Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53.528
Filter
1.
J Smooth Muscle Res ; 60: 10-22, 2024.
Article in English | MEDLINE | ID: mdl-38777767

ABSTRACT

Functional bowel disorders (FBD) have a major potential to degrade the standards of public life. Juniperus oxycedrus L. (J. oxycedrus) (Cupressaceae) has been described as a plant used in traditional medicine as an antidiarrheal medication. The present study is the first to obtain information on the antispasmodic and antidiarrheic effects of J. oxycedrus aqueous extract through in vitro and in vivo studies. An aqueous extract of J. oxycedrus (AEJO) was extracted by decoctioning air-dried aerial sections of the plant. Antispasmodic activity was tested in an isolated jejunum segment of rats exposed to cumulative doses of drogue extract. The antidiarrheic activity was tested using diarrhea caused by castor oil, a transit study of the small intestine, and castor oil-induced enteropooling assays in mice. In the jejunum of rats, the AEJO (0.1, 0.3 and 1 mg/ml) diminished the maximum tone induced by low K+ (25 mM), while it exhibited a weak inhibitory effect on high K+ (75 mM) with an IC50=0.49 ± 0.01 mg/ml and IC50=2.65 ± 0.16 mg/ml, respectively. In the contractions induced by CCh (10-6 M), AEJO diminished the maximum tone, similar to that induced by low K+ (25 mM). with an IC50=0.45 ± 0.02 mg/ml. The inhibitory effect of AEJO on low K+ induced contractions was significantly diminished in the presence of glibenclamide (GB) (0.3 µM) and 4-aminopyrimidine (4-AP) (100 µM), with IC50 values of 1.84 ± 0.09 mg/ml. and 1.63 ± 0.16 mg/ml, respectively). The demonstrated inhibitory effect was similar to that produced by a non-competitive antagonist acting on cholinergic receptors and calcium channels. In castor oil-induced diarrhea in mice, AEJO (100, 200, and 400 mg/kg) caused an extension of the latency time, a reduced defecation frequency, and a decrease in the amount of wet feces compared to the untreated group (distilled water). Moreover, it showed a significant anti-motility effect and reduced the amount of fluid accumulated in the intestinal lumen at all tested doses. These findings support the conventional use of Juniperus oxycedrus L. as a remedy for gastrointestinal diseases.


Subject(s)
Antidiarrheals , Castor Oil , Diarrhea , Jejunum , Juniperus , Parasympatholytics , Plant Extracts , Animals , Jejunum/drug effects , Jejunum/metabolism , Antidiarrheals/pharmacology , Parasympatholytics/pharmacology , Plant Extracts/pharmacology , Juniperus/chemistry , Mice , Rats , Diarrhea/drug therapy , Diarrhea/chemically induced , Male , Gastrointestinal Transit/drug effects , Rats, Wistar , Gastrointestinal Motility/drug effects , Muscle, Smooth/drug effects , Muscle Contraction/drug effects
2.
Sci Rep ; 14(1): 11720, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38778154

ABSTRACT

We studied the inhibitory actions of docosahexaenoic acid (DHA) on the contractions induced by carbachol (CCh), angiotensin II (Ang II), and bradykinin (BK) in guinea pig (GP) gastric fundus smooth muscle (GFSM), particularly focusing on the possible inhibition of store-operated Ca2+ channels (SOCCs). DHA significantly suppressed the contractions induced by CCh, Ang II, and BK; the inhibition of BK-induced contractions was the strongest. Although all contractions were greatly dependent on external Ca2+, more than 80% of BK-induced contractions remained even in the presence of verapamil, a voltage-dependent Ca2+ channel inhibitor. BK-induced contractions in the presence of verapamil were not suppressed by LOE-908 (a receptor-operated Ca2+ channel (ROCC) inhibitor) but were suppressed by SKF-96365 (an SOCC and ROCC inhibitor). BK-induced contractions in the presence of verapamil plus LOE-908 were strongly inhibited by DHA. Furthermore, DHA inhibited GFSM contractions induced by cyclopiazonic acid (CPA) in the presence of verapamil plus LOE-908 and inhibited the intracellular Ca2+ increase due to Ca2+ addition in CPA-treated 293T cells. These findings indicate that Ca2+ influx through SOCCs plays a crucial role in BK-induced contraction in GP GFSM and that this inhibition by DHA is a new mechanism by which this fatty acid inhibits GFSM contractions.


Subject(s)
Angiotensin II , Bradykinin , Carbachol , Docosahexaenoic Acids , Gastric Fundus , Muscle Contraction , Muscle, Smooth , Animals , Guinea Pigs , Docosahexaenoic Acids/pharmacology , Bradykinin/pharmacology , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Muscle, Smooth/metabolism , Carbachol/pharmacology , Muscle Contraction/drug effects , Angiotensin II/pharmacology , Gastric Fundus/drug effects , Gastric Fundus/physiology , Gastric Fundus/metabolism , Verapamil/pharmacology , Calcium/metabolism , Male , Humans , Calcium Channels/metabolism , HEK293 Cells , Calcium Channel Blockers/pharmacology , Imidazoles/pharmacology
3.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731872

