Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.651
Filter
1.
Cardiovasc Toxicol ; 24(6): 587-597, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691303

ABSTRACT

Vascular lesions frequently arise as complication in patients diagnosed with diabetes mellitus (DM). Presently, percutaneous coronary intervention (PCI) and antithrombotic therapy serve as primary treatments. However, in-stent restenosis persists as a challenging clinical issue following PCI, lacking sustained and effective treatment. Linarin (LN) exhibits diverse pharmacological activities and is regarded as a potential drug for treating various diseases, including DM. But its specific role in restenosis after vascular injury in DM patients remains unclear. A rat model of diabetes-related restenosis was established to evaluate the role of LN on neointimal hyperplasia. Vascular smooth muscle cells (VSMCs) stimulated by high glucose (HG, 30 mM) underwent LN treatment. Additionally, an overexpression plasmid of A disintegrin and metalloproteinases (ADAM10) was constructed to transfect VSMCs. We employed CCK-8, Brdu, wound-healing scratch, and transwell migration assays to evaluate the proliferation and migration of VSMCs. Furthermore, western blot and immunofluorescence assays were utilized to investigate the expressions of ADAM10 and the downstream Notch signaling pathway in vivo and in vitro models. LN notably alleviated intimal hyperplasia after vascular injury in DM rats and reduced the protein expression of ADAM10, alongside its downstream Notch1 signaling pathway-related proteins (Notch1, NICD and Hes1) in rat carotid artery tissues. LN effectively suppressed the proliferation and migration of VSMCs induced by HG, downregulating the protein expression of ADAM10, Notch1, NICD and Hes1. Moreover, our findings indicated that ADAM10 overexpression significantly reversed LN's effects on proliferation, migration, and the expression of Notch1 signaling pathway-related proteins in HG-treated VSMCs. LN demonstrates potential therapeutic efficacy in addressing restenosis after diabetic-related vascular injury, with the ADAM10 mediated Notch signaling pathway playing a pivotal role.


Subject(s)
ADAM10 Protein , Amyloid Precursor Protein Secretases , Carotid Artery Injuries , Cell Movement , Cell Proliferation , Diabetes Mellitus, Experimental , Membrane Proteins , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Neointima , Rats, Sprague-Dawley , Signal Transduction , Animals , ADAM10 Protein/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/enzymology , Cell Movement/drug effects , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/enzymology , Cell Proliferation/drug effects , Male , Membrane Proteins/metabolism , Membrane Proteins/genetics , Amyloid Precursor Protein Secretases/metabolism , Cells, Cultured , Carotid Artery Injuries/pathology , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/drug therapy , Carotid Artery Injuries/enzymology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Hyperplasia , Receptors, Notch/metabolism , Receptor, Notch1/metabolism , Transcription Factor HES-1/metabolism , Transcription Factor HES-1/genetics , Disease Models, Animal , Rats , Coronary Restenosis/pathology , Coronary Restenosis/etiology , Coronary Restenosis/metabolism , Coronary Restenosis/prevention & control
2.
Cardiovasc Toxicol ; 24(6): 576-586, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691302

ABSTRACT

Hypertension is a pathological state of the metabolic syndrome that increases the risk of cardiovascular disease. Managing hypertension is challenging, and we aimed to identify the pathogenic factors and discern therapeutic targets for metabolic hypertension (MHR). An MHR rat model was established with the combined treatment of a high-sugar, high-fat diet and ethanol. Histopathological observations were performed using hematoxylin-eosin and Sirius Red staining. Transcriptome sequencing was performed to screen differentially expressed genes. The role of ubiquitin-specific protease 18 (USP18) in the proliferation, apoptosis, and oxidative stress of HUVECs was explored using Cell Counting Kit-8, flow cytometry, and enzyme-linked immunosorbent assays. Moreover, USP18 downstream signaling pathways in MHR were screened, and the effects of USP18 on these signaling pathways were investigated by western blotting. In the MHR model, total cholesterol and low-density lipoprotein levels increased, while high-density lipoprotein levels decreased. Moreover, high vessel thickness and percentage of collagen were noted along with increased malondialdehyde, decreased superoxide dismutase and catalase levels. The staining results showed that the MHR model exhibited an irregular aortic intima and disordered smooth muscle cells. There were 78 differentially expressed genes in the MHR model, and seven hub genes, including USP18, were identified. USP18 overexpression facilitated proliferation and reduced apoptosis and oxidative stress in HUVECs treated with Ang in vitro. In addition, the JAK/STAT pathway was identified as a USP18 downstream signaling pathway, and USP18 overexpression inhibited the expression of JAK/STAT pathway-related proteins. Conclusively, USP18 restrained MHR progression by promoting cell proliferation, reversing apoptosis and oxidative stress, and suppressing the JAK/STAT pathway.


Subject(s)
Apoptosis , Cell Proliferation , Disease Models, Animal , Human Umbilical Vein Endothelial Cells , Hypertension , Janus Kinases , Metabolic Syndrome , Oxidative Stress , Signal Transduction , Ubiquitin Thiolesterase , Animals , Humans , Male , Rats , Apoptosis/drug effects , Blood Pressure/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Disease Progression , Gene Expression Regulation , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/enzymology , Hypertension/metabolism , Hypertension/physiopathology , Hypertension/pathology , Hypertension/enzymology , Janus Kinases/metabolism , Metabolic Syndrome/metabolism , Metabolic Syndrome/pathology , Metabolic Syndrome/enzymology , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/enzymology , Oxidative Stress/drug effects , Rats, Sprague-Dawley , STAT Transcription Factors/metabolism , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Vascular Remodeling/drug effects
3.
Int J Mol Sci ; 24(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36835391

ABSTRACT

Angiotensin II (AngII) is a vasoactive peptide hormone, which, under pathological conditions, contributes to the development of cardiovascular diseases. Oxysterols, including 25-hydroxycholesterol (25-HC), the product of cholesterol-25-hydroxylase (CH25H), also have detrimental effects on vascular health by affecting vascular smooth muscle cells (VSMCs). We investigated AngII-induced gene expression changes in VSMCs to explore whether AngII stimulus and 25-HC production have a connection in the vasculature. RNA-sequencing revealed that Ch25h is significantly upregulated in response to AngII stimulus. The Ch25h mRNA levels were elevated robustly (~50-fold) 1 h after AngII (100 nM) stimulation compared to baseline levels. Using inhibitors, we specified that the AngII-induced Ch25h upregulation is type 1 angiotensin II receptor- and Gq/11 activity-dependent. Furthermore, p38 MAPK has a crucial role in the upregulation of Ch25h. We performed LC-MS/MS to identify 25-HC in the supernatant of AngII-stimulated VSMCs. In the supernatants, 25-HC concentration peaked 4 h after AngII stimulation. Our findings provide insight into the pathways mediating AngII-induced Ch25h upregulation. Our study elucidates a connection between AngII stimulus and 25-HC production in primary rat VSMCs. These results potentially lead to the identification and understanding of new mechanisms in the pathogenesis of vascular impairments.


