Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.045
Filter
1.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 617-626, 2024 Apr 20.
Article in Chinese | MEDLINE | ID: mdl-38708493

ABSTRACT

OBJECTIVE: To investigate immunogenic and toxic effects of graphene oxide (GO) nanoparticles in mouse skeletal muscles and in human blood in vitro. METHODS: GO nanoparticles prepared using a probe sonicator were supended in deionized H2O or PBS, and particle size and surface charge of the nanoparticles were measured with dynamic light scattering (DLS). Different concentrations (0.5, 1.0 and 2.0 mg/mL) of GO suspension or PBS were injected at multiple sites in the gastrocnemius muscle (GN) of C57BL/6 mice, and inflammatory response and immune cell infiltrations were detected with HE and immunofluorescence staining. We also examined the effects of GO nanoparticles on human red blood cell (RBC) morphology, hemolysis and blood coagulation using scanning electron microscope (SEM), spectrophotometry, and thromboelastography (TEG). RESULTS: GO nanoparticles suspended in PBS exhibited better colloidal dispersity, stability and surface charge effects than those in deionized H2O. In mouse GNs, injection of GO suspensions dose- and time-dependently resulted in sustained muscular inflammation and myofiber degeneration at the injection sites, which lasted till 8 weeks after the injection; immunofluorescence staining revealed obvious infiltration of monocytes, macrophages, dendritic cells and CD4+ T cells around the injection sites in mouse GNs. In human RBCs, incubation with GO suspensions at 0.2, 2.0 and 20 mg/mL, but not at 0.002 or 0.02 mg/mL, caused significant alterations of cell morphology and hemolysis. TEG analysis showed significant abnormalities of blood coagulation parameters following treatment with high concentrations of GO. CONCLUSION: GO nanoparticles can induce sustained inflammatory and immunological responses in mouse GNs and cause RBC hemolysis and blood coagulation impairment, suggesting its muscular toxicity and hematotoxicity at high concentrations.


Subject(s)
Erythrocytes , Graphite , Hemolysis , Mice, Inbred C57BL , Muscle, Skeletal , Nanoparticles , Animals , Graphite/toxicity , Graphite/chemistry , Mice , Erythrocytes/drug effects , Humans , Muscle, Skeletal/drug effects , Hemolysis/drug effects , Particle Size , Blood Coagulation/drug effects
2.
Anim Biotechnol ; 35(1): 2351973, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38753962

ABSTRACT

Vitamin A is an essential nutrient in animals, playing important roles in animal health. In the pig industry, proper supplementation of vitamin A in the feed can improve pork production performance, while deficiency or excessive intake can lead to growth retardation or disease. However, the specific molecular mechanisms through which vitamin A operates on pig skeletal muscle growth as well as muscle stem cell function remain unexplored. Therefore, in this study, we isolated the pig primary skeletal muscle stem cells (pMuSCs) and treated with retinoic acid (RA), the natural metabolite of vitamin A, and then examined the myogenic capacity of pMuSCs via immunostaining, real-time PCR, CCK8 and western-blot analysis. Unexpectedly, the RA caused a significant decrease in the proliferation and differentiation of pMuSCs. Mechanistically, the RA addition induced the activation of retinoic acid receptor gamma (RARγ), which inhibited the myogenesis through the blockage of protein translation of the master myogenic regulator myogenic differentiation 1 gene (MYOD). Specifically, RARγ inactivate AKT kinase (AKT) signalling and lead to dephosphorylation of eukaryotic translation initiation factor 4E binding protein 1 (eIF4EBP1), which in turn repress the eukaryotic translation initiation factor 4E (eIF4E) complex and block mRNA translation of MYOD. Inhibition of AKT could rescue the myogenic defects of RA-treated pMuSCs. Our findings revealed that retinoid acid signalling inhibits the skeletal muscle stem cell proliferation and differentiation in pigs. Therefore, the vitamin A supplement in the feedstuff should be cautiously optimized to avoid the potential adverse consequences on muscle development associated with the excessive levels of retinoic acid.


Subject(s)
Cell Differentiation , Muscle Development , MyoD Protein , Signal Transduction , Tretinoin , Animals , Tretinoin/pharmacology , Swine , Muscle Development/drug effects , Signal Transduction/drug effects , MyoD Protein/genetics , MyoD Protein/metabolism , Cell Differentiation/drug effects , Muscle, Skeletal/drug effects , Receptors, Retinoic Acid/metabolism , Receptors, Retinoic Acid/genetics , Cell Proliferation/drug effects , Protein Biosynthesis/drug effects , Cells, Cultured
3.
Cells ; 13(9)2024 May 04.
Article in English | MEDLINE | ID: mdl-38727321

ABSTRACT

Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by deficiency of the survival motor neuron (SMN) protein. Although SMA is a genetic disease, environmental factors contribute to disease progression. Common pathogen components such as lipopolysaccharides (LPS) are considered significant contributors to inflammation and have been associated with muscle atrophy, which is considered a hallmark of SMA. In this study, we used the SMNΔ7 experimental mouse model of SMA to scrutinize the effect of systemic LPS administration, a strong pro-inflammatory stimulus, on disease outcome. Systemic LPS administration promoted a reduction in SMN expression levels in CNS, peripheral lymphoid organs, and skeletal muscles. Moreover, peripheral tissues were more vulnerable to LPS-induced damage compared to CNS tissues. Furthermore, systemic LPS administration resulted in a profound increase in microglia and astrocytes with reactive phenotypes in the CNS of SMNΔ7 mice. In conclusion, we hereby show for the first time that systemic LPS administration, although it may not precipitate alterations in terms of deficits of motor functions in a mouse model of SMA, it may, however, lead to a reduction in the SMN protein expression levels in the skeletal muscles and the CNS, thus promoting synapse damage and glial cells' reactive phenotype.