ABSTRACT

Numerous studies suggest the involvement of adenosine-5'-triphosphate (ATP) and similar nucleotides in the pathophysiology of asthma. Androgens, such as testosterone (TES), are proposed to alleviate asthma symptoms in young men. ATP and uridine-5'-triphosphate (UTP) relax the airway smooth muscle (ASM) via purinergic P2Y2 and P2Y4 receptors and K+ channel opening. We previously demonstrated that TES increased the expression of voltage-dependent K+ (KV) channels in ASM. This study investigates how TES may potentiate ASM relaxation induced by ATP and UTP. Tracheal tissues treated with or without TES (control group) from young male guinea pigs were used. In organ baths, tracheas exposed to TES (40 nM for 48 h) showed enhanced ATP- and UTP-evoked relaxation. Tetraethylammonium, a K+ channel blocker, annulled this effect. Patch-clamp experiments in tracheal myocytes showed that TES also increased ATP- and UTP-induced K+ currents, and this effect was abolished with flutamide (an androgen receptor antagonist). KV channels were involved in this phenomenon, which was demonstrated by inhibition with 4-aminopyridine. RB2 (an antagonist of almost all P2Y receptors except for P2Y2), as well as N-ethylmaleimide and SQ 22,536 (inhibitors of G proteins and adenylyl cyclase, respectively), attenuated the enhancement of the K+ currents induced by TES. Immunofluorescence and immunohistochemistry studies revealed that TES did not modify the expression of P2Y4 receptors or COX-1 and COX-2, while we have demonstrated that this androgen augmented the expression of KV1.2 and KV1.5 channels in ASM. Thus, TES leads to the upregulation of P2Y4 signaling and KV channels in guinea pig ASM, enhancing ATP and UTP relaxation responses, which likely limits the severity of bronchospasm in young males.


Subject(s)
Adenosine Triphosphate , Adenylyl Cyclases , Muscle Relaxation , Muscle, Smooth , Testosterone , Trachea , Uridine Triphosphate , Animals , Uridine Triphosphate/pharmacology , Uridine Triphosphate/metabolism , Guinea Pigs , Muscle Relaxation/drug effects , Male , Adenosine Triphosphate/metabolism , Trachea/metabolism , Trachea/drug effects , Testosterone/pharmacology , Testosterone/metabolism , Adenylyl Cyclases/metabolism , Muscle, Smooth/metabolism , Muscle, Smooth/drug effects , Potassium Channels, Voltage-Gated/metabolism , Signal Transduction/drug effects , Receptors, Purinergic P2/metabolism
4.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731941

ABSTRACT

Micro- and nanoplastic particles, including common forms like polyethylene and polystyrene, have been identified as relevant pollutants, potentially causing health problems in living organisms. The mechanisms at the cellular level largely remain to be elucidated. This study aims to visualize nanoplastics in bronchial smooth muscle (BSMC) and small airway epithelial cells (SAEC), and to assess the impact on mitochondrial metabolism. Healthy and asthmatic human BSMC and SAEC in vitro cultures were stimulated with polystyrene nanoplastics (PS-NPs) of 25 or 50 nm size, for 1 or 24 h. Live cell, label-free imaging by holotomography microscopy and mitochondrial respiration and glycolysis assessment were performed. Furthermore, 25 and 50 nm NPs were shown to penetrate SAEC, along with healthy and diseased BSMC, and they impaired bioenergetics and induce mitochondrial dysfunction compared to cells not treated with NPs, including changes in oxygen consumption rate and extracellular acidification rate. NPs pose a serious threat to human health by penetrating airway tissues and cells, and affecting both oxidative and glycolytic metabolism.


Subject(s)
Bronchi , Epithelial Cells , Mitochondria , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Bronchi/metabolism , Bronchi/cytology , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Glycolysis/drug effects , Nanoparticles , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Cells, Cultured , Polystyrenes , Asthma/metabolism , Asthma/pathology , Muscle, Smooth/metabolism , Microplastics/toxicity , Oxygen Consumption/drug effects
5.
Molecules ; 29(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38792145

ABSTRACT

The Cupressaceae family includes species considered to be medicinal. Their essential oil is used for headaches, colds, cough, and bronchitis. Cedar trees like Chamaecyparis lawsoniana (C. lawsoniana) are commonly found in urban areas. We investigated whether C. lawsoniana exerts some of its effects by modifying airway smooth muscle (ASM) contractility. The leaves of C. lawsoniana (363 g) were pulverized mechanically, and extracts were obtained by successive maceration 1:10 (w:w) with methanol/CHCl3. Guinea pig tracheal rings were contracted with KCl, tetraethylammonium (TEA), histamine (HIS), or carbachol (Cch) in organ baths. In the Cch experiments, tissues were pre-incubated with D-600, an antagonist of L-type voltage-dependent Ca2+ channels (L-VDCC) before the addition of C. lawsoniana. Interestingly, at different concentrations, C. lawsoniana diminished the tracheal contractions induced by KCl, TEA, HIS, and Cch. In ASM cells, C. lawsoniana significantly diminished L-type Ca2+ currents. ASM cells stimulated with Cch produced a transient Ca2+ peak followed by a sustained plateau maintained by L-VDCC and store-operated Ca2+ channels (SOCC). C. lawsoniana almost abolished this last response. These results show that C. lawsoniana, and its active metabolite quercetin, relax the ASM by inhibiting the L-VDCC and SOCC; further studies must be performed to obtain the complete set of metabolites of the extract and study at length their pharmacological properties.


