodules. The experimental results on the LIDC-IDRI dataset show that the APPN can achieve highly accurate and effective for classifying lung nodules, with sensitivity of 87.59%, specificity of 90.46%, accuracy of 88.47%, positive predictive value of 95.41%, negative predictive value of 76.29% and area under receiver operating characteristic curve of 0.914.


Subject(s)
Lung Neoplasms , Neural Networks, Computer , Tomography, X-Ray Computed , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/diagnosis , Tomography, X-Ray Computed/methods , Deep Learning , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/diagnosis , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/diagnosis , Algorithms , Lung/diagnostic imaging , Lung/pathology , Radiographic Image Interpretation, Computer-Assisted/methods
12.
Zhonghua Yi Xue Za Zhi ; 104(16): 1371-1380, 2024 Apr 23.
Article in Chinese | MEDLINE | ID: mdl-38644287

ABSTRACT

Lung cancer is the second most common malignancy with the highest mortality rate worldwide. In recent years, the rapid development of various bronchoscopic navigation techniques has provided conditions for the minimally invasive diagnosis and treatment of peripheral pulmonary nodules through the airway.Augmented reality optical lung navigation is a new technology that combined virtual bronchoscopy navigation (VBN) with augmented reality (AR) and optical navigation technology, which could assist bronchoscopist and has been widely applied in clinics. The clinical evidence certified that the navigation, has the advantages of safety and efficacy in guiding transbronchial diagnosis, localization, and treatment of pulmonary nodules. In order to standardize the clinical operation of augmented reality optical lung navigation technology and guide its application in clinical practice, Interventional Group, Society of Respiratory Diseases, Chinese Medical Association/Interventional Pulmonology Group of the Zhejiang Medical Association organized multidisciplinary experts to take the lead in formulating the Consensus of experts on transbronchial diagnosis, localization and treatment of peripheral pulmonary nodules guided by the augmented reality optical lung navigation after multiple rounds of discussion, and provided recommendation opinions and clinical guidance for the indications and contraindications, equipment and devices, perioperative treatment, operating process and complication management of peripheral pulmonary nodules applicable to augmented reality optical lung diagnosis navigation technology.


Subject(s)
Augmented Reality , Bronchoscopy , Lung Neoplasms , Humans , Bronchoscopy/methods , Lung Neoplasms/diagnosis , Lung Neoplasms/surgery , Lung/surgery , Consensus , Multiple Pulmonary Nodules/diagnosis , Multiple Pulmonary Nodules/surgery
13.
Cancer Imaging ; 24(1): 47, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566150

ABSTRACT

PURPOSE: To investigate the computed tomography (CT) characteristics of air-containing space and its specific patterns in neoplastic and non-neoplastic ground glass nodules (GGNs) for clarifying their significance in differential diagnosis. MATERIALS AND METHODS: From January 2015 to October 2022, 1328 patients with 1,350 neoplastic GGNs and 462 patients with 465 non-neoplastic GGNs were retrospectively enrolled. Their clinical and CT data were analyzed and compared with emphasis on revealing the differences of air-containing space and its specific patterns (air bronchogram and bubble-like lucency [BLL]) between neoplastic and non-neoplastic GGNs and their significance in differentiating them. RESULTS: Compared with patients with non-neoplastic GGNs, female was more common (P < 0.001) and lesions were larger (P < 0.001) in those with neoplastic ones. Air bronchogram (30.1% vs. 17.2%), and BLL (13.0% vs. 2.6%) were all more frequent in neoplastic GGNs than in non-neoplastic ones (each P < 0.001), and the BLL had the highest specificity (93.6%) in differentiation. Among neoplastic GGNs, the BLL was more frequently detected in the larger (14.9 ± 6.0 mm vs. 11.4 ± 4.9 mm, P < 0.001) and part-solid (15.3% vs. 10.7%, P = 0.011) ones, and its incidence significantly increased along with the invasiveness (9.5-18.0%, P = 0.001), whereas no significant correlation was observed between the occurrence of BLL and lesion size, attenuation, or invasiveness. CONCLUSION: The air containing space and its specific patterns are of great value in differentiating GGNs, while BLL is a more specific and independent sign of neoplasms.