Subject(s)
Disease Models, Animal , Lipopolysaccharides , Muscular Atrophy, Spinal , Animals , Lipopolysaccharides/pharmacology , Muscular Atrophy, Spinal/pathology , Muscular Atrophy, Spinal/metabolism , Mice , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscle, Skeletal/metabolism , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Survival of Motor Neuron 1 Protein/metabolism , Survival of Motor Neuron 1 Protein/genetics , Mice, Inbred C57BL , Astrocytes/metabolism , Astrocytes/drug effects , Astrocytes/pathology , Inflammation/pathology
4.
Sci Rep ; 14(1): 11181, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755201

ABSTRACT

Gut microbiota manipulation may reverse metabolic abnormalities in obesity. Our previous studies demonstrated that inulin supplementation significantly promoted Bifidobacterium and fat-free mass in obese children. We aimed to study gut-muscle axis from inulin supplementation in these children. In clinical phase, the plasma samples from 46 participants aged 7-15 years, were analyzed for muscle biomarkers before and after 6-month inulin supplementation. In parallel, the plausible mechanism of muscle production via gut-muscle axis was examined using macrophage cell line. Bifidobacterium was cultured in semi-refined medium with inulin used in the clinical phase. Cell-free supernatant was collected and used in lipopolysaccharide (LPS)-induced macrophage cell line to determine inflammatory and anti-inflammatory gene expression. In clinical phase, IL-15 and creatinine/cystatin C ratio significantly increased from baseline to the 6th month. In vitro study showed that metabolites derived from Bifidobacterium capable of utilizing inulin contained the abundance of SCFAs. In the presence of LPS, treatment from Bifidobacterium + inulin downregulated TNF-α, IL-6, IL-1ß, and iNOS, but upregulated FIZZ-1 and TGF-ß expression. Inulin supplementation promoted the muscle biomarkers in agreement with fat-free mass gain, elucidating by Bifidobacterium metabolites derived from inulin digestion showed in vitro anti-inflammatory activity and decreased systemic pro-inflammation, thus promoting muscle production via gut-muscle axis response.Clinical Trial Registry number: NCT03968003.


Subject(s)
Bifidobacterium , Dietary Supplements , Gastrointestinal Microbiome , Inulin , Inulin/pharmacology , Inulin/administration & dosage , Humans , Child , Adolescent , Male , Gastrointestinal Microbiome/drug effects , Female , Biomarkers , Pediatric Obesity/metabolism , Macrophages/metabolism , Macrophages/drug effects , Lipopolysaccharides , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects
5.
Physiol Rep ; 12(10): e16038, 2024 May.
Article in English | MEDLINE | ID: mdl-38757249

ABSTRACT

This study investigated the effects of EPO on hemoglobin (Hgb) and hematocrit (Hct), time trial (TT) performance, substrate oxidation, and skeletal muscle phenotype throughout 28 days of strenuous exercise. Eight males completed this longitudinal controlled exercise and feeding study using EPO (50 IU/kg body mass) 3×/week for 28 days. Hgb, Hct, and TT performance were assessed PRE and on Days 7, 14, 21, and 27 of EPO. Rested/fasted muscle obtained PRE and POST EPO were analyzed for gene expression, protein signaling, fiber type, and capillarization. Substrate oxidation and glucose turnover were assessed during 90-min of treadmill load carriage (LC; 30% body mass; 55 ± 5% V̇O2peak) exercise using indirect calorimetry, and 6-6-[2H2]-glucose PRE and POST. Hgb and Hct increased, and TT performance improved on Days 21 and 27 compared to PRE (p < 0.05). Energy expenditure, fat oxidation, and metabolic clearance rate during LC increased (p < 0.05) from PRE to POST. Myofiber type, protein markers of mitochondrial biogenesis, and capillarization were unchanged PRE to POST. Transcriptional regulation of mitochondrial activity and fat metabolism increased from PRE to POST (p < 0.05). These data indicate EPO administration during 28 days of strenuous exercise can enhance aerobic performance through improved oxygen carrying capacity, whole-body and skeletal muscle fat metabolism.


Subject(s)
Erythropoietin , Exercise , Muscle, Skeletal , Oxidation-Reduction , Male , Humans , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Adult , Erythropoietin/metabolism , Erythropoietin/pharmacology , Oxidation-Reduction/drug effects , Exercise/physiology , Hemoglobins/metabolism , Hematocrit , Energy Metabolism/drug effects , Young Adult , Lipid Metabolism/drug effects
6.
PLoS One ; 19(5): e0303833, 2024.
Article in English | MEDLINE | ID: mdl-38768175