Subject(s)
Calcium , Chamaecyparis , Muscle Contraction , Muscle, Smooth , Plant Extracts , Quercetin , Trachea , Animals , Guinea Pigs , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Muscle Contraction/drug effects , Quercetin/pharmacology , Quercetin/chemistry , Trachea/drug effects , Trachea/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Chamaecyparis/chemistry , Calcium/metabolism , Male , Calcium Channel Blockers/pharmacology , Histamine/metabolism , Calcium Channels, L-Type/metabolism , Plant Leaves/chemistry
6.
Medicina (Kaunas) ; 60(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38792998

ABSTRACT

Background and Objectives: This study aims to compare the neuromuscular structure of the vagina in women with posterior vaginal wall prolapse with the neuromuscular structure of the vagina in women without prolapse, to determine the difference, and to demonstrate the role of neuromuscular structure in the physiopathology of prolapse. Materials and Methods: In this prospective study, women aged between 40 and 75 years who had not undergone any vaginal surgery and had not undergone any abdominal prolapse surgery were included. Thirty-one women diagnosed with rectocele on examination were included in the study group. Thirty-one patients who underwent vaginal intervention and hysterectomy for reasons other than rectocele (colposcopy, conization, etc.) without anterior or posterior wall prolapse were included in the control group. Biopsy material was obtained from the epithelium of the posterior wall of the vagina, including the fascia that fits the Ap point. Immunohistochemical staining with Protein Gene Product 9.5 and smooth muscle α-actin was performed in the pathology laboratory. The epithelial thickness measurement and smooth muscle density parameters obtained with these immunohistochemical stainings were compared between the two groups. The collected data were analyzed using the SPSS 23 package program. p values less than 0.05 were considered statistically significant. Results: In the control group, muscle thickness and the number of nerves per mm2 of fascia were statistically significantly higher than in the study group (p < 0.05). Conclusions: We found that smooth muscle tissue and the number of nerves per mm2 of fascia were decreased in posterior vaginal wall prolapse compared to the general population. Based on the correlation coefficients, age was the parameter that most affected the degree of prolapse, followed by parity, number of live births, and number of vaginal deliveries.


Subject(s)
Actins , Vagina , Humans , Female , Middle Aged , Vagina/pathology , Adult , Prospective Studies , Aged , Actins/analysis , Uterine Prolapse/pathology , Muscle, Smooth/pathology , Immunohistochemistry/methods , Ubiquitin Thiolesterase
7.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791299

ABSTRACT

Type 1 diabetes (T1D) affects gastrointestinal (GI) motility, favoring gastroparesis, constipation, and fecal incontinence, which are more prevalent in women. The mechanisms are unknown. Given the G-protein-coupled estrogen receptor's (GPER) role in GI motility, we investigated sex-related diabetes-induced epigenetic changes in GPER. We assessed GPER mRNA and protein expression levels using qPCR and Western blot analyses, and quantified the changes in nuclear DNA methyltransferases and histone modifications (H3K4me3, H3Ac, and H3K27Ac) by ELISA kits. Targeted bisulfite and chromatin immunoprecipitation assays were used to evaluate DNA methylation and histone modifications around the GPER promoter by chromatin immunoprecipitation assays in gastric and colonic smooth muscle tissues of male and female control (CTR) and non-obese diabetic (NOD) mice. GPER expression was downregulated in NOD, with sex-dependent variations. In the gastric smooth muscle, not in colonic smooth muscle, downregulation coincided with differences in methylation ratios between regions 1 and 2 of the GPER promoter of NOD. DNA methylation was higher in NOD male colonic smooth muscle than in NOD females. H3K4me3 and H3ac enrichment decreased in NOD gastric smooth muscle. H3K4me3 levels diminished in the colonic smooth muscle of NOD. H3K27ac levels were unaffected, but enrichment decreased in NOD male gastric smooth muscle; however, it increased in the NOD male colonic smooth muscle and decreased in the female NOD colonic smooth muscle. Male NOD colonic smooth muscle exhibited decreased H3K27ac levels, not female, whereas female NOD colonic smooth muscle demonstrated diminished enrichment of H3ac at the GPER promoter, contrary to male NOD. Sex-specific epigenetic mechanisms contribute to T1D-mediated suppression of GPER expression in the GI tract. These insights advance our understanding of T1D complications and suggest promising avenues for targeted therapeutic interventions.


Subject(s)
Colon , DNA Methylation , Epigenesis, Genetic , Histones , Mice, Inbred NOD , Muscle, Smooth , Promoter Regions, Genetic , Receptors, G-Protein-Coupled , Animals , Female , Male , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Muscle, Smooth/metabolism , Mice , Histones/metabolism , Colon/metabolism , Colon/pathology , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/genetics , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Stomach/pathology
8.
Respir Physiol Neurobiol ; 325: 104264, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38599345

ABSTRACT

Eight pig tracheal strips were stimulated to contract with log increments of methacholine from 10-8 to 10-5 M. For each strip, the concentration-response was repeated four times in a randomized order to measure isometric force, isotonic shortening against a load corresponding to either 5 or 10 % of a reference force, and average force, stiffness, elastance and resistance over one cycle while the strip length was oscillating sinusoidally by 5 % at 0.2 Hz. For each readout, the logEC50 was calculated and compared. Isotonic shortening with a 5 % load had the lowest logEC50 (-7.13), yielding a greater sensitivity than any other contractile readout (p<0.05). It was followed by isotonic shortening with a 10 % load (-6.66), elastance (-6.46), stiffness (-6.46), resistance (-6.38), isometric force (-6.32), and average force (-6.30). Some of these differences were significant. For example, the EC50 with the average force was 44 % greater than with the elastance (p=0.001). The methacholine sensitivity is thus affected by the contractile readout being measured.


