Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.936
Filter
1.
Sci Rep ; 14(1): 10573, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719983

ABSTRACT

Multiple sclerosis (MS) is a chronic neurological disease characterized by inflammatory demyelination that disrupts neuronal transmission resulting in neurodegeneration progressive disability. While current treatments focus on immunosuppression to limit inflammation and further myelin loss, no approved therapies effectively promote remyelination to mitigate the progressive disability associated with chronic demyelination. Lysophosphatidic acid (LPA) is a pro-inflammatory lipid that is upregulated in MS patient plasma and cerebrospinal fluid (CSF). LPA activates the LPA1 receptor, resulting in elevated CNS cytokine and chemokine levels, infiltration of immune cells, and microglial/astrocyte activation. This results in a neuroinflammatory response leading to demyelination and suppressed remyelination. A medicinal chemistry effort identified PIPE-791, an oral, brain-penetrant, LPA1 antagonist. PIPE-791 was characterized in vitro and in vivo and was found to be a potent, selective LPA1 antagonist with slow receptor off-rate kinetics. In vitro, PIPE-791 induced OPC differentiation and promoted remyelination following a demyelinating insult. PIPE-791 further mitigated the macrophage-mediated inhibition of OPC differentiation and inhibited microglial and fibroblast activation. In vivo, the compound readily crossed the blood-brain barrier and blocked LPA1 in the CNS after oral dosing. Direct dosing of PIPE-791 in vivo increased oligodendrocyte number, and in the mouse experimental autoimmune encephalomyelitis (EAE) model of MS, we observed that PIPE-791 promoted myelination, reduced neuroinflammation, and restored visual evoked potential latencies (VEP). These findings support targeting LPA1 for remyelination and encourage development of PIPE-791 for treating MS patients with advantages not seen with current immunosuppressive disease modifying therapies.


Subject(s)
Multiple Sclerosis , Receptors, Lysophosphatidic Acid , Remyelination , Animals , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Receptors, Lysophosphatidic Acid/antagonists & inhibitors , Receptors, Lysophosphatidic Acid/metabolism , Remyelination/drug effects , Humans , Mice , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Oligodendroglia/metabolism , Oligodendroglia/drug effects , Brain/metabolism , Brain/drug effects , Brain/pathology , Cell Differentiation/drug effects , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Mice, Inbred C57BL , Myelin Sheath/metabolism , Myelin Sheath/drug effects , Lysophospholipids/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects
2.
Acta Neuropathol ; 147(1): 82, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722375

ABSTRACT

Aging affects all cell types in the CNS and plays an important role in CNS diseases. However, the underlying molecular mechanisms driving these age-associated changes and their contribution to diseases are only poorly understood. The white matter in the aging brain as well as in diseases, such as Multiple sclerosis is characterized by subtle abnormalities in myelin sheaths and paranodes, suggesting that oligodendrocytes, the myelin-maintaining cells of the CNS, lose the capacity to preserve a proper myelin structure and potentially function in age and certain diseases. Here, we made use of directly converted oligodendrocytes (dchiOL) from young, adult and old human donors to study age-associated changes. dchiOL from all three age groups differentiated in an comparable manner into O4 + immature oligodendrocytes, but the proportion of MBP + mature dchiOL decreased with increasing donor age. This was associated with an increased ROS production and upregulation of cellular senescence markers such as CDKN1A, CDKN2A in old dchiOL. Comparison of the transcriptomic profiles of dchiOL from adult and old donors revealed 1324 differentially regulated genes with limited overlap with transcriptomic profiles of the donors' fibroblasts or published data sets from directly converted human neurons or primary rodent oligodendroglial lineage cells. Methylome analyses of dchiOL and human white matter tissue samples demonstrate that chronological and epigenetic age correlate in CNS white matter as well as in dchiOL and resulted in the identification of an age-specific epigenetic signature. Furthermore, we observed an accelerated epigenetic aging of the myelinated, normal appearing white matter of multiple sclerosis (MS) patients compared to healthy individuals. Impaired differentiation and upregulation of cellular senescence markers could be induced in young dchiOL in vitro using supernatants from pro-inflammatory microglia. In summary, our data suggest that physiological aging as well as inflammation-induced cellular senescence contribute to oligodendroglial pathology in inflammatory demyelinating diseases such as MS.