Subject(s)
Lung Neoplasms , Multiple Pulmonary Nodules , Humans , Female , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Retrospective Studies , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/pathology , Tomography, X-Ray Computed/methods , Diagnosis, Differential
14.
J Cardiothorac Surg ; 19(1): 182, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38581004

ABSTRACT

PURPOSE: In VATS surgery, precise preoperative localization is particularly crucial when dealing with small-diameter pulmonary nodules located deep within the lung parenchyma. The purpose of this study was to compare the efficacy and safety of laser guidance and freehand hook-wire for CT-guided preoperative localization of pulmonary nodules. METHODS: This retrospective study was conducted on 164 patients who received either laser guidance or freehand hook-wire localization prior to Uni-port VATS from September 1st, 2022 to September 30th, 2023 at The First Affiliated Hospital of Soochow University. Patients were divided into laser guidance group and freehand group based on which technology was used. Preoperative localization data from all patients were compiled. The localization success and complication rates associated with the two groups were compared. The risk factors for common complications were analyzed. RESULTS: The average time of the localization duration in the laser guidance group was shorter than the freehand group (p<0.001), and the average CT scan times in the laser guidance group was less than that in the freehand group (p<0.001). The hook-wire was closer to the nodule in the laser guidance group (p<0.001). After the localization of pulmonary nodules, a CT scan showed 14 cases of minor pneumothorax (22.58%) in the laser guidance group and 21 cases (20.59%) in the freehand group, indicating no statistical difference between the two groups (p=0.763). CT scans in the laser guidance group showed pulmonary minor hemorrhage in 8 cases (12.90%) and 6 cases (5.88%) in the freehand group, indicating no statistically significant difference between the two groups (p=0.119). Three patients (4.84%) in the laser guidance group and six patients (5.88%) in the freehand group had hook-wire dislodgement, showing no statistical difference between the two groups (p=0.776). CONCLUSION: The laser guidance localization method possessed a greater precision and less localization duration and CT scan times compared to the freehand method. However, laser guidance group and freehand group do not differ in the appearance of complications such as pulmonary hemorrhage, pneumothorax and hook-wire dislodgement.


Subject(s)
Lung Neoplasms , Multiple Pulmonary Nodules , Pneumothorax , Solitary Pulmonary Nodule , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/surgery , Pneumothorax/surgery , Retrospective Studies , Solitary Pulmonary Nodule/surgery , Thoracic Surgery, Video-Assisted/methods , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/surgery , Tomography, X-Ray Computed/methods , Hemorrhage
16.
J Cardiothorac Surg ; 19(1): 206, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38614999

ABSTRACT

Segmentectomy is widely used to treat pulmonary nodules and more functional lungs can be preserved in patients. For pulmonary nodules deep near the intersegmental border, only one single segmentectomy may not achieve adequate surgical margins, and combined subsegmental resection becomes the most suitable treatment option. Thoracoscopic combined anatomical resections involving both of right S9 and S10b are one of the most challenging cases, especially in the right chest. We previously reported a case of combined subsegmental resection of the left complex basal segment (LS9b + 10b). To our knowledge, there has been no report of combined subsegmental resection of the right S9 and S10b. Here, we aim to introduce a different technique named as "open-gate", which means that the intersegmental border between S7 and S10 was cut open along the intersegmental septa, to deal with complex combined basal subsegmental resections.