Subject(s)
Bronchoconstrictor Agents , Methacholine Chloride , Muscle, Smooth , Trachea , Animals , Muscle, Smooth/physiology , Muscle, Smooth/drug effects , Methacholine Chloride/pharmacology , Swine , Trachea/physiology , Trachea/drug effects , Bronchoconstrictor Agents/pharmacology , Muscle Contraction/physiology , Muscle Contraction/drug effects , Dose-Response Relationship, Drug , Elasticity/physiology , Isometric Contraction/physiology , Isometric Contraction/drug effects
9.
Am J Physiol Renal Physiol ; 326(6): F957-F970, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38601986

ABSTRACT

Stretch-activated two-pore domain K+ (K2P) channels play important roles in many visceral organs, including the urinary bladder. The TWIK-related K+ channel TREK-1 is the predominantly expressed K2P channel in the urinary bladder of humans and rodents. Downregulation of TREK-1 channels was observed in the urinary bladder of patients with detrusor overactivity, suggesting their involvement in the pathogenesis of voiding dysfunction. This study aimed to characterize the long-term effects of TREK-1 on bladder function with global and smooth muscle-specific TREK-1 knockout (KO) mice. Bladder morphology, bladder smooth muscle (BSM) contractility, and voiding patterns were evaluated up to 12 mo of age. Both sexes were included in this study to probe the potential sex differences. Smooth muscle-specific TREK-1 KO mice were used to distinguish the effects of TREK-1 downregulation in BSM from the neural pathways involved in the control of bladder contraction and relaxation. TREK-1 KO mice developed enlarged urinary bladders (by 60.0% for males and by 45.1% for females at 6 mo; P < 0.001 compared with the age-matched control group) and had a significantly increased bladder capacity (by 137.7% at 12 mo; P < 0.0001) and compliance (by 73.4% at 12 mo; P < 0.0001). Bladder strips isolated from TREK-1 KO mice exhibited decreased contractility (peak force after KCl at 6 mo was 1.6 ± 0.7 N/g compared with 3.4 ± 2.0 N/g in the control group; P = 0.0005). The lack of TREK-1 channels exclusively in BSM did not replicate the bladder phenotype observed in TREK-1 KO mice, suggesting a strong neurogenic origin of TREK-1-related bladder dysfunction.NEW & NOTEWORTHY This study compared voiding function and bladder phenotypes in global and smooth muscle-specific TREK-1 KO mice. We found significant age-related changes in bladder contractility, suggesting that the lack of TREK-1 channel activity might contribute to age-related changes in bladder smooth muscle physiology.


Subject(s)
Hypertrophy , Mice, Knockout , Muscle Contraction , Muscle, Smooth , Potassium Channels, Tandem Pore Domain , Urinary Bladder , Animals , Potassium Channels, Tandem Pore Domain/genetics , Potassium Channels, Tandem Pore Domain/metabolism , Potassium Channels, Tandem Pore Domain/deficiency , Urinary Bladder/physiopathology , Urinary Bladder/metabolism , Urinary Bladder/pathology , Muscle, Smooth/metabolism , Muscle, Smooth/physiopathology , Muscle, Smooth/pathology , Male , Female , Aging/metabolism , Mice , Mice, Inbred C57BL , Age Factors , Urination
10.
J Physiol Sci ; 74(1): 26, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654149

ABSTRACT

Purines such as ATP are regulatory transmitters in motility of the gastrointestinal tract. The aims of this study were to propose functional roles of purinergic regulation of esophageal motility. An isolated segment of the rat esophagus was placed in an organ bath, and mechanical responses were recorded using a force transducer. Exogenous application of ATP (10-100 µM) evoked relaxation of the esophageal smooth muscle in a longitudinal direction under the condition of carbachol (1 µM) -induced precontraction. Pretreatment with a non-selective P2 receptor antagonist, suramin (500 µM), and a P2Y receptor antagonist, cibacron blue F3GA (200 µM), inhibited the ATP (100 µM) -induced relaxation, but a P2X receptor antagonist, pyridoxal phosphate-6-azophenyl-2,4-disulfonic acid (50 µM), did not affect it. A blocker of ATP-dependent potassium channels (KATP channels), glibenclamide (200 µM), inhibited the ATP-induced relaxation and application of an opener of KATP channels, nicorandil (50 µM), produced relaxation. The findings suggest that ATP is involved in inhibitory regulation of the longitudinal smooth muscle in the muscularis mucosae of the rat esophagus via activation of P2Y receptors and then opening of KATP channels.