Subject(s)
Aging , Cellular Senescence , Multiple Sclerosis , Oligodendroglia , Humans , Oligodendroglia/pathology , Oligodendroglia/metabolism , Cellular Senescence/physiology , Aging/pathology , Multiple Sclerosis/pathology , Multiple Sclerosis/metabolism , Adult , Aged , Middle Aged , Male , Female , Young Adult , Inflammation/pathology , Inflammation/metabolism , White Matter/pathology , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p21
3.
J Neuroinflammation ; 21(1): 128, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745307

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is a progressive neurodegenerative disease of the central nervous system characterized by inflammation-driven synaptic abnormalities. Interleukin-9 (IL-9) is emerging as a pleiotropic cytokine involved in MS pathophysiology. METHODS: Through biochemical, immunohistochemical, and electrophysiological experiments, we investigated the effects of both peripheral and central administration of IL-9 on C57/BL6 female mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. RESULTS: We demonstrated that both systemic and local administration of IL-9 significantly improved clinical disability, reduced neuroinflammation, and mitigated synaptic damage in EAE. The results unveil an unrecognized central effect of IL-9 against microglia- and TNF-mediated neuronal excitotoxicity. Two main mechanisms emerged: first, IL-9 modulated microglial inflammatory activity by enhancing the expression of the triggering receptor expressed on myeloid cells-2 (TREM2) and reducing TNF release. Second, IL-9 suppressed neuronal TNF signaling, thereby blocking its synaptotoxic effects. CONCLUSIONS: The data presented in this work highlight IL-9 as a critical neuroprotective molecule capable of interfering with inflammatory synaptopathy in EAE. These findings open new avenues for treatments targeting the neurodegenerative damage associated with MS, as well as other inflammatory and neurodegenerative disorders of the central nervous system.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Interleukin-9 , Mice, Inbred C57BL , Microglia , Synapses , Tumor Necrosis Factor-alpha , Animals , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Mice , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Interleukin-9/metabolism , Female , Tumor Necrosis Factor-alpha/metabolism , Synapses/drug effects , Synapses/metabolism , Synapses/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Membrane Glycoproteins/metabolism , Neurons/metabolism , Neurons/drug effects , Neurons/pathology , Multiple Sclerosis/pathology , Multiple Sclerosis/metabolism , Disease Models, Animal
4.
Cell Mol Neurobiol ; 44(1): 44, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713302

ABSTRACT

Multiple Sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) characterized by inflammation and demyelination of CNS neurons. Up to now, there are many therapeutic strategies for MS but they are only being able to reduce progression of diseases and have not got any effect on repair and remyelination. Stem cell therapy is an appropriate method for regeneration but has limitations and problems. So recently, researches were used of exosomes that facilitate intercellular communication and transfer cell-to-cell biological information. MicroRNAs (miRNAs) are a class of short non-coding RNAs that we can used to their dysregulation in order to diseases diagnosis. The miRNAs of microvesicles obtained stem cells may change the fate of transplanted cells based on received signals of injured regions. The miRNAs existing in MSCs may be displayed the cell type and their biological activities. Current studies show also that the miRNAs create communication between stem cells and tissue-injured cells. In the present review, firstly we discuss the role of miRNAs dysregulation in MS patients and miRNAs expression by stem cells. Finally, in this study was confirmed the relationship of microRNAs involved in MS and miRNAs expressed by stem cells and interaction between them in order to find appropriate treatment methods in future for limit to disability progression.


Subject(s)
Exosomes , MicroRNAs , Multiple Sclerosis , Stem Cells , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Exosomes/metabolism , Multiple Sclerosis/therapy , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Animals , Stem Cells/metabolism
5.
Sci Rep ; 14(1): 10877, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740862

ABSTRACT

In chronic stages of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalitis (EAE), connexin (Cx)43 gap junction channel proteins are overexpressed because of astrogliosis. To elucidate the role of increased Cx43, the central nervous system (CNS)-permeable Cx blocker INI-0602 was therapeutically administered. C57BL6 mice with chronic EAE initiated by MOG35-55 received INI-0602 (40 mg/kg) or saline intraperitoneally every other day from days post-immunization (dpi) 17-50. Primary astroglia were employed to observe calcein efflux responses. In INI-0602-treated mice, EAE clinical signs improved significantly in the chronic phase, with reduced demyelination and decreased CD3+ T cells, Iba-1+ and F4/80+ microglia/macrophages, and C3+GFAP+ reactive astroglia infiltration in spinal cord lesions. Flow cytometry analysis of CD4+ T cells from CNS tissues revealed significantly reduced Th17 and Th17/Th1 cells (dpi 24) and Th1 cells (dpi 50). Multiplex array of cerebrospinal fluid showed significantly suppressed IL-6 and significantly increased IL-10 on dpi 24 in INI-0602-treated mice, and significantly suppressed IFN-γ and MCP-1 on dpi 50 in the same group. In vitro INI-0602 treatment inhibited ATP-induced calcium propagations of Cx43+/+ astroglial cells to similar levels of those of Cx43-/- cells. Astroglial Cx43 hemichannels represent a novel therapeutic target for chronic EAE and MS.