Subject(s)
Angiotensin II , Muscle, Smooth, Vascular , Steroid Hydroxylases , Animals , Rats , Angiotensin II/metabolism , Cells, Cultured , Chromatography, Liquid , Gene Expression , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/metabolism , Tandem Mass Spectrometry , Steroid Hydroxylases/genetics
4.
J Nat Prod ; 85(9): 2192-2198, 2022 09 23.
Article in English | MEDLINE | ID: mdl-35983865

ABSTRACT

Previously, we isolated 2R,3S,15R-calofolic acids (CAs) from Calophyllum scriblitifolium bark, which showed vasorelaxant activity on phenylephrine (PE)-precontracted rat aortic rings. Although the effect was suggested to be induced via an extracellular Ca2+-independent manner and mainly acts on vascular smooth muscle, the exact mechanism of action of CAs remained unclear. Thus, this study investigated the detailed mechanism of calofolic acid-A (CA-A) induced vasorelaxation in an aortic ring specimen using rat vascular smooth muscle cells (VSMCs). The levels of PE-induced phosphorylation on MLC Ser19 decreased in VSMCs pretreated with CA-A. CA-A also decreased the phosphorylation of MYPT1 Thr696 and MYPT1 Thr853. On the other hand, CA-A increased the PE-induced phosphorylation of MYPT1 Ser695 and MYPT1 Ser668, which are reported to be phosphorylated by a cAMP-dependent protein kinase (PKA). CA-A slightly increased PKA substrate phosphorylation in a concentration-dependent manner. Furthermore, CA-A enhanced isoproterenol (ISO)-induced cAMP accumulation and PKA substrate phosphorylation. Treatment with PI-3 kinase (PI3K) inhibitor, LY294002, enhanced ISO-induced cAMP accumulation and PKA substrate phosphorylation in the same manner as CA-A treatment. Furthermore, CA-A was found to directly inhibit PI3K enzyme activity in a dose-dependent manner. Taken together, the present study indicated that CA-A induces vasorelaxation through an indirectly activated PKA-MYPT1 pathway caused by inhibition of PI3K activity.


Subject(s)
Calophyllum , Cyclic AMP-Dependent Protein Kinases , Muscle, Smooth, Vascular , Phosphatidylinositol 3-Kinases , Phosphoinositide-3 Kinase Inhibitors , Vasodilation , Vasodilator Agents , Animals , Calcium/metabolism , Calophyllum/chemistry , Cyclic AMP-Dependent Protein Kinases/metabolism , Isoproterenol/pharmacology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/enzymology , Phenylephrine/metabolism , Phenylephrine/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/chemistry , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphorylation , Plant Bark/chemistry , Rats , Vasodilator Agents/chemistry , Vasodilator Agents/pharmacology
5.
Biochem Biophys Res Commun ; 604: 137-143, 2022 05 14.
Article in English | MEDLINE | ID: mdl-35303680

ABSTRACT

Rho kinase (ROCK) is implicated in the development of pulmonary arterial hypertension (PAH) in which abnormal pulmonary vascular smooth muscle (VSM) contractility and remodeling lead to right heart failure. Pharmacologic ROCK inhibitors block experimental pulmonary hypertension (PH) development in rodents but can have off-target effects and do not distinguish between the two ROCK forms, ROCK1 and ROCK2, encoded by separate genes. An earlier study using gene knock out (KO) in mice indicated that VSM ROCK2 is required for experimental PH development, but the role of ROCK1 is not well understood. Here we investigated the in vivo role of ROCK1 in PH development by generating a VSM-targeted homozygous ROCK1 gene KO mouse strain. Adult control mice exposed to Sugen5416 (Su)/hypoxia treatment to induce PH had significantly increased right ventricular systolic pressures (RVSP) and RV hypertrophy versus normoxic controls. In contrast, Su/hypoxia-exposed VSM ROCK1 KO mice did not exhibit significant RVSP elevation, and RV hypertrophy was blunted. Su/hypoxia-induced pulmonary small vessel muscularization was similarly elevated in both control and VSM ROCK1 KO animals. siRNA-mediated ROCK1 knock-down (KD) in human PAH pulmonary arterial SM cells (PASMC) did not affect cell growth. However, ROCK1 KD led to reduced AKT and MYPT1 signaling in serotonin-treated PAH PASMC. The findings suggest that like VSM ROCK2, VSM ROCK1 actively contributes to PH development, but in distinction acts via nonproliferative pathways to promote hypoxemia, and thus may be a distinct therapeutic target in PH.