ABSTRACT

Fatigue can lead to several health issues and is particularly prevalent among elderly individuals with chronic inflammatory conditions. Ninjin'yoeito, a traditional Japanese herbal medicine, is used to address fatigue and malaise, anorexia, and anemia. This study aimed to examine whether relieving inflammation in the brain and skeletal muscle of senescence-accelerated mice prone 8 (SAMP8) could reduce fatigue-like conditions associated with aging. First, SAMP8 mice were divided into two groups, with and without ninjin'yoeito treatment. The ninjin'yoeito-treated group received a diet containing 3% ninjin'yoeito for a period of 4 months starting at 3 months of age. At 7 months of age, all mice underwent motor function, treadmill fatigue, and behavioral tests. They were then euthanized and the skeletal muscle weight, muscle cross-sectional area, and concentration of interleukin (IL)-1ß and IL-1 receptor antagonist (IL-1RA) in both the brain and skeletal muscle were measured. The results showed that the ninjin'yoeito-treated group had higher motor function and spontaneous locomotor activity than the untreated group did and ran for significantly longer in the treadmill fatigue test. Moreover, larger muscle cross-sectional area, lower IL-1ß concentrations, and higher IL-1RA concentrations were observed in both the brain and skeletal muscle tissues of the ninjin'yoeito-treated group than in the untreated group. The results suggest that ninjin'yoeito improves age-related inflammatory conditions in both the central and peripheral tissues and reduces fatigue.


Subject(s)
Aging , Brain , Drugs, Chinese Herbal , Fatigue , Inflammation , Muscle, Skeletal , Animals , Mice , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Aging/drug effects , Fatigue/drug therapy , Brain/drug effects , Brain/metabolism , Brain/pathology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Male , Inflammation/drug therapy , Inflammation/pathology , Interleukin-1beta/metabolism
7.
J Strength Cond Res ; 38(6): 1056-1062, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38781467

ABSTRACT

ABSTRACT: Ambrozy, CA, Hawes, NE, Hayden, OL, Sortzi, I, and Malek, MH. Caffeine expectancy does not influence the physical working capacity at the fatigue threshold. J Strength Cond Res 38(6): 1056-1062, 2024-The placebo effect occurs when a desired outcome is experienced due to the belief that a treatment is effective, even in the absence of an active ingredient. One explanation for this effect is based on a person's expectations of a drug or supplement. Although caffeine's effects on sports performance have been studied, little is known about how expectations of caffeine affect neuromuscular fatigue during continuous muscle action. The physical working capacity at the fatigue threshold (PWCFT) can be used to assess neuromuscular fatigue noninvasively using surface electromyography. Thus, the purpose of this study was to investigate whether caffeine expectancy influences PWCFT. We hypothesized that regardless of expectancy, caffeine consumption would delay neuromuscular fatigue. The study involved 8 healthy college-aged men (mean ± SEM: age, 25.6 ± 1.0 years) who visited the laboratory on 4 occasions, each separated by 7 days. The subjects completed 4 experimental conditions, in random order, where they were told that they were consuming caffeine or placebo and either received caffeine or placebo. After consuming the drink, the subjects remained in the laboratory for an hour and then performed an incremental exercise test. The results showed that the condition where subjects were told that they were consuming caffeine and received caffeine had significantly higher mean values for maximal power output (F(3, 21) = 11.75; p < 0.001), PWCFT (F(3, 21) = 12.28; p < 0.001), PWCFT (%maximal power output; F(3, 21) = 8.75; p < 0.001), and heart rate at end exercise (%predicted; F(3, 21) = 3.83; p = 0.025) compared with the 2 conditions where placebo was received. However, no statistically significant mean differences were found from the condition where subjects were told that they were consuming placebo but consuming caffeine. This suggests that a person's expectancy and potential somatic response may serve as a cue for how an ergogenic aid or placebo could affect subsequent performance.


Subject(s)
Caffeine , Electromyography , Muscle Fatigue , Humans , Caffeine/administration & dosage , Caffeine/pharmacology , Male , Adult , Muscle Fatigue/drug effects , Muscle Fatigue/physiology , Young Adult , Central Nervous System Stimulants/pharmacology , Central Nervous System Stimulants/administration & dosage , Placebo Effect , Muscle, Skeletal/physiology , Muscle, Skeletal/drug effects
8.
Dokl Biochem Biophys ; 516(1): 58-65, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38722403

ABSTRACT

The objectives of this study were to investigate the anti-fatigue effects of Paris polyphylla polysaccharide component 1 (PPPm-1) and explore its mechanisms. A mouse model of exercise-induced fatigue was established by weight-bearing swimming to observe the effects of different concentrations of PPPm-1 on weight-bearing swimming time. The anti-fatigue effect of PPPm-1 was determined by the effects of contraction amplitude, contraction rate, and diastolic rate of the frog gastrocnemius muscle in vivo before and after infiltration with 5 mg/mL PPPm-1. The effects of PPPm-1 on the contents of blood lactate, serum urea nitrogen, hepatic glycogen, muscle glycogen in the exercise fatigue model of mice, and acetylcholine (ACh) content and acetylcholinesterase (AChE) activity at the junction of the frog sciatic nerve-gastrocnemius under normal physiological, and Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities of the frog gastrocnemius were determined by enzyme-linked immunosorbent assay (ELISA), to investigate the anti-fatigue mechanisms of PPPm-1. The results showed that PPPm-1 could significantly prolong the weight-bearing swimming time in mice (P < 0.01), decrease the contents of blood lactate and serum urea nitrogen, increase the contents of the hepatic glycogen and muscle glycogen of mice after exercise fatigue compared with those of the control group, and there was extremely significant difference in most indicators (P < 0.01). The 5 mg/mL of PPPm-1 could significantly promote the contraction amplitude, contraction rate, and relaxation rate of the gastrocnemius muscle in the frogs, and the content of ACh at the junction of the frog sciatic nerve-gastrocnemius (P < 0.01), but it had obvious inhibitory effetc on the activity of AChE at the junction of the frog sciatic nerve-gastrocnemius (P < 0.01). PPPm-1 could increase the Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities of gastrocnemius in the frogs (for Ca2+-Mg2+-ATPase, P < 0.01). The above results suggested that the PPPm-1 had a good anti-fatigue effect, and its main mechanisms were related to improving endurance and glycogen reserve, reducing glycogen consumption, lactate and serum urea nitrogen accumulation, and promoting Ca2+ influx.