Subject(s)
Astrocytes , Connexin 43 , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental , Mice, Inbred C57BL , Multiple Sclerosis , Animals , Connexin 43/metabolism , Astrocytes/metabolism , Astrocytes/drug effects , Astrocytes/pathology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Mice , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Female
6.
Front Immunol ; 15: 1360219, 2024.
Article in English | MEDLINE | ID: mdl-38745667

ABSTRACT

Background: Regulatory B cells (Bregs) play a pivotal role in suppressing immune responses, yet there is still a lack of cell surface markers that can rigorously identify them. In mouse models for multiple sclerosis (MS), TIM-1 or TIGIT expression on B cells is required for maintaining self-tolerance and regulating autoimmunity to the central nervous system. Here we investigated the activities of human memory B cells that differentially express TIM-1 and TIGIT to determine their potential regulatory function in healthy donors and patients with relapsing-remitting (RR) MS. Methods: FACS-sorted TIM-1+/-TIGIT+/- memory B (memB) cells co-cultured with allogenic CD4+ T cells were analyzed for proliferation and induction of inflammatory markers using flow cytometry and cytokine quantification, to determine Th1/Th17 cell differentiation. Transcriptional differences were assessed by SMARTSeq2 RNA sequencing analysis. Results: TIM-1-TIGIT- double negative (DN) memB cells strongly induce T cell proliferation and pro-inflammatory cytokine expression. The TIM-1+ memB cells enabled low levels of CD4+ T cell activation and gave rise to T cells that co-express IL-10 with IFNγ and IL-17A or FoxP3. T cells cultured with the TIM-1+TIGIT+ double positive (DP) memB cells exhibited reduced proliferation and IFNγ, IL-17A, TNFα, and GM-CSF expression, and exhibited strong regulation in Breg suppression assays. The functional activity suggests the DP memB cells are a bonafide Breg population. However, MS DP memB cells were less inhibitory than HC DP memB cells. A retrospective longitudinal study of anti-CD20 treated patients found that post-treatment DP memB cell frequency and absolute number were associated with response to therapy. Transcriptomic analyses indicated that the dysfunctional MS-derived DP memB/Breg population exhibited increased expression of genes associated with T cell activation and survival (CD80, ZNF10, PIK3CA), and had distinct gene expression compared to the TIGIT+ or TIM-1+ memB cells. Conclusion: These findings demonstrate that TIM-1/TIGIT expressing memory B cell subsets have distinct functionalities. Co-expression of TIM-1 and TIGIT defines a regulatory memory B cell subset that is functionally impaired in MS.


Subject(s)
B-Lymphocytes, Regulatory , Hepatitis A Virus Cellular Receptor 1 , Receptors, Immunologic , Humans , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , B-Lymphocytes, Regulatory/immunology , B-Lymphocytes, Regulatory/metabolism , Hepatitis A Virus Cellular Receptor 1/metabolism , Hepatitis A Virus Cellular Receptor 1/genetics , Female , Male , Adult , Memory B Cells/immunology , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/metabolism , Cytokines/metabolism , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Lymphocyte Activation/immunology , Middle Aged , Cells, Cultured , Cell Differentiation/immunology , Immunologic Memory
7.
J Cell Mol Med ; 28(10): e18396, 2024 May.
Article in English | MEDLINE | ID: mdl-38801304

ABSTRACT

Previous studies have found that ferroptosis plays an important role in a variety of neurological diseases. However, the precise role of ferroptosis in the multiple sclerosis patients remains uncertain. We defined and validated a computational metric of ferroptosis levels. The ferroptosis scores were computed using the AUCell method, which reflects the enrichment scores of ferroptosis-related genes through gene ranking. The reliability of the ferroptosis score was assessed using various methods, involving cells induced to undergo ferroptosis by six different ferroptosis inducers. Through a comprehensive approach integrating snRNA-seq, spatial transcriptomics, and spatial proteomics data, we explored the role of ferroptosis in multiple sclerosis. Our findings revealed that among seven sampling regions of different white matter lesions, the edges of active lesions exhibited the highest ferroptosis score, which was associated with activation of the phagocyte system. Remyelination lesions exhibit the lowest ferroptosis score. In the cortex, ferroptosis score were elevated in neurons, relevant to a variety of neurodegenerative disease-related pathways. Spatial transcriptomics demonstrated a significant co-localization among ferroptosis score, neurodegeneration and microglia, which was verified by spatial proteomics. Furthermore, we established a diagnostic model of multiple sclerosis based on 24 ferroptosis-related genes in the peripheral blood. Ferroptosis might exhibits a dual role in the context of multiple sclerosis, relevant to both neuroimmunity and neurodegeneration, thereby presenting a promising and novel therapeutic target. Ferroptosis-related genes in the blood that could potentially serve as diagnostic and prognostic markers for multiple sclerosis.