Subject(s)
Pulmonary Arterial Hypertension , rho-Associated Kinases , Animals , Hypertrophy, Right Ventricular/genetics , Hypoxia/complications , Mice , Mice, Knockout , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/metabolism , Pulmonary Arterial Hypertension/genetics , Pulmonary Artery/metabolism , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism , rho-Associated Kinases/physiology
6.
Cardiovasc Res ; 118(2): 638-653, 2022 01 29.
Article in English | MEDLINE | ID: mdl-33599243

ABSTRACT

AIMS: Pathological arterial remodelling including neointimal hyperplasia and atherosclerosis is the main underlying cause for occluding arterial diseases. Cezanne is a novel deubiquitinating enzyme, functioning as a NF-кB negative regulator, and plays a key role in renal inflammatory response and kidney injury induced by ischaemia. Here we attempted to examine its pathological role in vascular smooth muscle cell (VSMC) pathology and arterial remodelling. METHODS AND RESULTS: Cezanne expression levels were consistently induced by various atherogenic stimuli in VSMCs, and in remodelled arteries upon injury. Functionally, VSMCs over-expressing wild-type Cezanne, but not the mutated catalytically-inactive Cezanne (C209S), had an increased proliferative ability and mobility, while the opposite was observed in VSMCs with Cezanne knockdown. Surprisingly, we observed no significant effects of Cezanne on VSMC apoptosis, NF-κB signalling, or inflammation. RNA-sequencing and biochemical studies showed that Cezanne drives VSMC proliferation by regulating CCN family member 1 (CCN1) by targeting ß-catenin for deubiquitination. Importantly, local correction of Cezanne expression in the injured arteries greatly decreased VSMC proliferation, and prevented arterial inward remodelling. Interestingly, global Cezanne gene deletion in mice led to smaller atherosclerotic plaques, but with a lower level of plaque stability. Translating, we observed a similar role for Cezanne in human VSMCs, and higher expression levels of Cezanne in human atherosclerotic lesions. CONCLUSION: Cezanne is a key regulator of VSMC proliferation and migration in pathological arterial remodelling. Our findings have important implications for therapeutic targeting Cezanne signalling and VSMC pathology in vascular diseases.


Subject(s)
Atherosclerosis/enzymology , Endopeptidases/metabolism , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/enzymology , Vascular Remodeling , Wnt Signaling Pathway , beta Catenin/metabolism , Animals , Aorta/metabolism , Aorta/pathology , Apoptosis , Atherosclerosis/genetics , Atherosclerosis/pathology , Cell Movement , Cell Proliferation , Cells, Cultured , Cysteine-Rich Protein 61/genetics , Cysteine-Rich Protein 61/metabolism , Disease Models, Animal , Endopeptidases/genetics , Humans , Inflammation Mediators/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , NF-kappa B/metabolism , Neointima , Ubiquitination , beta Catenin/genetics
7.
Biosci Rep ; 42(1)2022 01 28.
Article in English | MEDLINE | ID: mdl-34778900

ABSTRACT

BACKGROUND: Acute pulmonary embolism (APE) is a prevalent reason of cardiovascular morbidity and mortality. Recent studies have underscored the positive effects of microRNAs (miRNAs) on many diseases. The present study aimed to identify the critical miRNA with differential expressions and explore its role in APE. METHODS: The critical miRNA with its target gene was screened by bioinformatics analysis. Their binding relationship was analyzed by TargetScan, Dual-luciferase reporter and RNA pull-down assays. A rat model of APE was established by self-blood coagulum. Human pulmonary artery smooth muscle cells (PASMCs) were exposed to platelet-derived growth factor (PDGF-BB) for excessive proliferation, and transfected with miR-34a-3p mimic. Mean pulmonary arterial pressure (mPAP) of rat was measured, and the pulmonary tissues were used for the pathological observation by Hematoxylin-Eosin (H&E) staining. Cell viability and proliferation were detected by Cell Counting Kit-8 (CCK-8) and EdU assays. The expressions of miR-34a-3p with its target genes (including dual-specificity phosphatase-1 (DUSP1)), neuron-derived orphan receptor-1 (NOR-1) and proliferating cell nuclear antigen (PCNA) were determined by quantitative reverse transcription polymerase chain reaction (RT-qPCR) or/and Western blot. RESULTS: MiR-34a-3p expression was down-regulated in APE patients, which attenuated the increment of mPAP and thickening of the pulmonary arterial walls in APE rats, accompanied with regulation of NOR-1 and PCNA levels. MiR-34a-3p suppressed DUSP1 expression by directly binding to its 3'-untranslated region (UTR), and attenuated cell viability, proliferation, and the expressions of NOR-1 and PCNA in PDGF-BB-induced PASMCs by inhibiting DUSP1 expression. CONCLUSION: Up-regulated miR-34a-3p negatively regulates DUSP1 expression to inhibit PASMC proliferation, which, thus, may act on APE treatment by negatively regulating pulmonary vascular proliferation.


Subject(s)
Cell Proliferation , Dual Specificity Phosphatase 1/metabolism , MicroRNAs/metabolism , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/enzymology , Pulmonary Embolism/enzymology , Animals , Case-Control Studies , Cells, Cultured , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Disease Models, Animal , Dual Specificity Phosphatase 1/genetics , Gene Expression Regulation, Enzymologic , Male , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , MicroRNAs/genetics , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Pulmonary Artery/enzymology , Pulmonary Artery/pathology , Pulmonary Embolism/genetics , Pulmonary Embolism/pathology , Rats, Sprague-Dawley , Signal Transduction , Vascular Remodeling
8.
Arterioscler Thromb Vasc Biol ; 42(1): 67-86, 2022 01.
Article in English | MEDLINE | ID: mdl-34809446

ABSTRACT

OBJECTIVE: PCSK9 (proprotein convertase subtilisin/kexin type 9) plays a critical role in cholesterol metabolism via the PCSK9-LDLR (low-density lipoprotein receptor) axis in the liver; however, evidence indicates that PCSK9 directly contributes to the pathogenesis of various diseases through mechanisms independent of its LDL-cholesterol regulation. The objective of this study was to determine how PCSK9 directly acts on vascular smooth muscle cells (SMCs), contributing to degenerative vascular disease. Approach and Results: We first examined the effects of PCSK9 on cultured human aortic SMCs. Overexpression of PCSK9 downregulated the expression of ApoER2 (apolipoprotein E receptor 2), a known target of PCSK9. Treatment with soluble recombinant human ApoER2 or the DNA synthesis inhibitor, hydroxyurea, inhibited PCSK9-induced polyploidization and other cellular responses of human SMCs. Treatment with antibodies against ApoER2 resulted in similar effects to those observed with PCSK9 overexpression. Inducible, SMC-specific knockout of Pcsk9 accelerated neointima formation in mouse carotid arteries and reduced age-related arterial stiffness. PCSK9 was expressed in SMCs of human atherosclerotic lesions and abundant in the "shoulder" regions of vulnerable atherosclerotic plaques. PCSK9 was also expressed in SMCs of abdominal aortic aneurysm, which was inversely related to the expression of smooth muscle α-actin. CONCLUSIONS: Our findings demonstrate that PCSK9 inhibits proliferation and induces polyploidization, senescence, and apoptosis, which may be relevant to various degenerative vascular diseases.