Subject(s)
Adenosine Triphosphate , Esophagus , KATP Channels , Muscle, Smooth , Receptors, Purinergic P2Y , Animals , Rats , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Muscle, Smooth/metabolism , Male , Receptors, Purinergic P2Y/metabolism , Esophagus/drug effects , Esophagus/physiology , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , KATP Channels/metabolism , Muscle Relaxation/drug effects , Muscle Relaxation/physiology , Rats, Wistar , Muscle Contraction/drug effects , Muscle Contraction/physiology , Purinergic P2Y Receptor Antagonists/pharmacology , Gastrointestinal Motility/drug effects , Gastrointestinal Motility/physiology , Rats, Sprague-Dawley
11.
Zhen Ci Yan Jiu ; 49(4): 367-375, 2024 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-38649204

ABSTRACT

OBJECTIVES: To investigate the effect of electroacupuncture (EA) on Rho/Rho-associated coiled-coil-forming kinases (ROCK) signaling pathway of uterus tissue in rats with dysmenorrhea, so as to explore the underlying mechanism of EA treating primary dysmenorrhea (PD) and uterine smooth muscle spasm, and to observe whether there is a difference in the effect of meridian acupoints in Conception Vessel (CV) and Governer Vessel (GV). METHODS: Sixty female SD rats were randomly divided into saline, model, CV, GV, and non-acupoint groups, with 12 rats in each group. The dysmenorrhea model was established by subcutaneous injection of estradiol diphenhydrate combined with intraperitoneal injection of oxytocin (OT). EA (2 Hz) was applied to "Qihai" (CV6) and "Zhongji" (CV3) for CV group, "Mingmen" (GV4) and "Yaoshu" (GV2) for GV group, "non-acupoint 1" and "non-acupoint 3" on the left side for non-acupoint group, and manual acupuncture was applied to "Guanyuan" (CV4) for CV group, "Yaoyangguan" (GV3) for GV group, "non-acupoint 2" on the left side for non-acupoint group. The treatment was conducted for 20 min each time, once daily for 10 days. The writhing score was evaluated. The smooth myoelectric signals of rats' uterus in vivo were recorded by multi-channel physiological recorder. The uterine histopathological changes were observed by HE staining. The contents of prostaglandin F2α (PGF2α), OT and calcium ion (Ca2+) in uterine tissue of rats were detected by ELISA. The protein and mRNA expression levels of smooth muscle 22-α (SM22-α), RhoA and ROCKⅡ in uterine tissue were detected by Western blot and fluorescence quantitative PCR, respectively. RESULTS: Compared with the saline group, the writhing score of rats in the model group was increased (P<0.01), the amplitude voltage of uterine smooth muscle in vivo was elevated (P<0.01), the contents of PGF2α, OT and Ca2+, the protein and mRNA expression of SM22-α, RhoA and ROCK Ⅱ in uterine tissue were all increased (P<0.01). Compared with the model and the non-acupoint groups, the writhing scores of the CV and the GV groups were decreased (P<0.01, P<0.05), the amplitude voltage of uterine smooth muscle was decreased (P<0.01), the contents of PGF2α, OT and Ca2+ in uterine tissue were decreased (P<0.01, P<0.05), and the protein expression and mRNA expression of SM22-α, RhoA and ROCKⅡ in uterine tissue were decreased (P<0.01, P<0.05). HE staining showed extensive exfoliation of uterine intima with severe edema and increased glandular secretion in the model group, which was alleviated in the CV and GV groups. CONCLUSIONS: EA at acupoints of CV and GV can significantly reduce the writhing score, uterine smooth muscle amplitude voltage, pathological injury degree of uterus, and relieve spasm of uterine smooth muscle in dysmenorrhea rats, which may be related to its effect in regulating PGF2α and OT contents, inhibiting the Rho/ROCK signaling pathway, and reducing the SM22-α, RhoA, ROCKⅡ protein and mRNA expression, and Ca2+ content in uterine tissue.


Subject(s)
Acupuncture Points , Dysmenorrhea , Electroacupuncture , Rats, Sprague-Dawley , Signal Transduction , Uterus , rho-Associated Kinases , Animals , Female , Dysmenorrhea/therapy , Dysmenorrhea/metabolism , Dysmenorrhea/genetics , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Rats , Humans , Uterus/metabolism , Muscle, Smooth/metabolism , Spasm/therapy , Spasm/genetics , Spasm/metabolism , Spasm/physiopathology
12.
PLoS One ; 19(4): e0301844, 2024.
Article in English | MEDLINE | ID: mdl-38626193

ABSTRACT

PURPOSE: This study aimed to investigate the underlying factors driving the onset of myopia, specifically the role of the ciliary muscle's contraction in the elongation of the axial length of the eye. METHODS: The retrospective study was conducted utilizing data from three ophthalmic centers in Shanghai and Beijing. Both Chinese and Caucasian children were involved. The axial length of the subjects' eyes was measured in both relaxed and contracted state of the ciliary muscle. A comprehensive mechanical model was also developed to observe the influence of ciliary muscle contraction on the axial length. RESULTS: This study included a sample of 198 right eyes of 198 myopic children. Of these, 97 were male and 101 were female, 126 were of Chinese ethnicity and 72 were Caucasian. The age of onset for myopia ranged from 5.9 to 16.9 years old. The axial length of the eye decreased 0.028 ± 0.007mm following dilation, indicating relaxation of the ciliary muscle (t paired student = 15.16, p = 6.72 x 10-35). In contrast, ciliary muscle contraction resulted in an increase in axial length. Considering proportionality, a significant 90.4% (179 eyes) exhibited a reduced axial length, while a minor 9.6% (19 eyes) demonstrated an increase post-mydriasis. Finite element modeling demonstrated that muscle contraction caused a tension force that transmits towards the posterior pole of the eye, causing it to extend posteriorly. CONCLUSION: The contraction of the ciliary muscle leads to an extension of the axial length. This could potentially be the initiating factor for myopia.