Subject(s)
Muscle, Skeletal , Polysaccharides , Animals , Polysaccharides/pharmacology , Polysaccharides/chemistry , Mice , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle Fatigue/drug effects , Male , Sodium-Potassium-Exchanging ATPase/metabolism , Swimming , Glycogen/metabolism , Acetylcholinesterase/metabolism , Fatigue/drug therapy , Blood Urea Nitrogen , Acetylcholine/metabolism , Muscle Contraction/drug effects , Ca(2+) Mg(2+)-ATPase/metabolism
9.
Biomolecules ; 14(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38785934

ABSTRACT

Adverse experiences (e.g., acute stress) and alcohol misuse can both impair skeletal muscle homeostasis, resulting in reduced protein synthesis and greater protein breakdown. Exposure to acute stress is a significant risk factor for engaging in alcohol misuse. However, little is known about how these factors together might further affect skeletal muscle health. To that end, this study investigated the effects of acute stress exposure followed by a period of binge-patterned alcohol drinking on signaling factors along mouse skeletal muscle protein synthesis (MPS) and degradation (MPD) pathways. Young adult male C57BL/6J mice participated in the Drinking in the Dark paradigm, where they received 2-4 h of access to 20% ethanol (alcohol group) or water (control group) for four days to establish baseline drinking levels. Three days later, half of the mice in each group were either exposed to a single episode of uncontrollable tail shocks (acute stress) or remained undisturbed in their home cages (no stress). Three days after stress exposure, mice received 4 h of access to 20% ethanol (alcohol) to model binge-patterned alcohol drinking or water for ten consecutive days. Immediately following the final episode of alcohol access, mouse gastrocnemius muscle was extracted to measure changes in relative protein levels along the Akt-mTOR MPS, as well as the ubiquitin-proteasome pathway (UPP) and autophagy MPD pathways via Western blotting. A single exposure to acute stress impaired Akt singling and reduced rates of MPS, independent of alcohol access. This observation was concurrent with a potent increase in heat shock protein seventy expression in the muscle of stressed mice. Alcohol drinking did not exacerbate stress-induced alterations in the MPS and MPD signaling pathways. Instead, changes in the MPS and MPD signaling factors due to alcohol access were primarily observed in non-stressed mice. Taken together, these data suggest that exposure to a stressor of sufficient intensity may cause prolonged disruptions to signaling factors that impact skeletal muscle health and function beyond what could be further induced by periods of alcohol misuse.


Subject(s)
Binge Drinking , Mice, Inbred C57BL , Muscle Proteins , Muscle, Skeletal , Proteolysis , Animals , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Mice , Muscle Proteins/metabolism , Muscle Proteins/biosynthesis , Binge Drinking/metabolism , Proteolysis/drug effects , Signal Transduction/drug effects , Protein Biosynthesis/drug effects , Ethanol , Stress, Psychological/metabolism , TOR Serine-Threonine Kinases/metabolism , Alcohol Drinking/metabolism
10.
Physiol Behav ; 281: 114575, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38692384

ABSTRACT

Fibromyalgia (FM) is characterized by chronic widespread musculoskeletal pain accompanied by fatigue and muscle atrophy. Although its etiology is not known, studies have shown that FM patients exhibit altered function of the sympathetic nervous system (SNS), which regulates nociception and muscle plasticity. Nevertheless, the precise SNS-mediated mechanisms governing hyperalgesia and skeletal muscle atrophy in FM remain unclear. Thus, we employed two distinct FM-like pain models, involving intramuscular injections of acidic saline (pH 4.0) or carrageenan in prepubertal female rats, and evaluated the catecholamine content, adrenergic signaling and overall muscle proteolysis. Subsequently, we assessed the contribution of the SNS to the development of hyperalgesia and muscle atrophy in acidic saline-injected rats treated with clenbuterol (a selective ß2-adrenergic receptor agonist) and in animals maintained under baseline conditions and subjected to epinephrine depletion through adrenodemedullation (ADM). Seven days after inducing an FM-like model with acidic saline or carrageenan, we observed widespread mechanical hyperalgesia along with loss of strength and/or muscle mass. These changes were associated with reduced catecholamine content, suggesting a common underlying mechanism. Notably, treatment with a ß2-agonist alleviated hyperalgesia and prevented muscle atrophy in acidic saline-induced FM-like pain, while epinephrine depletion induced mechanical hyperalgesia and increased muscle proteolysis in animals under baseline conditions. Together, the results suggest that reduced sympathetic activity is involved in the development of pain and muscle atrophy in the murine model of FM analyzed.