Subject(s)
Apoptosis , Atherosclerosis/enzymology , Cell Proliferation , Cellular Senescence , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/enzymology , Proprotein Convertase 9/metabolism , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Atherosclerosis/physiopathology , Cells, Cultured , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/physiopathology , Myocytes, Smooth Muscle/pathology , Neointima , Plaque, Atherosclerotic , Proprotein Convertase 9/genetics , Signal Transduction , Vascular Stiffness
9.
Microvasc Res ; 140: 104299, 2022 03.
Article in English | MEDLINE | ID: mdl-34942175

ABSTRACT

Abdominal aortic aneurysm (AAA) is a common chronic aortic degenerative disease. Long non-coding RNA X-inactive specific transcript (XIST) is associated with the progression of AAA, while the underlying mechanism is still unclear. We investigated the functional role of XIST in AAA. AAA mouse model was established by administration of Angiotensin II (Ang II). Primary mouse vascular smooth muscle cells (VSMCs) were separated from the abdominal aorta of Ang II-induced AAA mice, and then treated with Ang II. XIST was highly expressed in Ang II-treated VSMCs. Cell proliferation ability was decreased and apoptosis was increased in VSMCs following Ang II treatment. XIST knockdown reversed the impact of Ang II on cell proliferation and apoptosis in VSMCs. XIST promoted mitogen-activated protein kinase kinase 4 (MAP2K4) expression by sponging miR-762. XIST overexpression suppressed cell proliferation and apoptosis of Ang II-treated VSMCs by regulating miR-762/MAP2K4 axis. Finally, Ang II-induced AAA mouse model was established to verify the function of XIST in AAA. Inhibition of XIST significantly attenuated the pathological changes of abdominal aorta tissues in Ang II-induced mice. The expression of miR-762 was inhibited, and MAP2K4 expression was enhanced by XIST knockdown in the abdominal aorta tissues of AAA mice. In conclusion, these data demonstrate that inhibition of XIST attenuates AAA in mice, which attributes to inhibit apoptosis of VSMCs by regulating miR-762/MAP2K4 axis. Thus, this study highlights a novel ceRNA circuitry involving key regulators in the pathogenesis of AAA.


Subject(s)
Aortic Aneurysm, Abdominal/prevention & control , Apoptosis , MAP Kinase Kinase 4/metabolism , MicroRNAs/metabolism , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/enzymology , RNA, Long Noncoding/metabolism , Animals , Aorta, Abdominal/enzymology , Aorta, Abdominal/pathology , Aortic Aneurysm, Abdominal/enzymology , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/pathology , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Gene Expression Regulation, Enzymologic , MAP Kinase Kinase 4/genetics , Male , Mice, Inbred C57BL , Mice, Knockout, ApoE , MicroRNAs/genetics , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , RNA Interference , RNA, Long Noncoding/genetics , Signal Transduction
10.
Clin Sci (Lond) ; 135(20): 2429-2444, 2021 10 29.
Article in English | MEDLINE | ID: mdl-34668009

ABSTRACT

Osteogenic factors, such as osteoprotegerin (OPG), are protective against vascular calcification. However, OPG is also positively associated with cardiovascular damage, particularly in pulmonary hypertension, possibly through processes beyond effects on calcification. In the present study, we focused on calcification-independent vascular effects of OPG through activation of syndecan-1 and NADPH oxidases (Noxs) 1 and 4. Isolated resistance arteries from Wistar-Kyoto (WKY) rats, exposed to exogenous OPG, studied by myography exhibited endothelial and smooth muscle dysfunction. OPG decreased nitric oxide (NO) production, eNOS activation and increased reactive oxygen species (ROS) production in endothelial cells. In VSMCs, OPG increased ROS production, H2O2/peroxynitrite levels and activation of Rho kinase and myosin light chain. OPG vascular and redox effects were also inhibited by the syndecan-1 inhibitor synstatin (SSNT). Additionally, heparinase and chondroitinase abolished OPG effects on VSMCs-ROS production, confirming syndecan-1 as OPG molecular partner and suggesting that OPG binds to heparan/chondroitin sulphate chains of syndecan-1. OPG-induced ROS production was abrogated by NoxA1ds (Nox1 inhibitor) and GKT137831 (dual Nox1/Nox4 inhibitor). Tempol (SOD mimetic) inhibited vascular dysfunction induced by OPG. In addition, we studied arteries from Nox1 and Nox4 knockout (KO) mice. Nox1 and Nox4 KO abrogated OPG-induced vascular dysfunction. Vascular dysfunction elicited by OPG is mediated by a complex signalling cascade involving syndecan-1, Nox1 and Nox4. Our data identify novel molecular mechanisms beyond calcification for OPG, which may underlie vascular injurious effects of osteogenic factors in conditions such as hypertension and/or diabetes.