Subject(s)
Multiple Pulmonary Nodules , Humans
17.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(2): 169-175, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38686712

ABSTRACT

Objective To establish a model for predicting the growth of pulmonary ground-glass nodules (GGN) based on the clinical visualization parameters extracted by the 3D reconstruction technique and to verify the prediction performance of the model. Methods A retrospective analysis was carried out for 354 cases of pulmonary GGN followed up regularly in the outpatient of pulmonary nodules in Zhoushan Hospital of Zhejiang Province from March 2015 to December 2022.The semi-automatic segmentation method of 3D Slicer was employed to extract the quantitative imaging features of nodules.According to the follow-up results,the nodules were classified into a resting group and a growing group.Furthermore,the nodules were classified into a training set and a test set by the simple random method at a ratio of 7∶3.Clinical and imaging parameters were used to establish a prediction model,and the prediction performance of the model was tested on the validation set. Results A total of 119 males and 235 females were included,with a median age of 55.0 (47.0,63.0) years and the mean follow-up of (48.4±16.3) months.There were 247 cases in the training set and 107 cases in the test set.The binary Logistic regression analysis showed that age (95%CI=1.010-1.092,P=0.015) and mass (95%CI=1.002-1.067,P=0.035) were independent predictors of nodular growth.The mass (M) of nodules was calculated according to the formula M=V×(CTmean+1000)×0.001 (where V is the volume,V=3/4πR3,R:radius).Therefore,the logit prediction model was established as ln[P/(1-P)]=-1.300+0.043×age+0.257×two-dimensional diameter+0.007×CTmean.The Hosmer-Lemeshow goodness of fit test was performed to test the fitting degree of the model for the measured data in the validation set (χ2=4.515,P=0.808).The check plot was established for the prediction model,which showed the area under receiver-operating characteristic curve being 0.702. Conclusions The results of this study indicate that patient age and nodule mass are independent risk factors for promoting the growth of pulmonary GGN.A model for predicting the growth possibility of GGN is established and evaluated,which provides a basis for the formulation of GGN management strategies.


Subject(s)
Lung Neoplasms , Solitary Pulmonary Nodule , Humans , Middle Aged , Female , Male , Retrospective Studies , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/pathology , Tomography, X-Ray Computed/methods , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/pathology , Imaging, Three-Dimensional/methods , Aged , Adult
18.
Zhongguo Fei Ai Za Zhi ; 27(3): 170-178, 2024 Mar 20.
Article in Chinese | MEDLINE | ID: mdl-38590191

ABSTRACT

BACKGROUND: Current studies suggest that for early-stage lung cancers with a component of ground-glass opacity measuring ≤2 cm, sublobar resection is suitable if it ensures adequate margins. However, lobectomy may be necessary for some cases to achieve this. The aim of this study was to explore the impact of size and depth on surgical techniques for wedge resection, segmentectomy, and lobectomy in early-stage lung cancer ≤2 cm, and to determine methods for ensuring a safe resection margin during sublobar resections. METHODS: Clinical data from 385 patients with early-stage lung cancer ≤2 cm, who underwent lung resection in 2022, were subject to a retrospective analysis, covering three types of procedures: wedge resection, segmentectomy and lobectomy. The depth indicator as the OA value, which is the shortest distance from the inner edge of a pulmonary nodule to the opening of the corresponding bronchus, and the AB value, which is the distance from the inner edge of the nodule to the pleura, were measured. For cases undergoing lobectomy and segmentectomy, three-dimensional computed tomography bronchography and angiography (3D-CTBA) was performed to statistically determine the number of subsegments required for segmentectomy. The cutting margin width for wedge resection and segmentectomy was recorded, as well as the specific subsegments and their quantities removed during lung segmentectomy were documented. RESULTS: In wedge resection, segmentectomy, and lobectomy, the sizes of pulmonary nodules were (1.08±0.29) cm, (1.31±0.34) cm and (1.50±0.35) cm, respectively, while the depth of the nodules (OA values) was 6.05 (5.26, 6.85) cm, 4.43 (3.27, 5.43) cm and 3.04 (1.80, 4.18) cm for each procedure, showing a progressive increasing trend (P<0.001). The median resection margin width obtained from segmentectomy was 2.50 (1.50, 3.00) cm, significantly greater than the 1.50 (1.15, 2.00) cm from wedge resection (P<0.001). In wedge resections, cases where AB value >2 cm demonstrated a higher proportion of cases with resection margins less than 2 cm compared to those with margins greater than 2 cm (29.03% vs 12.90%, P=0.019). When utilizing the size of the nodule as the criterion for resection margin, the instances with AB value >2 cm continued to show a higher proportion in the ratio of margin distance to tumor size less than 1 (37.50% vs 17.39%, P=0.009). The median number of subsegments for segmentectomy was three, whereas lobectomy cases requiring segmentectomy involved five subsegments (P<0.001). CONCLUSIONS: The selection of the surgical approach for lung resection is influenced by both the size and depth of pulmonary nodules. This study first confirms that larger portions of lung tissue must be removed for nodules that are deeper and larger to achieve a safe margin. A distance of ≤2 cm from the inner edge of the pulmonary nodule to the nearest pleura may be the ideal indication for performing wedge resection.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Multiple Pulmonary Nodules , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/surgery , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/pathology , Retrospective Studies , Margins of Excision , Pneumonectomy/methods , Lung/diagnostic imaging , Lung/surgery , Lung/pathology , Multiple Pulmonary Nodules/surgery , Neoplasm Staging
19.
Ugeskr Laeger ; 186(14)2024 Apr 01.
Article in Danish | MEDLINE | ID: mdl-38606710