Subject(s)
Clenbuterol , Disease Models, Animal , Fibromyalgia , Hyperalgesia , Muscular Atrophy , Sympathetic Nervous System , Animals , Female , Fibromyalgia/pathology , Fibromyalgia/physiopathology , Muscular Atrophy/pathology , Muscular Atrophy/physiopathology , Hyperalgesia/physiopathology , Hyperalgesia/pathology , Sympathetic Nervous System/physiopathology , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/pathology , Clenbuterol/pharmacology , Rats , Carrageenan/toxicity , Rats, Sprague-Dawley , Pain/pathology , Pain/physiopathology , Epinephrine , Muscle, Skeletal/pathology , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiopathology , Catecholamines/metabolism , Adrenergic beta-Agonists/pharmacology
11.
Nitric Oxide ; 148: 23-33, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38697467

ABSTRACT

Dietary nitrate (NO3-) supplementation can increase nitric oxide (NO) bioavailability, reduce blood pressure (BP) and improve muscle contractile function in humans. Plasma nitrite concentration (plasma [NO2-]) is the most oft-used biomarker of NO bioavailability. However, it is unclear which of several NO biomarkers (NO3-, NO2-, S-nitrosothiols (RSNOs)) in plasma, whole blood (WB), red blood cells (RBC) and skeletal muscle correlate with the physiological effects of acute and chronic dietary NO3- supplementation. Using a randomized, double-blind, crossover design, 12 participants (9 males) consumed NO3--rich beetroot juice (BR) (∼12.8 mmol NO3-) and NO3--depleted placebo beetroot juice (PL) acutely and then chronically (for two weeks). Biological samples were collected, resting BP was assessed, and 10 maximal voluntary isometric contractions of the knee extensors were performed at 2.5-3.5 h following supplement ingestion on day 1 and day 14. Diastolic BP was significantly lower in BR (-2 ± 3 mmHg, P = 0.03) compared to PL following acute supplementation, while the absolute rate of torque development (RTD) was significantly greater in BR at 0-30 ms (39 ± 57 N m s-1, P = 0.03) and 0-50 ms (79 ± 99 N m s-1, P = 0.02) compared to PL following two weeks supplementation. Greater WB [RSNOs] rather than plasma [NO2-] was correlated with lower diastolic BP (r = -0.68, P = 0.02) in BR compared to PL following acute supplementation, while greater skeletal muscle [NO3-] was correlated with greater RTD at 0-30 ms (r = 0.64, P=0.03) in BR compared to PL following chronic supplementation. We conclude that [RSNOs] in blood, and [NO3-] in skeletal muscle, are relevant biomarkers of NO bioavailability which are related to the reduction of BP and the enhanced muscle contractile function following dietary NO3- ingestion in humans.


Subject(s)
Biomarkers , Blood Pressure , Cross-Over Studies , Dietary Supplements , Nitrates , Nitric Oxide , Humans , Nitrates/administration & dosage , Nitrates/pharmacology , Nitrates/blood , Male , Biomarkers/blood , Female , Nitric Oxide/metabolism , Nitric Oxide/blood , Adult , Double-Blind Method , Blood Pressure/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Young Adult , Beta vulgaris/chemistry , Nitrites/blood
12.
Pak J Pharm Sci ; 37(2): 321-326, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38767099

ABSTRACT

Fatigue is a serious disturbance to human health, especially in people who have a severe disease such as cancer, or have been infected with COVID-19. Our research objective is to evaluate the anti-fatigue effect and mechanism of icariin through a mouse experimental model. Mice were treated with icariin for 30 days and anti-fatigue effects were evaluated by the weight-bearing swimming test, serum urea nitrogen test, lactic acid accumulation and clearance test in blood and the amount of liver glycogen. The protein expression levels of adenosine monophosphate-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC1-α) in the skeletal muscle of mice in each group were measured by western blotting. Results showed that icariin prolonged the weight-bearing swimming time of animals, reduced the serum urea nitrogen level after exercise, decreased the blood lactic acid concentration after exercise and increased the liver glycogen content observably. Compared to that in the control group, icariin upregulated AMPK and PGC1-α expression in skeletal muscle. Icariin can improve fatigue resistance in mice and its mechanism may be through improving the AMPK/PGC-1α pathway in skeletal muscle to enhance energy synthesis, decreasing the accumulation of metabolites and slowing glycogen consumption and decomposition.


Subject(s)
Blood Urea Nitrogen , Fatigue , Flavonoids , Lactic Acid , Muscle, Skeletal , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Animals , Flavonoids/pharmacology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Mice , Male , Lactic Acid/blood , Lactic Acid/metabolism , Fatigue/drug therapy , Fatigue/metabolism , Swimming , AMP-Activated Protein Kinases/metabolism , Glycogen/metabolism , Liver/drug effects , Liver/metabolism , Liver Glycogen/metabolism
13.
Menopause ; 31(6): 546-555, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38713886

ABSTRACT

OBJECTIVE: In women, the age-related decline in skeletal muscle structure and function is accelerated after menopause, which implicates the role of decreased circulating estrogen levels. Indeed, boosting estrogen, by means of postmenopausal hormone therapy (HT), generally proves beneficial to skeletal muscle. The evidence regarding whether these benefits persist even after cessation of HT is limited, nor is it clear how physical behavior (PB) impacts on benefits. Hence, this exploratory study focused on the interplay between HT administration/cessation, PB and in vivo skeletal muscle structure and function. METHODS: Fifty healthy women (≥60 y) were included; 19 had an HT administration history (≥9 mo, with now ~8-y hiatus in treatment) and 31 no such history. On seven continuous days, PB data were collected using triaxial accelerometry and analyzed using compositional data analysis. Gastrocnemius medialis muscle volume, architecture, and function were determined using ultrasonography, electromyography, dual x-ray absorptiometry, and dynamometry. Current serum estradiol levels were measured using ELISA. RESULTS: Only fascicle length and duration of HT administration were positively associated. With respect to PB levels, we found a pattern suggesting greater vitality (higher physical activity and lower sedentarism) in previous HT users, compared with nonusers, despite the two groups currently no longer exhibiting significantly different levels of circulating estradiol. CONCLUSIONS: After an 8-year hiatus in treatment, HT provides limited advantages in gastrocnemius medialis muscle properties. Interestingly, it perhaps enhances vitality despite prolonged cessation, which in the longer term would facilitate greater physical independence, especially considering the association of sedentary behavior with greater frailty.