Subject(s)
Ferroptosis , Multiple Sclerosis , Proteomics , Ferroptosis/genetics , Multiple Sclerosis/genetics , Multiple Sclerosis/pathology , Multiple Sclerosis/metabolism , Humans , Proteomics/methods , Transcriptome , Microglia/metabolism , Microglia/pathology , Gene Expression Profiling , Computational Biology/methods , Neurons/metabolism , Neurons/pathology , Multiomics
8.
Biomed Pharmacother ; 175: 116673, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38713947

ABSTRACT

Multiple sclerosis (MS) is a complex autoimmune disorder that impacts the central nervous system (CNS), resulting in inflammation, demyelination, and neurodegeneration. The NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome, a multiprotein complex of the innate immune system, serves an essential role in the pathogenesis of MS by regulating the production of pro-inflammatory cytokines (IL-1ß & IL-18) and the induction of pyroptotic cell death. Mitochondrial dysfunction is one of the main potential factors that can trigger NLRP3 inflammasome activation and lead to inflammation and axonal damage in MS. This highlights the importance of understanding how mitochondrial dynamics modulate NLRP3 inflammasome activity and contribute to the inflammatory and neurodegenerative features of MS. The lack of a comprehensive understanding of the pathogenesis of MS and the urge for the introduction of new therapeutic strategies led us to review the therapeutic potential of targeting the interplay between mitochondrial dysfunction and the NLRP3 inflammasome in MS. This paper also evaluates the natural and synthetic compounds that can improve mitochondrial function and/or inhibit the NLRP3 inflammasome, thereby providing neuroprotection. Moreover, it summarizes the evidence from animal models of MS that demonstrate the beneficial effects of these compounds on reducing inflammation, demyelination, and neurodegeneration. Finally, this review advocates for a deeper investigation into the molecular crosstalk between mitochondrial dynamics and the NLRP3 inflammasome as a means to refine therapeutic targets for MS.


Subject(s)
Disease Models, Animal , Inflammasomes , Mitochondria , Multiple Sclerosis , NLR Family, Pyrin Domain-Containing 3 Protein , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Humans , Inflammasomes/metabolism , Mitochondria/metabolism , Mitochondria/drug effects
9.
Cell Rep ; 43(5): 114226, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38733586

ABSTRACT

Cognitive dysfunction is a feature in multiple sclerosis (MS), a chronic inflammatory demyelinating disorder. A notable aspect of MS brains is hippocampal demyelination, which is closely associated with cognitive decline. However, the mechanisms underlying this phenomenon remain unclear. Chitinase-3-like (CHI3L1), secreted by activated astrocytes, has been identified as a biomarker for MS progression. Our study investigates CHI3L1's function within the demyelinating hippocampus and demonstrates a correlation between CHI3L1 expression and cognitive impairment in patients with MS. Activated astrocytes release CHI3L1 in reaction to induced demyelination, which adversely affects the proliferation and differentiation of neural stem cells and impairs dendritic growth, complexity, and spine formation in neurons. Our findings indicate that the astrocytic deletion of CHI3L1 can mitigate neurogenic deficits and cognitive dysfunction. We showed that CHI3L1 interacts with CRTH2/receptor for advanced glycation end (RAGE) by attenuating ß-catenin signaling. The reactivation of ß-catenin signaling can revitalize neurogenesis, which holds promise for therapy of inflammatory demyelination.


Subject(s)
Astrocytes , Chitinase-3-Like Protein 1 , Cognition , Hippocampus , Neurogenesis , Signal Transduction , Chitinase-3-Like Protein 1/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Animals , Astrocytes/metabolism , Humans , Mice , Cognition/physiology , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Male , Mice, Inbred C57BL , Neural Stem Cells/metabolism , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Receptor for Advanced Glycation End Products/metabolism , Female , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , beta Catenin/metabolism , Cell Proliferation , Cell Differentiation
10.
Neurol Neuroimmunol Neuroinflamm ; 11(4): e200257, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754047

ABSTRACT

OBJECTIVES: To assess whether the rate of change in synaptic proteins isolated from neuronally enriched extracellular vesicles (NEVs) is associated with brain and retinal atrophy in people with multiple sclerosis (MS). METHODS: People with MS were followed with serial blood draws, MRI (MRI), and optical coherence tomography (OCT) scans. NEVs were immunocaptured from plasma, and synaptopodin and synaptophysin proteins were measured using ELISA. Subject-specific rates of change in synaptic proteins, as well as brain and retinal atrophy, were determined and correlated. RESULTS: A total of 50 people with MS were included, 46 of whom had MRI and 45 had OCT serially. The rate of change in NEV synaptopodin was associated with whole brain (rho = 0.31; p = 0.04), cortical gray matter (rho = 0.34; p = 0.03), peripapillary retinal nerve fiber layer (rho = 0.37; p = 0.01), and ganglion cell/inner plexiform layer (rho = 0.41; p = 0.006) atrophy. The rate of change in NEV synaptophysin was also correlated with whole brain (rho = 0.31; p = 0.04) and cortical gray matter (rho = 0.31; p = 0.049) atrophy. DISCUSSION: NEV-derived synaptic proteins likely reflect neurodegeneration and may provide additional circulating biomarkers for disease progression in MS.