Subject(s)
Hemodynamics/drug effects , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , NADPH Oxidases/metabolism , Osteoprotegerin/toxicity , Oxidative Stress , Reactive Oxygen Species/metabolism , Syndecan-1/metabolism , Animals , Cells, Cultured , Male , Mesenteric Arteries/drug effects , Mesenteric Arteries/enzymology , Mesenteric Arteries/physiopathology , Mice, Inbred C57BL , Muscle, Smooth, Vascular/enzymology , Muscle, Smooth, Vascular/physiopathology , Myocytes, Smooth Muscle/enzymology , NADPH Oxidase 1/genetics , NADPH Oxidase 1/metabolism , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , NADPH Oxidases/genetics , Rats, Inbred WKY , Signal Transduction
11.
Clin Sci (Lond) ; 135(21): 2483-2502, 2021 11 12.
Article in English | MEDLINE | ID: mdl-34643227

ABSTRACT

Vascular calcification is highly prevalent in chronic kidney disease (CKD), and is characterized by transdifferentiation from contractile vascular smooth muscle cells (VSMCs) into an osteogenic phenotype. However, no effective and therapeutic option to prevent vascular calcification is yet available. Dihydromyricetin (DMY), a bioactive flavonoid isolated from Ampelopsis grossedentata, has been found to inhibit VSMCs proliferation and the injury-induced neointimal formation. However, whether DMY has an effect on osteogenic differentiation of VSMCs and vascular calcification is still unclear. In the present study, we sought to investigate the effect of DMY on vascular calcification in CKD and the underlying mechanism. DMY treatment significantly attenuated calcium/phosphate-induced calcification of rat and human VSMCs in a dose-dependent manner, as shown by Alizarin Red S staining and calcium content assay, associated with down-regulation of osteogenic markers including type I collagen (COL I), Runt-related transcription factor 2 (RUNX2), bone morphogenetic protein 2 (BMP2) and osteocalcin (OCN). These results were further confirmed in aortic rings ex vivo. Moreover, DMY ameliorated vascular calcification in rats with CKD. Additionally, we found that AKT signaling was activated during vascular calcification, whereas significantly inhibited by DMY administration. DMY treatment significantly reversed AKT activator-induced vascular calcification. Furthermore, inhibition of AKT signaling efficiently attenuated calcification, which was similar to that after treatment with DMY alone, and DMY had a better inhibitory effect on calcification as compared with AKT inhibitor. The present study demonstrated that DMY has a potent inhibitory role in vascular calcification partially by inhibiting AKT activation, suggesting that DMY may act as a promising therapeutic candidate for patients suffering from vascular calcification.


Subject(s)
Aortic Diseases/prevention & control , Flavonols/pharmacology , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Osteogenesis/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Renal Insufficiency, Chronic/drug therapy , Vascular Calcification/prevention & control , Animals , Aorta/drug effects , Aorta/enzymology , Aorta/pathology , Aortic Diseases/enzymology , Aortic Diseases/etiology , Aortic Diseases/pathology , Cells, Cultured , Disease Models, Animal , Humans , Male , Muscle, Smooth, Vascular/enzymology , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/enzymology , Myocytes, Smooth Muscle/pathology , Phosphorylation , Proto-Oncogene Proteins c-akt/genetics , Rats, Sprague-Dawley , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/enzymology , Renal Insufficiency, Chronic/pathology , Signal Transduction , Vascular Calcification/enzymology , Vascular Calcification/etiology , Vascular Calcification/pathology
12.
Biomed Pharmacother ; 143: 112124, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34492423

ABSTRACT

Scutellaria baicalensis Georgi is an extensively used medicinal herb for the treatment of hypertension in traditional Chinese medicine. Baicalin, is an important flavonoid in Scutellaria baicalensis Georgi extracts, which exhibits therapeutic effects on anti-hypertension, but its underlying mechanisms remain to be further explored. Therefore, we investigated the effects and molecular mechanisms of Baicalin on anti-hypertension. In vivo studies revealed that Baicalin treatment significantly attenuated the elevation in blood pressure, the pulse propagation and thickening of the abdominal aortic wall in C57BL/6 mice infused with Angiotensin II (Ang II). Moreover, RNA-sequencing and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses identified 537 differentially expressed transcripts and multiple enriched signaling pathways (including vascular smooth muscle contraction and calcium signaling pathway). Consistently, we found that Baicalin pretreatment significantly alleviated the Ang II induced constriction of abdominal aortic ring, while promoted NE pre-contracted vasodilation of abdominal aortic ring at least partly dependent on L-type calcium channel. In addition, Ang II stimulation significantly increased cell viability and PCNA expression, while were attenuated after Baicalin treatment. Moreover, Baicalin pretreatment attenuated Ang II-induced intracellular Ca2+ release, Angiotensin II type 1 receptor (AT1R) expression and activation of MLCK/p-MLC pathway in vascular smooth muscle cells (VSMCs). The present work further addressed the pharmacological and mechanistic insights on anti-hypertension of Baicalin, which may help better understand the therapeutic effect of Scutellaria baicalensis Georgi on anti-hypertension.


Subject(s)
Aorta, Abdominal/drug effects , Blood Pressure/drug effects , Flavonoids/pharmacology , Hypertension/prevention & control , Hypoglycemic Agents/pharmacology , Muscle, Smooth, Vascular/drug effects , Myosin Light Chains/metabolism , Myosin-Light-Chain Kinase/metabolism , Angiotensin II , Animals , Aorta, Abdominal/enzymology , Aorta, Abdominal/physiopathology , Calcium Signaling/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Disease Models, Animal , Hypertension/chemically induced , Hypertension/enzymology , Hypertension/physiopathology , Male , Mice, Inbred C57BL , Muscle, Smooth, Vascular/enzymology , Muscle, Smooth, Vascular/physiopathology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/enzymology , Phosphorylation , Rats, Wistar
13.
Cells ; 10(8)2021 07 31.
Article in English | MEDLINE | ID: mdl-34440716

ABSTRACT

Among reactive oxygen species, superoxide mediates the critical vascular redox signaling, resulting in the regulation of the human cardiovascular system. The reduced form of nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase, NOX) is the source of superoxide and relates to the crucial intracellular pathology and physiology of vascular smooth muscle cells, including contraction, proliferation, apoptosis, and inflammatory response. Human vascular smooth muscle cells express NOX1, 2, 4, and 5 in physiological and pathological conditions, and those enzymes play roles in most cardiovascular disorders caused by hypertension, diabetes, inflammation, and arteriosclerosis. Various physiologically active substances, including angiotensin II, stimulate NOX via the cytosolic subunits' translocation toward the vascular smooth muscle cell membrane. As we have shown, some pathological stimuli such as high glucose augment the enzymatic activity mediated by the phosphatidylinositol 3-kinase-Akt pathway, resulting in the membrane translocation of cytosolic subunits of NOXs. This review highlights and details the roles of human vascular smooth muscle NOXs in the pathophysiology and clinical aspects. The regulation of the enzyme expressed in the vascular smooth muscle cells may lead to the prevention and treatment of human cardiovascular diseases.