Subject(s)
Estrogen Replacement Therapy , Exercise , Muscle, Skeletal , Postmenopause , Humans , Female , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Postmenopause/physiology , Middle Aged , Estrogen Replacement Therapy/methods , Aged , Exercise/physiology , Estradiol/blood , Electromyography , Absorptiometry, Photon , Accelerometry , Ultrasonography
14.
Life Sci ; 348: 122677, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38702026

ABSTRACT

AIMS: Epidemiological evidence indicates that there is a substantial association between body mass index (BMI) and at least ten forms of cancer, including melanoma, and BMI imbalance contributes to the poor survival rate of cancer patients before and after therapy. Nevertheless, few pharmacological studies on models of obesity and cancer have been reported. In this study, we administered epigallocatechin gallate (EGCG) to B16BL6 tumor-bearing mice that received a high-fat diet (HFD) to examine its impact. METHODS: B16BL6 tumor-bearing mice were fed a HFD. Body weight and food intake were documented every week. We conducted a Western blot analysis to examine the protein levels in the tumor, gastrocnemius (GAS), and tibialis anterior (TA) muscles, as well as the inguinal and epididymal white adipose tissues (iWAT and eWAT). KEY FINDINGS: EGCG has been shown to have anti-cancer effects equivalent to those of cisplatin, a chemotherapy drug. Furthermore, EGCG protected against the loss of epidydimal white adipose tissue by regulating protein levels of lipolysis factors of adipose triglyceride lipase and hormone-sensitive lipase as well as WAT browning factors of uncoupling protein 1, as opposed to cisplatin. EGCG was shown to reduce the protein levels of muscular atrophy factors of muscle RING-finger protein-1, whereas cisplatin did not contribute to rescuing the atrophy of TA and GAS muscles. CONCLUSION: Taken together, our findings indicate that EGCG has a preventive effect against cachexia symptoms and has anti-cancer effects similar to those of cisplatin in tumor-bearing mice fed a high-fat diet.


Subject(s)
Catechin , Diet, High-Fat , Melanoma, Experimental , Mice, Inbred C57BL , Muscular Atrophy , Animals , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/therapeutic use , Diet, High-Fat/adverse effects , Mice , Male , Muscular Atrophy/prevention & control , Muscular Atrophy/metabolism , Muscular Atrophy/drug therapy , Melanoma, Experimental/drug therapy , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Obesity/metabolism , Obesity/drug therapy , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology
15.
Int J Mol Sci ; 25(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38732255

ABSTRACT

This research aimed to explore the healing impacts of Melittin treatment on gastrocnemius muscle wasting caused by immobilization with a cast in rabbits. Twenty-four rabbits were randomly allocated to four groups. The procedures included different injections: 0.2 mL of normal saline to Group 1 (G1-NS); 4 µg/kg of Melittin to Group 2 (G2-4 µg/kg Melittin); 20 µg/kg of Melittin to Group 3 (G3-20 µg/kg Melittin); and 100 µg/kg of Melittin to Group 4 (G4-100 µg/kg Melittin). Ultrasound was used to guide the injections into the rabbits' atrophied calf muscles following two weeks of immobilization via casting. Clinical measurements, including the length of the calf, the compound muscle action potential (CMAP) of the tibial nerve, and the gastrocnemius muscle thickness, were assessed. Additionally, cross-sectional slices of gastrocnemius muscle fibers were examined, and immunohistochemistry and Western blot analyses were performed following two weeks of therapy. The mean regenerative changes, as indicated by clinical parameters, in Group 4 were significantly more pronounced than in the other groups (p < 0.05). Furthermore, the cross-sectional area of the gastrocnemius muscle fibers and immunohistochemical indicators in Group 4 exceeded those in the remaining groups (p < 0.05). Western blot analysis also showed a more significant presence of anti-inflammatory and angiogenic cytokines in Group 4 compared to the others (p < 0.05). Melittin therapy at a higher dosage can more efficiently activate regeneration in atrophied gastrocnemius muscle compared to lower doses of Melittin or normal saline.