Subject(s)
Atrophy , Brain , Extracellular Vesicles , Multiple Sclerosis , Retina , Synaptophysin , Humans , Male , Female , Middle Aged , Extracellular Vesicles/metabolism , Adult , Brain/pathology , Brain/diagnostic imaging , Brain/metabolism , Retina/pathology , Retina/diagnostic imaging , Retina/metabolism , Multiple Sclerosis/pathology , Multiple Sclerosis/metabolism , Multiple Sclerosis/diagnostic imaging , Synaptophysin/metabolism , Tomography, Optical Coherence , Magnetic Resonance Imaging , Microfilament Proteins/metabolism
11.
Cell ; 187(10): 2465-2484.e22, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38701782

ABSTRACT

Remyelination failure in diseases like multiple sclerosis (MS) was thought to involve suppressed maturation of oligodendrocyte precursors; however, oligodendrocytes are present in MS lesions yet lack myelin production. We found that oligodendrocytes in the lesions are epigenetically silenced. Developing a transgenic reporter labeling differentiated oligodendrocytes for phenotypic screening, we identified a small-molecule epigenetic-silencing-inhibitor (ESI1) that enhances myelin production and ensheathment. ESI1 promotes remyelination in animal models of demyelination and enables de novo myelinogenesis on regenerated CNS axons. ESI1 treatment lengthened myelin sheaths in human iPSC-derived organoids and augmented (re)myelination in aged mice while reversing age-related cognitive decline. Multi-omics revealed that ESI1 induces an active chromatin landscape that activates myelinogenic pathways and reprograms metabolism. Notably, ESI1 triggered nuclear condensate formation of master lipid-metabolic regulators SREBP1/2, concentrating transcriptional co-activators to drive lipid/cholesterol biosynthesis. Our study highlights the potential of targeting epigenetic silencing to enable CNS myelin regeneration in demyelinating diseases and aging.


Subject(s)
Epigenesis, Genetic , Myelin Sheath , Oligodendroglia , Remyelination , Animals , Myelin Sheath/metabolism , Humans , Mice , Remyelination/drug effects , Oligodendroglia/metabolism , Central Nervous System/metabolism , Mice, Inbred C57BL , Rejuvenation , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/drug effects , Sterol Regulatory Element Binding Protein 1/metabolism , Organoids/metabolism , Organoids/drug effects , Demyelinating Diseases/metabolism , Demyelinating Diseases/genetics , Cell Differentiation/drug effects , Small Molecule Libraries/pharmacology , Male , Regeneration/drug effects , Multiple Sclerosis/metabolism , Multiple Sclerosis/genetics , Multiple Sclerosis/drug therapy , Multiple Sclerosis/pathology
12.
Mol Biol Rep ; 51(1): 674, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787497

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) with inflammation and immune dysfunction. OBJECTIVES: We compared the remyelination and immunomodulation properties of mesenchymal stem cells (MSCs) with their conditioned medium (CM) in the cuprizone model. METHODS: Twenty-four C57BL/ 6 mice were divided into four groups. After cuprizone demyelination, MSCs and their CM were injected into the right lateral ventricle of mice. The expression level of IL-1ß, TNF-α, and BDNF genes was evaluated using the qRT-PCR. APC antibody was used to assess the oligodendrocyte population using the immunofluorescent method. The remyelination and axonal repair were studied by specific staining of the LFB and electron microscopy techniques. RESULTS: Transplantation of MSCs and CM increased the expression of the BDNF gene and decreased the expression of IL-1ß and TNF-α genes compared to the cuprizone group, and these effects in the cell group were more than CM. Furthermore, cell transplantation resulted in a significant improvement in myelination and axonal repair, which was measured by luxol fast blue and transmission electron microscope images. The cell group had a higher number of oligodendrocytes than other groups. CONCLUSIONS: According to the findings, injecting MSCs intraventricularly versus cell-conditioned medium can be a more effective approach to improving chronic demyelination in degenerative diseases like MS.


Subject(s)
Cuprizone , Demyelinating Diseases , Disease Models, Animal , Inflammation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Mice, Inbred C57BL , Animals , Mesenchymal Stem Cell Transplantation/methods , Mice , Mesenchymal Stem Cells/metabolism , Demyelinating Diseases/chemically induced , Demyelinating Diseases/pathology , Culture Media, Conditioned/pharmacology , Inflammation/pathology , Inflammation/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Oligodendroglia/metabolism , Remyelination , Multiple Sclerosis/pathology , Multiple Sclerosis/therapy , Multiple Sclerosis/metabolism , Multiple Sclerosis/chemically induced , Tumor Necrosis Factor-alpha/metabolism , Male , Myelin Sheath/metabolism
13.
Biomed Pharmacother ; 175: 116677, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701570