Subject(s)
Myopia , Child , Humans , Male , Female , Child, Preschool , Adolescent , Retrospective Studies , China , Myopia/etiology , Ciliary Body , Muscle, Smooth , Axial Length, Eye
13.
Methods Mol Biol ; 2757: 315-359, 2024.
Article in English | MEDLINE | ID: mdl-38668975

ABSTRACT

Unlike in the Cnidaria, where muscle cells are coupled together into an epithelium, ctenophore muscles are single, elongated, intramesogleal structures resembling vertebrate smooth muscle. Under voltage-clamp, these fibers can be separated into different classes with different sets of membrane ion channels. The ion channel makeup is related to the muscle's anatomical position and specific function. For example, Beroe ovata radial fibers, which are responsible for maintaining the rigidity of the body wall, generate sequences of brief action potentials whereas longitudinal fibers, which are concerned with mouth opening and body flexions, often produce single longer duration action potentials.Beroe muscle contractions depend on the influx of Ca2+. During an action potential the inward current is carried by Ca2+, and the increase in intracellular Ca2+ concentration generated can be monitored in FLUO-3-loaded cells. Confocal microscopy in line scan mode shows that the Ca2+ spreads from the outer membrane into the core of the fiber and is cleared from there relatively slowly. The rise in intracellular Ca2+ is linked to an increase in a Ca2+-activated K+ conductance (KCa), which can also be elicited by iontophoretic Ca2+ injection. Near the cell membrane, Ca2+ clearance monitored using FLUO3, matches the decline in the KCa conductance. For light loads, Ca2+ is cleared rapidly, but this fast system is insufficient when Ca2+ influx is maintained. Action potential frequency may be regulated by the slowly developing KCa conductance.


Subject(s)
Calcium , Ctenophora , Muscle, Smooth , Animals , Muscle, Smooth/physiology , Muscle, Smooth/metabolism , Calcium/metabolism , Ctenophora/physiology , Patch-Clamp Techniques/methods , Action Potentials/physiology , Muscle Contraction/physiology , Electrophysiological Phenomena , Electrophysiology/methods , Microscopy, Confocal
14.
Regen Med ; 19(3): 135-143, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38440898

ABSTRACT

Many vascular disorders arise as a result of dysfunctional smooth muscle cells. Tissue engineering strategies have evolved as key approaches to generate functional vascular smooth muscle cells for use in cell-based precision and personalized regenerative medicine approaches. This article highlights some of the challenges that exist in the field and presents some of the prospects for translating research advancements into therapeutic modalities. The article emphasizes the need for better developing synergetic intracellular and extracellular cues in the processes to generate functional vascular smooth muscle cells from different stem cell sources for use in tissue engineering strategies.


This paper explores the potential of engineering smooth muscle tissues to treat vascular diseases, focusing on challenges like sourcing the right cells and creating supportive environments for cell growth. It highlights advances in materials that mimic the body's conditions and the use of 3D fabrication methods for creating complex structures. Additionally, it discusses the significance of mitochondrial function in blood vessel muscle cells. The research emphasizes interdisciplinary efforts and personalized treatments as key to developing effective therapies. The goal is to engineer lab-grown tissues that can repair or replace damaged blood vessels, offering hope for addressing major health challenges associated with vascular diseases.


Subject(s)
Muscle, Smooth , Tissue Engineering , Stem Cells , Myocytes, Smooth Muscle , Regenerative Medicine
15.
FASEB J ; 38(6): e23538, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38482729

ABSTRACT

Stem cells respond and remember mechanical cues from the microenvironment, which modulates their therapeutic effects. Chromatin organization and energy metabolism regulate the stem cell fate induced by mechanical cues. However, the mechanism of mechanical memory is still unclear. This study aimed to investigate the effects of mechanical amplitude, frequency, duration, and stretch cycle on mechanical memory in mesenchymal stem cells. It showed that the amplitude was the dominant parameter to the persistence of cell alignment. F-actin, paxillin, and nuclear deformation are more prone to be remolded than cell alignment. Stretching induces transcriptional memory, resulting in greater transcription upon subsequent reloading. Cell metabolism displays mechanical memory with sustained mitochondrial fusion and increased ATP production. The mechanical memory of chromatin condensation is mediated by histone H3 lysine 27 trimethylation, leading to much higher smooth muscle differentiation efficiency. Interestingly, mechanical memory can be transmitted based on direct cell-cell interaction, and stretched cells can remodel the metabolic homeostasis of static cells. Our results provide insight into the underlying mechanism of mechanical memory and its potential benefits for stem cell therapy.