ABSTRACT

Lung cancer is the leading cause of cancer-related death in Denmark and the world. The increase in CT examinations has led to an increase in detection of pulmonary nodules divided into solid and subsolid (including ground glass and part solid). Risk factors for malignancy include age, smoking, female gender, and specific ethnicities. Nodule traits like size, spiculation, upper-lobe location, and emphysema correlate with higher malignancy risk. Managing these potentially malignant nodules relies on evidence-based guidelines and risk stratification. These risk stratification models can standardize the approach for the management of incidental pulmonary findings, as argued in this review.


Subject(s)
Lung Neoplasms , Multiple Pulmonary Nodules , Solitary Pulmonary Nodule , Humans , Female , Tomography, X-Ray Computed , Solitary Pulmonary Nodule/pathology , Multiple Pulmonary Nodules/pathology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Lung/pathology
20.
Radiol Cardiothorac Imaging ; 6(2): e230241, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38634743

ABSTRACT

Purpose To perform a meta-analysis of the diagnostic performance of MRI for the detection of pulmonary nodules, with use of CT as the reference standard. Materials and Methods PubMed, Embase, Scopus, and other databases were systematically searched for studies published from January 2000 to March 2023 evaluating the performance of MRI for diagnosis of lung nodules measuring 4 mm or larger, with CT as reference. Studies including micronodules, nodules without size stratification, or those from which data for contingency tables could not be extracted were excluded. Primary outcomes were the per-lesion sensitivity of MRI and the rate of false-positive nodules per patient (FPP). Subgroup analysis by size and meta-regression with other covariates were performed. The study protocol was registered in the International Prospective Register of Systematic Reviews, or PROSPERO (no. CRD42023437509). Results Ten studies met inclusion criteria (1354 patients and 2062 CT-detected nodules). Overall, per-lesion sensitivity of MRI for nodules measuring 4 mm or larger was 87.7% (95% CI: 81.1, 92.2), while the FPP rate was 12.4% (95% CI: 7.0, 21.1). Subgroup analyses demonstrated that MRI sensitivity was 98.5% (95% CI: 90.4, 99.8) for nodules measuring at least 8-10 mm and 80.5% (95% CI: 71.5, 87.1) for nodules less than 8 mm. Conclusion MRI demonstrated a good overall performance for detection of pulmonary nodules measuring 4 mm or larger and almost equal performance to CT for nodules measuring at least 8-10 mm, with a low rate of FPP. Systematic review registry no. CRD42023437509 Keywords: Lung Nodule, Lung Cancer, Lung Cancer Screening, MRI, CT Supplemental material is available for this article. © RSNA, 2024.


Subject(s)
Asparagales , Lung Neoplasms , Multiple Pulmonary Nodules , Humans , Early Detection of Cancer , Magnetic Resonance Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...