Subject(s)
Melitten , Muscle, Skeletal , Muscular Atrophy , Regeneration , Animals , Rabbits , Melitten/pharmacology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Regeneration/drug effects , Muscular Atrophy/drug therapy , Muscular Atrophy/metabolism , Muscular Atrophy/etiology , Muscular Atrophy/pathology , Male
16.
Nutrients ; 16(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732571

ABSTRACT

The use of creatine monohydrate (Cr) in professional soccer is widely documented. However, the effect of low doses of Cr on the physical performance of young soccer players is unknown. This study determined the effect of a low dose of orally administered Cr on muscle power after acute intra-session fatigue in young soccer players. Twenty-eight young soccer players (mean age = 17.1 ± 0.9 years) were randomly assigned to either a Cr (n = 14, 0.3 g·kg-1·day-1 for 14 days) or placebo group (n = 14), using a two-group matched, double-blind, placebo-controlled design. Before and after supplementation, participants performed 21 repetitions of 30 m (fatigue induction), and then, to measure muscle power, they performed four repetitions in half back squat (HBS) at 65% of 1RM. Statistical analysis included a two-factor ANOVA (p ˂ 0.05). Bar velocity at HBS, time: p = 0.0006, ŋp2 = 0.22; group: p = 0.0431, ŋp2 = 0.12, time × group p = 0.0744, ŋp2 = 0.02. Power at HBS, time: p = 0.0006, ŋp2 = 0.12; group: p = 0.16, ŋp2 = 0.06, time × group: p = 0.17, ŋp2 = 0.009. At the end of the study, it was found that, after the induction of acute intra-session fatigue, a low dose of Cr administered orally increases muscle power in young soccer players.


Subject(s)
Creatine , Dietary Supplements , Muscle Fatigue , Muscle Strength , Soccer , Humans , Soccer/physiology , Creatine/administration & dosage , Adolescent , Double-Blind Method , Male , Muscle Fatigue/drug effects , Administration, Oral , Muscle Strength/drug effects , Muscle, Skeletal/drug effects , Athletic Performance/physiology , Athletes
17.
Nutrients ; 16(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732615

ABSTRACT

Adequate diet, physical activity, and dietary supplementation with muscle-targeted food for special medical purposes (FSMP) or dietary supplement (DS) are currently considered fundamental pillars in sarcopenia treatment. The aim of this study is to evaluate the effectiveness of a DS (containing hydroxy-methyl-butyrate, carnosine, and magnesium, for its action on muscle function and protein synthesis and butyrate and lactoferrin for their contribution to the regulation of gut permeability and antioxidant/anti-inflammation activity) on muscle mass (assessed by dual X-ray absorptiometry (DXA)), muscle function (by handgrip test, chair test, short physical performance battery (SPPB) test, and walking speed test), inflammation (tumor necrosis factor-alpha (TNF-a), C-reactive protein (CRP), and visceral adipose tissue (VAT)) and gut axis (by zonulin). A total of 59 participants (age 79.7 ± 4.8 years, body mass index 20.99 ± 2.12 kg/m2) were enrolled and randomly assigned to intervention (n = 30) or placebo (n = 28). The skeletal muscle index (SMI) significantly improved in the supplemented group compared to the placebo one, +1.02 (CI 95%: -0.77; 1.26), p = 0.001; a significant reduction in VAT was observed in the intervention group, -70.91 g (-13.13; -4.70), p = 0.036. Regarding muscle function, all the tests significantly improved (p = 0.001) in the supplemented group compared to the placebo one. CRP, zonulin, and TNF-alpha significantly decreased (p = 0.001) in intervention, compared to placebo, -0.74 mg/dL (CI 95%: -1.30; -0.18), -0.30 ng/mL (CI 95%: -0.37; -0.23), -6.45 pg/mL (CI 95%: -8.71; -4.18), respectively. This DS improves muscle mass and function, and the gut muscle has emerged as a new intervention target for sarcopenia.


Subject(s)
Carnosine , Dietary Supplements , Lactoferrin , Magnesium , Muscle, Skeletal , Permeability , Sarcopenia , Humans , Male , Aged , Female , Sarcopenia/drug therapy , Sarcopenia/prevention & control , Carnosine/administration & dosage , Lactoferrin/administration & dosage , Lactoferrin/pharmacology , Magnesium/administration & dosage , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Permeability/drug effects , Aged, 80 and over , Valerates/administration & dosage , Valerates/pharmacology , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/metabolism , Butyrates , Double-Blind Method , Haptoglobins , C-Reactive Protein/metabolism , C-Reactive Protein/analysis , Protein Precursors
18.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38703031

ABSTRACT

This study compared milk replacer either remaining unsupplemented (CON) or supplemented with 0.5 g L-carnitine plus 16.7 g L-arginine/kg (CarArg) and fed to 48 low-birth weight (L-BtW) artificially reared piglets (24 per group) from days 7 to 28 of age. Eight farrowing series were needed to complete the study. On day 28, the lightest piglets were slaughtered, and the heaviest pigs were weaned. The heaviest pigs were weaned on day 28 and offered free access to a starter (weaning to 25 kg body weight [BW]), grower (25 to 60 kg BW), and finisher diet (60 to 96 kg BW on day 170 of age). After euthanization on days 28 and 170, blood was sampled for assessment of serum metabolite and hormone concentrations, and the semitendinosus muscle (STM) was weighed, and later subjected to enzyme activity analysis and assessment of myofiber characteristics. In the 170-d-old pigs carcass and meat quality traits were assessed. Growth data were analyzed accordingtoatwo-way analysis of variance (ANOVA), with dietary treatment and farrowing series as fixed effects, while remaining data were analyzed with dietary treatment, sex, their interaction, and farrowing series as main factors. Dietary treatments affected (P ≤ 0.049) muscle enzyme activity at both day 28, with greater citrate synthase (CS) and LDH activities and lower HAD:CS ratio in STM light portion, and lower LDH:CS ratio in STM dark portion, and 170 of age with lower HAD:CS ratio. In the starter period, CarArg pigs had greater average daily gain (P = 0.021) and average daily feed intake (P = 0.010). At slaughter, these pigs had lower (P = 0.013) glucose and greater (P = 0.022) urea serum concentrations. However, supplementing the milk replacer with carnitine and arginine had no long-term effects on growth performance, carcass composition, and meat quality of L-BtW pigs. In addition, muscle morphology and myofiber-related properties remained unaffected by the supplementation.