Subject(s)
Cardiovascular Diseases/enzymology , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/enzymology , NADPH Oxidases/metabolism , Oxidative Stress , Superoxides/metabolism , Cardiovascular Diseases/pathology , Cardiovascular Diseases/physiopathology , Hemodynamics , Humans , Isoenzymes , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/physiopathology , Myocytes, Smooth Muscle/pathology
14.
Am J Respir Cell Mol Biol ; 65(6): 603-614, 2021 12.
Article in English | MEDLINE | ID: mdl-34280336

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a multisystemic respiratory disease that is associated with progressive airway and pulmonary vascular remodeling due to the increased proliferation of bronchial smooth muscles cells (BSMCs) and pulmonary arterial smooth muscle cells (PASMCs) and the overproduction of extracellular matrix (e.g., collagen). Cigarette smoke (CS) and several mediators, such as PDGF (platelet-derived growth factor) and IL-6, play critical roles in COPD pathogenesis. HDAC6 has been shown to be implicated in vascular remodeling. However, the role of airway HDAC6 signaling in pulmonary vascular remodeling in COPD and the underlying mechanisms remain undetermined. Here, we show that HDAC6 expression is upregulated in the lungs of patients with COPD and a COPD animal model. We also found that CS extract (CSE), PDGF, and IL-6 increase the protein levels and activation of HDAC6 in BSMCs and PASMCs. Furthermore, CSE and these stimulants induced deacetylation and phosphorylation of ERK1/2 and increased collagen synthesis and BSMC and PASMC proliferation, which were outcomes that were prevented by HDAC6 inhibition. Inhibition of ERK1/2 also diminished the CSE-, PDGF-, and IL-6-caused elevation in collagen levels and cell proliferation. Pharmacologic HDAC6 inhibition with tubastatin A prevented the CS-stimulated increases in the thickness of the bronchial and pulmonary arterial wall, airway resistance, emphysema, and right ventricular systolic pressure and right ventricular hypertrophy in a rat model of COPD. These data demonstrate that the upregulated HDAC6 governs the collagen synthesis and BSMC and PASMC proliferation that lead to airway and vascular remodeling in COPD.


Subject(s)
Airway Remodeling , Histone Deacetylase 6/metabolism , MAP Kinase Signaling System , Pulmonary Disease, Chronic Obstructive/enzymology , Vascular Remodeling , Animals , Cytokines/metabolism , Disease Models, Animal , Histone Deacetylase 6/antagonists & inhibitors , Humans , Hydroxamic Acids/pharmacology , Indoles/pharmacology , Muscle, Smooth, Vascular/enzymology , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/enzymology , Myocytes, Smooth Muscle/pathology , Pulmonary Artery/enzymology , Pulmonary Artery/pathology , Pulmonary Disease, Chronic Obstructive/pathology , Rats , Rats, Sprague-Dawley
15.
Arterioscler Thromb Vasc Biol ; 41(9): 2431-2451, 2021 09.
Article in English | MEDLINE | ID: mdl-34196217

ABSTRACT

Objective: Arterial restenosis is the pathological narrowing of arteries after endovascular procedures, and it is an adverse event that causes patients to experience recurrent occlusive symptoms. Following angioplasty, vascular smooth muscle cells (SMCs) change their phenotype, migrate, and proliferate, resulting in neointima formation, a hallmark of arterial restenosis. SIKs (salt-inducible kinases) are a subfamily of the AMP-activated protein kinase family that play a critical role in metabolic diseases including hepatic lipogenesis and glucose metabolism. Their role in vascular pathological remodeling, however, has not been explored. In this study, we aimed to understand the role and regulation of SIK3 in vascular SMC migration, proliferation, and neointima formation. Approach and Results: We observed that SIK3 expression was low in contractile aortic SMCs but high in proliferating SMCs. It was also highly induced by growth medium in vitro and in neointimal lesions in vivo. Inactivation of SIKs significantly attenuated vascular SMC proliferation and up-regulated p21CIP1 and p27KIP1. SIK inhibition also suppressed SMC migration and modulated actin polymerization. Importantly, we found that inhibition of SIKs reduced neointima formation and vascular inflammation in a femoral artery wire injury model. In mechanistic studies, we demonstrated that inactivation of SIKs mainly suppressed SMC proliferation by down-regulating AKT (protein kinase B) and PKA (protein kinase A)-CREB (cAMP response element-binding protein) signaling. CRTC3 (CREB-regulated transcriptional coactivator 3) signaling likely contributed to SIK inactivation-mediated antiproliferative effects. Conclusions: These findings suggest that SIK3 may play a critical role in regulating SMC proliferation, migration, and arterial restenosis. This study provides insights into SIK inhibition as a potential therapeutic strategy for treating restenosis in patients with peripheral arterial disease.


Subject(s)
CREB-Binding Protein/metabolism , Cell Proliferation , Cyclic AMP-Dependent Protein Kinases/metabolism , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/enzymology , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Vascular System Injuries/enzymology , Animals , Cell Movement , Cell Proliferation/drug effects , Cells, Cultured , Constriction, Pathologic , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p27/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Disease Models, Animal , Female , Femoral Artery/enzymology , Femoral Artery/injuries , Femoral Artery/pathology , Male , Mice, Inbred C57BL , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/injuries , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Neointima , Phenylurea Compounds/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Pyrimidines/pharmacology , Rats, Sprague-Dawley , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism , Vascular System Injuries/drug therapy , Vascular System Injuries/genetics , Vascular System Injuries/pathology
16.
Arterioscler Thromb Vasc Biol ; 41(9): 2469-2482, 2021 09.
Article in English | MEDLINE | ID: mdl-34320834