Subject(s)
Chromatin , Mesenchymal Stem Cells , Chromatin/metabolism , Stress, Mechanical , Cell Differentiation , Mesenchymal Stem Cells/metabolism , Muscle, Smooth , Cell Proliferation
16.
Sci Rep ; 14(1): 5633, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38453938

ABSTRACT

Type 2 diabetes mellitus (T2D) causes gastroparesis, delayed intestinal transit, and constipation, for unknown reasons. Complications are predominant in women than men (particularly pregnant and postmenopausal women), suggesting a female hormone-mediated mechanism. Low G-protein coupled estrogen receptor (GPER) expression from epigenetic modifications may explain it. We explored sexually differentiated GPER expression and gastrointestinal symptoms related to GPER alterations in wild-type (WT) and T2D mice (db/db). We also created smooth muscle-specific GPER knockout (GPER KO) mice to phenotypically explore the effect of GPER deficiency on gastrointestinal motility. GPER mRNA and protein expression, DNA methylation and histone modifications were measured from stomach and colon samples of db/db and WT mice. Changes in gut motility were also evaluated as daily fecal pellet production patterns. We found that WT female tissues have the highest GPER mRNA and protein expressions. The expression is lowest in all db/db. GPER downregulation is associated with promoter hypermethylation and reduced enrichment of H3K4me3 and H3K27ac marks around the GPER promoter. We also observed sex-specific disparities in fecal pellet production patterns of the GPER KO mice compared to WT. We thus, conclude that T2D impairs gut GPER expression, and epigenetic sex-specific mechanisms matter in the downregulation.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Male , Mice , Female , Humans , Animals , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Experimental/genetics , Estrogens , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Muscle, Smooth/metabolism , Epigenesis, Genetic , RNA, Messenger
17.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L651-L659, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38529552

ABSTRACT

Airway smooth muscle cell (ASM) is renowned for its involvement in airway hyperresponsiveness through impaired ASM relaxation and bronchoconstriction in asthma, which poses a significant challenge in the field. Recent studies have explored different targets in ASM to alleviate airway hyperresponsiveness, however, a sizeable portion of patients with asthma still experience poor control. In our study, we explored protein phosphatase 2 A (PP2A) in ASM as it has been reported to regulate cellular contractility by controlling intracellular calcium ([Ca2+]i), ion channels, and respective regulatory proteins. We obtained human ASM cells and lung tissues from healthy and patients with asthma and evaluated PP2A expression using RNA-Seq data, immunofluorescence, and immunoblotting. We further investigated the functional importance of PP2A by determining its role in bronchoconstriction using mouse bronchus and human ASM cell [Ca2+]i regulation. We found robust expression of PP2A isoforms in human ASM cells with PP2Aα being highly expressed. Interestingly, PP2Aα was significantly downregulated in asthmatic tissue and human ASM cells exposed to proinflammatory cytokines. Functionally, FTY720 (PP2A agonist) inhibited acetylcholine- or methacholine-induced bronchial contraction in mouse bronchus and further potentiated isoproterenol-induced bronchial relaxation. Mechanistically, FTY720 inhibited histamine-evoked [Ca2+]i response and myosin light chain (MLC) phosphorylation in the presence of interleukin-13 (IL-13) in human ASM cells. To conclude, we for the first time established PP2A signaling in ASM, which can be further explored to develop novel therapeutics to alleviate airway hyperresponsiveness in asthma.NEW & NOTEWORTHY This novel study deciphered the expression and function of protein phosphatase 2Aα (PP2Aα) in airway smooth muscle (ASM) during asthma and/or inflammation. We showed robust expression of PP2Aα in human ASM while its downregulation in asthmatic ASM. Similarly, we demonstrated reduced PP2Aα expression in ASM exposed to proinflammatory cytokines. PP2Aα activation inhibited bronchoconstriction of isolated mouse bronchi. In addition, we unveiled that PP2Aα activation inhibits the intracellular calcium release and myosin light chain phosphorylation in human ASM.


Subject(s)
Asthma , Bronchoconstriction , Down-Regulation , Myocytes, Smooth Muscle , Protein Phosphatase 2 , Asthma/metabolism , Asthma/pathology , Humans , Protein Phosphatase 2/metabolism , Protein Phosphatase 2/genetics , Animals , Mice , Down-Regulation/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/drug effects , Bronchoconstriction/drug effects , Muscle, Smooth/metabolism , Muscle, Smooth/pathology , Muscle, Smooth/drug effects , Male , Bronchi/pathology , Bronchi/metabolism , Bronchi/drug effects , Calcium/metabolism , Female , Mice, Inbred C57BL
18.
Dev Cell ; 59(9): 1159-1174.e5, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38537630

ABSTRACT

Inside the finger-like intestinal projections called villi, strands of smooth muscle cells contract to propel absorbed dietary fats through the adjacent lymphatic capillary, the lacteal, sending fats into the systemic blood circulation for energy production. Despite this vital function, mechanisms of formation, assembly alongside lacteals, and maintenance of villus smooth muscle are unknown. By combining single-cell RNA sequencing and quantitative lineage tracing of the mouse intestine, we identified a local hierarchy of subepithelial fibroblast progenitors that differentiate into mature smooth muscle fibers via intermediate contractile myofibroblasts. This continuum persists as the major mechanism for villus musculature renewal throughout adult life. The NOTCH3-DLL4 signaling axis governs the assembly of smooth muscle fibers alongside their adjacent lacteals and is required for fat absorption. Our studies identify the ontogeny and maintenance of a poorly defined class of intestinal smooth muscle, with implications for accelerated repair and recovery of digestive function following injury.