ABSTRACT

The current pharmacological approaches to multiple sclerosis (MS) target its inflammatory and autoimmune components, but effective treatments to foster remyelination and axonal repair are still lacking. We therefore selected two targets known to be involved in MS pathogenesis: N-acylethanolamine-hydrolyzing acid amidase (NAAA) and glycogen synthase kinase-3ß (GSK-3ß). We tested whether inhibiting these targets exerted a therapeutic effect against experimental autoimmune encephalomyelitis (EAE), an animal model of MS. The combined inhibition of NAAA and GSK-3ß by two selected small-molecule compounds, ARN16186 (an NAAA inhibitor) and AF3581 (a GSK-3ß inhibitor), effectively mitigated disease progression, rescuing the animals from paralysis and preventing a worsening of the pathology. The complementary activity of the two inhibitors reduced the infiltration of immune cells into the spinal cord and led to the formation of thin myelin sheaths around the axons post-demyelination. Specifically, the inhibition of NAAA and GSK-3ß modulated the over-activation of NF-kB and STAT3 transcription factors in the EAE-affected mice and induced the nuclear translocation of ß-catenin, reducing the inflammatory insult and promoting the remyelination process. Overall, this work demonstrates that the dual-targeting of key aspects responsible for MS progression could be an innovative pharmacological approach to tackle the pathology.


Subject(s)
Amidohydrolases , Encephalomyelitis, Autoimmune, Experimental , Glycogen Synthase Kinase 3 beta , Mice, Inbred C57BL , Multiple Sclerosis , Animals , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Mice , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/metabolism , Female , Spinal Cord/drug effects , Spinal Cord/metabolism , Spinal Cord/pathology , NF-kappa B/metabolism , Enzyme Inhibitors/pharmacology , Myelin Sheath/metabolism , Myelin Sheath/drug effects
14.
J Mol Neurosci ; 74(2): 40, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594388

ABSTRACT

Astrocytes, the most prevalent cells in the central nervous system (CNS), can be transformed into neurons and oligodendrocyte progenitor cells (OPCs) using specific transcription factors and some chemicals. In this study, we present a cocktail of small molecules that target different signaling pathways to promote astrocyte conversion to OPCs. Astrocytes were transferred to an OPC medium and exposed for five days to a small molecule cocktail containing CHIR99021, Forskolin, Repsox, LDN, VPA and Thiazovivin before being preserved in the OPC medium for an additional 10 days. Once reaching the OPC morphology, induced cells underwent immunocytofluorescence evaluation for OPC markers while checked for lacking the astrocyte markers. To test the in vivo differentiation capabilities, induced OPCs were transplanted into demyelinated mice brains treated with cuprizone over 12 weeks. Two distinct lines of astrocytes demonstrated the potential of conversion to OPCs using this small molecule cocktail as verified by morphological changes and the expression of PDGFR and O4 markers as well as the terminal differentiation to oligodendrocytes expressing MBP. Following transplantation into demyelinated mice brains, induced OPCs effectively differentiated into mature oligodendrocytes. The generation of OPCs from astrocytes via a small molecule cocktail may provide a new avenue for producing required progenitors necessary for myelin repair in diseases characterized by the loss of myelin such as multiple sclerosis.


Subject(s)
Multiple Sclerosis , Oligodendrocyte Precursor Cells , Mice , Animals , Multiple Sclerosis/therapy , Multiple Sclerosis/metabolism , Astrocytes/metabolism , Oligodendrocyte Precursor Cells/metabolism , Myelin Sheath/metabolism , Oligodendroglia/metabolism , Cell Differentiation/physiology , Disease Models, Animal , Cell Line
15.
Life Sci ; 347: 122668, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38670451

ABSTRACT

Exosomes are bilayer lipid vesicles that are released by cells and contain proteins, nucleic acids, and lipids. They can be internalized by other cells, inducing inflammatory responses and instigating toxicities in the recipient cells. Exosomes can also serve as therapeutic vehicles by transporting protective cargo to maintain homeostasis. Multiple studies have shown that exosomes can initiate and participate in the regulation of neuroinflammation, improve neurogenesis, and are closely related to the pathogenesis of central nervous system (CNS) diseases, including multiple sclerosis (MS). Exosomes can be secreted by both neurons and glial cells in the CNS, and their contents change with disease occurrence. Due to their ability to penetrate the blood-brain barrier and their stability in peripheral fluids, exosomes are attractive biomarkers of CNS diseases. In recent years, exosomes have emerged as potential therapeutic agents for CNS diseases, including MS. However, the molecular pathways in the pathogenesis of MS are still unknown, and further research is needed to fully understand the role of exosomes in the occurrence or improvement of MS disease. Thereby, in this review, we intend to provide a more complete understanding of the pathways in which exosomes are involved and affect the occurrence or improvement of MS disease.