ABSTRACT

Objective: Critical limb ischemia is a major complication of diabetes characterized by insufficient collateral vessel development and proper growth factor signaling unresponsiveness. Although mainly deactivated by hypoxia, phosphatases are important players in the deregulation of proangiogenetic pathways. Previously, SHP-1 (Scr homology 2-containing phosphatase-1) was found to be associated with the downregulation of growth factor actions in the diabetic muscle. Thus, we aimed to gain further understanding of the impact of SHP-1 on smooth muscle cell (SMC) function under hypoxic and diabetic conditions. Approach and Results: Despite being inactivated under hypoxic conditions, high glucose level exposure sustained SHP-1 phosphatase activity in SMC and increased its interaction with PDGFR (platelet-derived growth factor receptor)-ß, thus reducing PDGF proangiogenic actions. Overexpression of an inactive form of SHP-1 fully restored PDGF-induced proliferation, migration, and signaling pathways in SMC exposed to high glucose and hypoxia. Nondiabetic and diabetic mice with deletion of SHP-1 specifically in SMC were generated. Ligation of the femoral artery was performed, and blood flow was measured for 4 weeks. Blood flow reperfusion, vascular density and maturation, and limb survival were all improved while vascular apoptosis was attenuated in diabetic SMC-specific SHP-1 null mice as compared to diabetic mice. Conclusions: Diabetes and high glucose level exposure maintained SHP-1 activity preventing hypoxia-induced PDGF actions in SMC. Specific deletion of SHP-1 in SMC partially restored blood flow reperfusion in the diabetic ischemic limb. Therefore, local modulation of SHP-1 activity in SMC could represent a potential therapeutic avenue to improve the proangiogenic properties of SMC under ischemia and diabetes.


Subject(s)
Angiogenesis Inducing Agents/pharmacology , Diabetes Mellitus, Experimental/enzymology , Diabetic Angiopathies/enzymology , Hindlimb/blood supply , Ischemia/enzymology , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Neovascularization, Physiologic/drug effects , Platelet-Derived Growth Factor/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Animals , Blood Glucose/metabolism , Case-Control Studies , Cattle , Cell Hypoxia , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/physiopathology , Diabetic Angiopathies/genetics , Diabetic Angiopathies/physiopathology , Enzyme Activation , Humans , Ischemia/physiopathology , Male , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/enzymology , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/enzymology , Myocytes, Smooth Muscle/pathology , Protein Tyrosine Phosphatase, Non-Receptor Type 6/genetics , Signal Transduction
17.
Pharmacol Res ; 170: 105629, 2021 08.
Article in English | MEDLINE | ID: mdl-34089864

ABSTRACT

Endoplasmic reticulum (ER) stress-mediated phenotypic switching of vascular smooth muscle cells (VSMCs) is key to vascular calcification (VC) in patients with chronic kidney disease (CKD). Studies have shown that activation/upregulation of SIRT1 has a protective effect on CKD-VC. Meanwhile, although terpinen-4-ol has been shown to exert a protective effect against cardiovascular disease, its role and underlying mechanism in VC remain unclear. Herein, we explored whether terpinen-4-ol alleviates ER stress-mediated VC through sirtuin 1 (SIRT1) and elucidated its mechanism to provide evidence for its application in the clinical prevention and treatment of VC. To this end, a CKD-related VC animal model and ß-glycerophosphate (ß-GP)-induced VSMC calcification model were established to investigate the role of terpinen-4-ol in ER stress-induced VC, in vitro and in vivo. Additionally, to evaluate the involvement of SIRT1, mouse and VSMC Sirt1-knockdown models were established. Results show that terpinen-4-ol inhibits calcium deposition, phenotypic switching, and ER stress in VSMCs in vitro and in vivo. Furthermore, pre-incubation of VSMCs with terpinen-4-ol or a SIRT1 agonist, decreased ß-GP-induced calcium salt deposition, increased SIRT1 protein level, and inhibited PERK-eIF2α-ATF4 pathway activation, thus, alleviating VC. Similar results were observed in VSMCs induced to overexpress SIRT1 via lentivirus transcription. Meanwhile, the opposite results were obtained in SIRT1-knockdown models. Further, results suggest that SIRT1 physically interacts with, and deacetylates PERK. Specifically, mass spectrometry analysis identified lysine K889 as the acetylation site of SIRT1, which regulates PERK. Finally, inhibition of SIRT1 reduced the effect of terpinen-4-ol on the deacetylation of PERK in vitro and in vivo and weakened the inhibitory effect of terpinen-4-ol against ER stress-mediated VC. Cumulatively, terpinen-4-ol was found to inhibit post-translational modification of PERK at the K889 acetylation site by upregulating SIRT1 expression, thereby ameliorating VC by regulating ER stress. This study provides insights into the underlying molecular mechanism of terpinen-4-ol, supporting its development as a promising therapeutic agent for CKD-VC.


Subject(s)
Endoplasmic Reticulum Stress/drug effects , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Renal Insufficiency, Chronic/drug therapy , Sirtuin 1/metabolism , Terpenes/pharmacology , Vascular Calcification/prevention & control , eIF-2 Kinase/metabolism , Acetylation , Activating Transcription Factor 4/metabolism , Animals , Disease Models, Animal , Eukaryotic Initiation Factor-2/metabolism , Mice , Muscle, Smooth, Vascular/enzymology , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/enzymology , Myocytes, Smooth Muscle/pathology , Phenotype , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/enzymology , Renal Insufficiency, Chronic/pathology , Sirtuin 1/genetics , Vascular Calcification/enzymology , Vascular Calcification/etiology , Vascular Calcification/pathology
18.
J Cardiovasc Pharmacol ; 78(2): 288-296, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33958547

ABSTRACT

ABSTRACT: Vascular smooth muscle cell (VSMC) dysfunction is the main cause of aortic dissection (AD). In this study, we focused on the role and mechanism of miR-4787-5p in regulating VSMC apoptosis. Real-time fluorescence quantitative polymerase chain reaction was used to detect the expression of miR-4787-5p in aorta tissues of AD (n = 10) and normal aortic tissues of donors (n = 10). Cell apoptosis was tested by TUNEL assay and Annexin V FITC/PI staining flow cytometry. The expression of PC1 and the PI3K/Akt/FKHR signaling pathway associated proteins in VSMCs was measured by Western blot. We found that the miR-4787-5p was highly expressed in aorta tissues of AD compared with 10 healthy volunteers. Meanwhile, PI3K/Akt/FKHR signaling pathway was inactive in the aortic tissue of AD. The overexpression of miR-4787-5p significantly induced VSMC apoptosis, and miR-4787-5p knockdown showed the opposite results. In addition, polycystic kidney disease 1 gene, which encodes polycystin-1 (PC1), was found to be a direct target of miR-4787-5p in the VSMCs and this was validated using a luciferase reporter assay. Overexpression of PC1 by a lentivirus packaging PC1-overexpression plasmid (LV-PC1) plasmids markedly eliminated the promotion of miR-4787-5p overexpression on VSMC apoptosis. Finally, it was found that miR-4787-5p deactivated the PI3K/Akt/FKHR pathway, as demonstrated by the down-regulation of phosphorylated (p-)PI3K, p-Akt, and p-FKHR. In conclusion, these findings confirm an important role for the miR-4787-5p/polycystic kidney disease 1 axis in AD pathobiology.