Subject(s)
Cell Differentiation , Myofibroblasts , Animals , Myofibroblasts/metabolism , Myofibroblasts/cytology , Mice , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/cytology , Signal Transduction , Lymphatic Vessels/metabolism , Lymphatic Vessels/cytology , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Intestines/cytology , Muscle, Smooth/metabolism , Muscle, Smooth/cytology , Stem Cells/cytology , Stem Cells/metabolism , Receptor, Notch3/metabolism , Receptor, Notch3/genetics , Mice, Inbred C57BL
19.
BJU Int ; 133(6): 752-759, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38456568

ABSTRACT

OBJECTIVES: To elucidate the male urethral muscular structure and its relationship with the anorectal canal muscles, as establishing an anatomical foundation for urethral function will contribute to the prevention, diagnosis, and treatment of urinary incontinence. METHODS: Eight male cadavers were used. Using a multifaceted approach, we performed macroscopic anatomical examination, histological analysis of wide-range serial sectioning and immunostaining, and three-dimensional (3D) reconstruction from histological sections. In the macroscopic anatomical examination, pelvic halves were meticulously dissected in layers from the medial aspect. In the histological analysis, the tissue, including the urethra and anorectal canal, was serially sectioned in the horizontal plane. The muscular structures were reconstructed and visualised in 3D. RESULTS: The membranous portion of the urethra had three muscle layers: the longitudinal and circular muscles (smooth muscle) and the external urethral sphincter (skeletal muscle). The circular muscle was connected posteriorly to the longitudinal rectal muscle. The external urethral sphincter had a horseshoe shape, with its posterior ends continuing to the external anal sphincter, forming a 3D ring-like sphincter. CONCLUSION: This study revealed skeletal and smooth muscle connections between the male urethra and anorectal canal, enabling urethral compression and closure. These anatomical muscle connections suggest a functional linkage between them.


Subject(s)
Anal Canal , Cadaver , Muscle, Smooth , Urethra , Male , Humans , Urethra/anatomy & histology , Muscle, Smooth/anatomy & histology , Anal Canal/anatomy & histology , Aged , Muscle, Skeletal/anatomy & histology , Aged, 80 and over , Imaging, Three-Dimensional
20.
J Sex Med ; 21(5): 379-390, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38451321

ABSTRACT

BACKGROUND: The cavernous nerve (CN) is frequently damaged in prostatectomy and diabetic patients with erectile dysfunction (ED), initiating changes in penile morphology including an acute and intense phase of apoptosis in penile smooth muscle and increased collagen, which alter penile architecture and make corpora cavernosa smooth muscle less able to relax in response to neurotransmitters, resulting in ED. AIM: Sonic hedgehog (SHH) is a critical regulator of penile smooth muscle, and SHH treatment suppresses penile remodeling after CN injury through an unknown mechanism; we examine if part of the mechanism of how SHH preserves smooth muscle after CN injury involves bone morphogenetic protein 4 (BMP4) and gremlin1 (GREM1). METHODS: Primary cultures of smooth muscle cells were established from prostatectomy, diabetic, hypertension and Peyronie's (control) (N = 18) patients. Cultures were characterized by ACTA2, CD31, P4HB, and nNOS immunohistochemical analysis. Patient smooth muscle cell growth was quantified in response to BMP4 and GREM1 treatment. Adult Sprague Dawley rats underwent 1 of 3 surgeries: (1) uninjured or CN-injured rats were treated with BMP4, GREM1, or mouse serum albumin (control) proteins via Affi-Gel beads (N = 16) or peptide amphiphile (PA) (N = 26) for 3 and 14 days, and trichrome stain was performed; (2) rats underwent sham (N = 3), CN injury (N = 9), or CN injury and SHH PA treatment for 1, 2, and 4 days (N = 9). OUTCOMES: Western analysis for BMP4 and GREM1 was performed; (3) rats were treated with 5E1 SHH inhibitor (N = 6) or IgG (control; N = 6) for 2 and 4 days, and BMP4 and GREM1 localization was examined. Statistics were performed by analysis of variance with Scheffé's post hoc test. RESULTS: BMP4 increased patient smooth muscle cell growth, and GREM1 decreased growth. In rats, BMP4 treatment via Affi-Gel beads and PA increased smooth muscle at 3 and 14 days of treatment. GREM1 treatment caused increased collagen and smooth muscle at 3 days, which switched to primarily collagen at 14 days. CN injury increased BMP4 and GREM1, while SHH PA altered Western band size, suggesting alternative cleavage and range of BMP4 and GREM1 signaling. SHH inhibition in rats increased BMP4 and GREM1 in fibroblasts. CLINICAL IMPLICATIONS: Understanding how SHH PA preserves and regenerates penile morphology after CN injury will aid development of ED therapies. STRENGTHS AND LIMITATIONS: SHH treatment alters BMP4 and GREM1 localization and range of signaling, which can affect penile morphology. CONCLUSION: Part of the mechanism of how SHH regulates corpora cavernosa smooth muscle involves BMP4 and GREM1.


Subject(s)
Bone Morphogenetic Protein 4 , Hedgehog Proteins , Intercellular Signaling Peptides and Proteins , Penis , Animals , Humans , Male , Middle Aged , Rats , Bone Morphogenetic Protein 4/metabolism , Cells, Cultured , Cytokines , Erectile Dysfunction/etiology , Hedgehog Proteins/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology , Muscle, Smooth/drug effects , Myocytes, Smooth Muscle/drug effects , Penile Induration/pathology , Prostatectomy , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...