Breeding efforts to increase litter size in modern sows have inadvertently reduced the average birth weight of piglets, resulting in a higher number of piglets born with low-birth weight. These piglets are indeed vulnerable from birth and display relatively poor growth potential from a very early stage. For this reason, artificial rearing strategies are potentially a management option to improve the growth of these runt piglets. With an artificial rearing system, it is possible to provide specialized diets already during the suckling period, with inclusion of specific nutrients in certain concentrations suggested to improve the growth of runt piglets. Using an artificial rearing system allows for the provision of specialized diets during the suckling phase, which includes specific nutrients aimed at enhancing the growth of underdeveloped piglets. However, in the current experiment, the particular nutrients and their dosages did not significantly improve growth or other characteristics compared to the control group.


Subject(s)
Animal Feed , Arginine , Carnitine , Diet , Dietary Supplements , Animals , Carnitine/administration & dosage , Carnitine/pharmacology , Animal Feed/analysis , Dietary Supplements/analysis , Male , Diet/veterinary , Arginine/pharmacology , Arginine/administration & dosage , Female , Swine/growth & development , Swine/physiology , Meat/analysis , Meat/standards , Sex Factors , Animal Nutritional Physiological Phenomena , Muscle, Skeletal/drug effects , Birth Weight/drug effects , Body Composition/drug effects
19.
Steroids ; 207: 109434, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710261

ABSTRACT

Steroid myopathy is a non-inflammatory toxic myopathy that primarily affects the proximal muscles of the lower limbs. Due to its non-specific symptoms, it is often overshadowed by patients' underlying conditions. Prolonged or high-dosage use of glucocorticoids leads to a gradual decline in muscle mass. There are no tools available to identify the course of steroid myopathy before the patient displays substantial clinical symptoms. In this study, we investigated individuals with nephrotic syndrome receiving prednisone who underwent muscle ultrasound to obtain cross-sectional and longitudinal pictures of three major proximal muscles in the lower limbs: the vastus lateralis, tibialis anterior, and medial gastrocnemius muscles. Our findings revealed that grip strength was impaired in the prednisolone group, creatine kinase levels were reduced within the normal range; echo intensity of the vastus lateralis and medial gastrocnemius muscles was enhanced, the pennation angle was reduced, and the tibialis anterior muscle exhibited increased echo intensity and decreased thickness. The total dose of prednisone and the total duration of treatment impacted the degree of muscle damage. Our findings indicate that muscle ultrasound effectively monitors muscle structure changes in steroid myopathy. Combining clinical symptoms, serum creatine kinase levels, and grip strength improves the accuracy of muscle injury evaluation.


Subject(s)
Muscle, Skeletal , Nephrotic Syndrome , Prednisone , Ultrasonography , Humans , Male , Prednisone/adverse effects , Prednisone/administration & dosage , Female , Adult , Middle Aged , Nephrotic Syndrome/drug therapy , Nephrotic Syndrome/diagnostic imaging , Nephrotic Syndrome/chemically induced , Muscle, Skeletal/drug effects , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Muscular Diseases/chemically induced , Muscular Diseases/diagnostic imaging , Muscular Diseases/pathology
20.
Article in English | MEDLINE | ID: mdl-38759883

ABSTRACT

In this study, grass carp (33.28 ± 0.05 g) were fed three diets for 8 weeks: control (crude protein [CP] 30%, crude lipid [CL] 6%), low protein (LP; CP16%, CL6%), and low protein with high-fat (LPHF; CP16%, CL10%). The final body weight decreased in the LP and LPHF groups compared to the Control (P < 0.05). Liver triglycerides, total cholesterol, and nonesterified fatty acids were higher in the LP group than the Control, whereas these indexes in the LPHF group were higher than those in the LP group (P < 0.05). The LP group had intestinal barrier damage, while the LPHF group had a slight recovery. TNF-α, IL-8, and IL-1ß content were lower in the LP group than in the Control (P < 0.05), and even higher in the LPHF group (P < 0.05). The expressions of endoplasmic reticulum stress-related genes Activating transcription factor 6 (ATF-6) and Glucose-regulated protein (GRP78) were higher in the LPHF group against the LP group (P < 0.05). The IL-1ß and TNF-α content negatively correlated with intestinal Actinomycetes and Mycobacterium abundance (P < 0.05). The muscle fiber diameter was smaller in both the LP and LPHF groups than the control (P < 0.05), with the LP group showing metabolites related to protein digestion and absorption, and LPHF group exhibiting metabolites related to taste transmission. The results demonstrate reducing dietary protein affects growth, causing liver lipid accumulation, reduced enteritis response, and increased muscle tightness, while increasing fat content accelerates fat accumulation and inflammation.


Subject(s)
Animal Feed , Carps , Liver , Animals , Carps/metabolism , Carps/growth & development , Carps/physiology , Animal Feed/analysis , Liver/metabolism , Liver/drug effects , Dietary Proteins/pharmacology , Fish Proteins/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Intestines/drug effects , Intestines/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...