Subject(s)
Aortic Aneurysm/enzymology , Aortic Dissection/enzymology , Apoptosis , Forkhead Box Protein O1/metabolism , MicroRNAs/metabolism , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/enzymology , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TRPP Cation Channels/metabolism , Adult , Aortic Dissection/genetics , Aortic Dissection/pathology , Aorta/enzymology , Aorta/pathology , Aortic Aneurysm/genetics , Aortic Aneurysm/pathology , Case-Control Studies , Cells, Cultured , Female , Gene Expression Regulation , Humans , Male , MicroRNAs/genetics , Middle Aged , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Phosphorylation , Signal Transduction , TRPP Cation Channels/genetics
19.
J Vasc Res ; 58(5): 277-285, 2021.
Article in English | MEDLINE | ID: mdl-33951626

ABSTRACT

The sodium-dependent phosphate transporter, SLC20A1, is required for elevated inorganic phosphate (Pi) induced vascular smooth muscle cell (VSMC) matrix mineralization and phenotype transdifferentiation. Recently, elevated Pi was shown to induce ERK1/2 phosphorylation through SLC20A1 by Pi uptake-independent functions in VSMCs, suggesting a cell signaling response to elevated Pi. Previous studies identified Rap1 guanine nucleotide exchange factor (RapGEF1) as an SLC20A1-interacting protein and RapGEF1 promotes ERK1/2 phosphorylation through Rap1 activation. In this study, we tested the hypothesis that RapGEF1 is a critical component of the SLC20A1-mediated Pi-induced ERK1/2 phosphorylation pathway. Co-localization of SLC20A1 and RapGEF1, knockdown of RapGEF1 with siRNA, and small molecule inhibitors of Rap1, B-Raf, and Mek1/2 were investigated. SLC20A1 and RapGEF1 were co-localized in peri-membranous structures in VSMCs. Knockdown of RapGEF1 and small molecule inhibitors against Rap1, B-Raf, and Mek1/2 eliminated elevated Pi-induced ERK1/2 phosphorylation. Knockdown of RapGEF1 inhibited SM22α mRNA expression and blocked elevated Pi-induced downregulation of SM22α mRNA. Together, these data suggest that RapGEF1 is required for SLC20A1-mediated elevated Pi signaling through a Rap1/B-Raf/Mek1/2 cell signaling pathway, thereby promoting ERK1/2 phosphorylation and inhibiting SM22α gene expression in VSMCs.


Subject(s)
Guanine Nucleotide-Releasing Factor 2/physiology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Phosphates/pharmacology , Animals , Cells, Cultured , Guanine Nucleotide-Releasing Factor 2/genetics , Humans , Mice, Inbred C57BL , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Muscle Proteins/genetics , Muscle Proteins/metabolism , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/enzymology , Phosphorylation , Signal Transduction , Sodium-Phosphate Cotransporter Proteins, Type III/metabolism
20.
J Cardiovasc Pharmacol ; 77(5): 642-649, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33951699

ABSTRACT

ABSTRACT: Atherosclerosis (AS) is one of the most severe cardiovascular diseases involved in the phenotypic switching of vascular smooth muscle cells (VSMCs). Tryptanthrin is a natural product with broad biological activities. However, the effect of tryptanthrin on atherosclerotic progression is unclear. The aim of this study was to determine the role of tryptanthrin in AS and explore the potential mechanism. In vitro, primary VSMCs were stimulated with platelet-derived growth factor-BB (PDGF) to induce cell dedifferentiation. Treatment with tryptanthrin (5 µM or 10 µM) suppressed the proliferation and recovered the contractility of VSMCs in the presence of PDGF. The contractile proteins (α-smooth muscle actin, calponin, and SM22α) were increased, and the synthetic protein vimentin was decreased by tryptanthrin in PDGF-induced VSMCs. ApoE-/- mice fed with high-fat diet were used as an in vivo model of AS. Similarly, gavage administration of tryptanthrin (50 mg/kg or 100 mg/kg) attenuated VSMC phenotypic changes from a contractile to a synthetic state in aortic tissues of AS mice. The serum lipid level, atherosclerotic plaque formation, and arterial intimal hyperplasia were attenuated by tryptanthrin. Furthermore, tryptanthrin increased the expression levels of phosphorylated AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) both in vitro and in vivo. Administration of compound C, an AMPK inhibitor, reversed the inhibitory effect of tryptanthrin on VSMC dedifferentiation in vitro. Thus, we demonstrate that tryptanthrin protects against AS progression through the inhibition of VSMC switching from a contractile to a pathological synthetic phenotype by the activation of AMPK/ACC pathway. It provides novel insights into AS prevention and treatment.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Acetyl-CoA Carboxylase/metabolism , Atherosclerosis/drug therapy , Cell Plasticity/drug effects , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Quinazolines/pharmacology , Animals , Atherosclerosis/enzymology , Atherosclerosis/genetics , Atherosclerosis/pathology , Becaplermin/pharmacology , Cells, Cultured , Disease Models, Animal , Male , Mice, Inbred C57BL , Mice, Knockout, ApoE , Muscle, Smooth, Vascular/enzymology , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/enzymology , Myocytes, Smooth Muscle/pathology , Neointima , Phenotype , Phosphorylation , Plaque, Atherosclerotic , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...