Subject(s)
Exosomes , Multiple Sclerosis , Exosomes/metabolism , Humans , Multiple Sclerosis/therapy , Multiple Sclerosis/metabolism , Animals , Biomarkers/metabolism , Blood-Brain Barrier/metabolism
16.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673761

ABSTRACT

Multiple sclerosis (MS) is an autoimmune, inflammatory, and neurodegenerative disease of the central nervous system for which there is no cure, making it necessary to search for new treatments. The endocannabinoid system (ECS) plays a very important neuromodulatory role in the CNS. In recent years, the formation of heteromers containing cannabinoid receptors and their up/downregulation in some neurodegenerative diseases have been demonstrated. Despite the beneficial effects shown by some phytocannabinoids in MS, the role of the ECS in its pathophysiology is unknown. The main objective of this work was to identify heteromers of cell surface proteins receptive to cannabinoids, namely GPR55, CB1 and CB2 receptors, in brain samples from control subjects and MS patients, as well as determining their cellular localization, using In Situ Proximity Ligation Assays and immunohistochemical techniques. For the first time, CB1R-GPR55 and CB2R-GPR55 heteromers are identified in the prefrontal cortex of the human brain, more in the grey than in the white matter. Remarkably, the number of CB1R-GPR55 and CB2R-GPR55 complexes was found to be increased in MS patient samples. The results obtained open a promising avenue of research on the use of these receptor complexes as potential therapeutic targets for the disease.


Subject(s)
Multiple Sclerosis , Prefrontal Cortex , Receptor, Cannabinoid, CB1 , Receptor, Cannabinoid, CB2 , Receptors, Cannabinoid , Humans , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Prefrontal Cortex/metabolism , Receptors, Cannabinoid/metabolism , Receptor, Cannabinoid, CB2/metabolism , Receptor, Cannabinoid, CB1/metabolism , Male , Adult , Female , Receptors, G-Protein-Coupled/metabolism , Middle Aged , Up-Regulation , Protein Multimerization
17.
Neurol Res ; 46(6): 487-494, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38602307

ABSTRACT

INTRODUCTION: A novel research objective is to identify new molecules in more readily accessible biological fluids that could be used in the diagnosis of multiple sclerosis (MS) and other demyelinating disorders. AIM: To compare the level of selected cytokines in tears between patients with MS or other demyelinating disorder and healthy controls. MATERIAL AND METHODS: 84 patients with diagnosed MS during remission or with other demyelinating disease of the CNS and 70 healthy controls were enrolled in the study. Tears were collected without any stimulation and stored till the day of assessment. The concentration of selected cytokines was measured by the Bio-Plex Pro Human cytokine screening panel 27 cytokines assay according to the manufacturer's instructions. Statistical analysis was performed with Statistica 13. RESULTS: IL-1b level was significantly lower in the study group compared to the control group [3,6 vs 8.71, p < 0.001]. The same pattern was observed for IL-6 [3,1 vs 5.26, p = 0.027] and IL-10 [1,7 vs 10.92, p < 0.001] (Table 1). In the study group, IL-1RA (p = 0.015), IL-5 (p = 0.04), IL-9 (p = 0.014), and IL-15 (p = 0.037) showed significant correlations with age. In the total sample, IL-1Ra (p = 0.016) and IFN-g (p = 0.041) were significantly correlated with age, while in the control group, IL-8 (p = 0.09), MIP-1a (p = 0.009), and RANTES (p = 0.031) showed significant correlations. CONCLUSIONS: Our results show that MS and other demyelination diseases lead to decrease in the overall level of cytokines in tears. Further research is needed to determine the role of tear fluid in the assessment of demyelinating disorders like MS.


Subject(s)
Cytokines , Demyelinating Diseases , Tears , Humans , Tears/metabolism , Female , Cytokines/metabolism , Cytokines/analysis , Male , Adult , Demyelinating Diseases/metabolism , Demyelinating Diseases/diagnosis , Middle Aged , Multiple Sclerosis/metabolism , Young Adult , Biomarkers/metabolism , Biomarkers/analysis
18.
Front Biosci (Landmark Ed) ; 29(4): 142, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38682185

ABSTRACT

Innate lymphocytes, including microglial cells, astrocytes, and oligodendrocytes, play a crucial role in initiating neuroinflammatory reactions inside the central nervous system (CNS). The prime focus of this paper is on the involvement and interplay of neurons and glial cells in neurological disorders such as Alzheimer's Disease (AD), Autism Spectrum Disorder (ASD), epilepsy, and multiple sclerosis (MS). In this review, we explore the specific contributions of microglia and astrocytes and analyzes multiple pathways implicated in neuroinflammation and disturbances in excitatory and inhibitory processes. Firstly, we elucidate the mechanisms through which toxic protein accumulation in AD results in synaptic dysfunction and deregulation of the immune system and examines the roles of microglia, astrocytes, and hereditary factors in the pathogenesis of the disease. Secondly, we focus on ASD and the involvement of glial cells in the development of the nervous system and the formation of connections between neurons and investigates the genetic connections associated with these processes. Lastly, we also address the participation of glial cells in epilepsy and MS, providing insights into their pivotal functions in both conditions. We also tried to give an overview of seven different pathways like toll-like receptor signalling pathway, MyD88-dependent and independent pathway, etc and its relevance in the context with these neurological disorders. In this review, we also explore the role of activated glial cells in AD, ASD, epilepsy, and MS which lead to neuroinflammation. Even we focus on excitatory and inhibitory imbalance in all four neurological disorders as imbalance affect the proper functioning of neuronal circuits. Finally, this review concludes that there is necessity for additional investigation on glial cells and their involvement in neurological illnesses.


Subject(s)
Nervous System Diseases , Neuroglia , Neurons , Animals , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Astrocytes/metabolism , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/genetics , Cell Communication , Epilepsy/genetics , Epilepsy/metabolism , Epilepsy/physiopathology , Microglia/metabolism , Multiple Sclerosis/metabolism , Multiple Sclerosis/genetics , Multiple Sclerosis/physiopathology , Nervous System Diseases/metabolism , Nervous System Diseases/pathology , Neuroglia/metabolism , Neuroinflammatory Diseases/metabolism , Neurons/metabolism , Signal Transduction
19.
Biochemistry (Mosc) ; 89(3): 562-573, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38648773

ABSTRACT

The contents of homocysteine (HCy), cyanocobalamin (vitamin B12), folic acid (vitamin B9), and pyridoxine (vitamin B6) were analyzed and the genotypes of the main gene polymorphisms associated with folate metabolism (C677T and A1298C of the MTHFR gene, A2756G of the MTR gene and A66G of the MTRR gene) were determined in children at the onset of multiple sclerosis (MS) (with disease duration of no more than six months), healthy children under 18 years (control group), healthy adults without neurological pathology, adult patients with MS at the onset of disease, and adult patients with long-term MS. A significant increase in the HCy levels was found in children at the MS onset compared to healthy children of the corresponding age. It was established that the content of HCy in children has a high predictive value. At the same time, an increase in the HCy levels was not accompanied by the deficiency of vitamins B6, B9, and B12 in the blood. The lack of correlation between the laboratory signs of vitamin deficiency and HCy levels may be due to the polymorphic variants of folate cycle genes. An increased HCy level should be considered as a marker of functional disorders of folate metabolism accompanying the development of pathological process in pediatric MS. Our finding can be used to develop new approaches to the prevention of demyelination in children and treatment of pediatric MS.


Subject(s)
5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase , Folic Acid , Homocysteine , Methylenetetrahydrofolate Reductase (NADPH2) , Multiple Sclerosis , Humans , Homocysteine/blood , Homocysteine/metabolism , Multiple Sclerosis/blood , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism , Folic Acid/blood , Folic Acid/metabolism , Female , Male , Child , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/deficiency , Methylenetetrahydrofolate Reductase (NADPH2)/metabolism , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/genetics , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/metabolism , Adult , Adolescent , Vitamin B Deficiency/complications , Vitamin B Deficiency/metabolism , Vitamin B Deficiency/blood , Ferredoxin-NADP Reductase/genetics , Ferredoxin-NADP Reductase/metabolism , Vitamin B 12/blood , Vitamin B 12/metabolism , Age of Onset
20.
Nanoscale ; 16(15): 7515-7531, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38498071

ABSTRACT

Despite the pharmacological arsenal approved for Multiple Sclerosis (MS), there are treatment-reluctant patients for whom cell therapy appears as the only therapeutic alternative. Myeloid-derived suppressor cells (MDSCs) are immature cells of the innate immunity able to control the immune response and to promote oligodendroglial differentiation in the MS animal model experimental autoimmune encephalomyelitis (EAE). However, when isolated and cultured for cell therapy purposes, MDSCs lose their beneficial immunomodulatory properties. To prevent this important drawback, culture devices need to be designed so that MDSCs maintain a state of immaturity and immunosuppressive function similar to that exerted in the donor organism. With this aim, we select graphene oxide (GO) as a promising candidate as it has been described as a biocompatible nanomaterial with the capacity to biologically modulate different cell types, yet its immunoactive potential has been poorly explored to date. In this work, we have fabricated GO films with two distintive redox and roughness properties and explore their impact in MDSC culture right after isolation. Our results show that MDSCs isolated from immune organs of EAE mice maintain an immature phenotype and highly immunosuppressive activity on T lymphocytes after being cultured on highly-reduced GO films (rGO200) compared to those grown on conventional glass coverslips. This immunomodulation effect is depleted when MDSCs are exposed to slightly rougher and more oxidized GO substrates (rGO90), in which cells experience a significant reduction in cell size associated with the activation of apoptosis. Taken together, the exposure of MDSCs to GO substrates with different redox state and roughness is presented as a good strategy to control MDSC activity in vitro. The versatility of GO nanomaterials in regards to the impact of their physico-chemical properties in immunomodulation opens the door to their selective therapeutic potential for pathologies where MDSCs need to be enhanced (MS) or inhibited (cancer).


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Graphite , Multiple Sclerosis , Myeloid-Derived Suppressor Cells , Humans , Mice , Animals , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Graphite/pharmacology , Immunosuppressive Agents , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...