Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38.519
Filter
1.
FASEB J ; 38(17): e70046, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39259502

ABSTRACT

Large-conductance, calcium-activated potassium channels (BK channels) and the Na/K-ATPase are expressed universally in vascular smooth muscle. The Na/K-ATPase may act via changes in the intracellular Ca2+ concentration mediated by the Na/Ca exchanger (NCX) and via Src kinase. Both pathways are known to regulate BK channels. Whether BK channels functionally interact in vascular smooth muscle cells with the Na/K-ATPase remains to be elucidated. Thus, this study addressed the hypothesis that BK channels limit ouabain-induced vasocontraction. Rat mesenteric arteries were studied using isometric myography, FURA-2 fluorimetry and proximity ligation assay. The BK channel blocker iberiotoxin potentiated methoxamine-induced contractions. The cardiotonic steroid, ouabain (10-5 M), induced a contractile effect of IBTX at basal tension prior to methoxamine administration and enhanced the pro-contractile effect of IBTX on methoxamine-induced contractions. These facilitating effects of ouabain were prevented by the inhibition of either NCX or Src kinase. Furthermore, inhibition of NCX or Src kinase reduced the BK channel-mediated negative feedback regulation of arterial contraction. The effects of NCX and Src kinase inhibition were independent of each other. Co-localization of the Na/K-ATPase and the BK channel was evident. Our data suggest that BK channels limit ouabain-induced vasocontraction by a dual mechanism involving the NCX and Src kinase signaling. The data propose that the NCX and the Src kinase pathways, mediating the ouabain-induced activation of the BK channel, act in an independent manner.


Subject(s)
Large-Conductance Calcium-Activated Potassium Channels , Mesenteric Arteries , Muscle, Smooth, Vascular , Ouabain , Sodium-Calcium Exchanger , Sodium-Potassium-Exchanging ATPase , src-Family Kinases , Animals , Ouabain/pharmacology , src-Family Kinases/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Rats , Male , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Mesenteric Arteries/drug effects , Mesenteric Arteries/metabolism , Sodium-Calcium Exchanger/metabolism , Vasoconstriction/drug effects , Rats, Wistar , Muscle Contraction/drug effects
2.
Biol Pharm Bull ; 47(9): 1467-1476, 2024.
Article in English | MEDLINE | ID: mdl-39218668

ABSTRACT

Since its first discovery as a bioactive phospholipid inducing potent platelet aggregation, platelet-activating factor (PAF) has been shown to be involved in a wide variety of inflammatory and allergic disease states. Many pharmacological studies in the 1980s and 1990s also showed that PAF induces endothelium-dependent vascular relaxation and contraction of various smooth muscles (SMs), including those in the airway, gastrointestinal organs, and uterus. However, since the late 1990s, there have been few reports on the SM contractions induced by PAF. The lower urinary tract (LUT), particularly the urinary bladder (UB) has attracted recent attention in SM pharmacology research because patients with LUT dysfunctions including overactive bladder are increasing as the population ages. In addition, recent clinical studies have implicated the substantial role of PAF in the inflammatory state in LUT because its production increases with smoking and with cancer. However, the effects of PAF on mechanical activities of LUT SMs including UBSM have not been investigated to date. Recently, we found that PAF very strongly increased mechanical activities of UBSM in guinea pigs and mice, and partly elucidated the possible mechanisms underlying these actions of PAF. In this review, we describe the effects of PAF on LUT SMs by introducing our recent findings obtained in isolated UBSMs and discuss the physiological and pathophysiological significance. We also introduce our data showing the effects of PAF on the SM mechanical activities of genital tissues (prostate and vas deferens).


Subject(s)
Muscle Contraction , Muscle, Smooth , Platelet Activating Factor , Platelet Activating Factor/pharmacology , Platelet Activating Factor/metabolism , Animals , Humans , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Muscle, Smooth/metabolism , Muscle Contraction/drug effects , Urinary Bladder/drug effects , Urinary Bladder/metabolism , Urinary Bladder/physiology , Male , Female
3.
PLoS One ; 19(8): e0307932, 2024.
Article in English | MEDLINE | ID: mdl-39116057

ABSTRACT

Determining the female animal cycle is crucial in preclinical studies and animal husbandry. Changes in hormone levels during the cycle affect physiological responses, including altered contractility of the visceral smooth muscle. The study aimed to identify estrus and anestrus using smooth muscle electromyographic (SMEMG) measurements, in vivo fluorescent imaging (IVIS) and in vitro organ contractility of the uterus and cecum. The study involved sexually mature female Sprague-Dawley rats, aged 10-12 weeks. The rats received a daily injection of cetrorelix acetate solution for 7 days, while another group served as the control. The animals were subjected to gastrointestinal and myometrial SMEMG. The change in αvß3 integrin activity was measured with IVIS in the abdominal cavity. Contractility studies were performed in isolated organ baths using dissected uterus and cecum samples. Plasma samples were collected for hormone level measurements. A 3-fold increase in spontaneous contraction activity was detected in SMEMG measurements, while a significant decrease in αvß3 integrin was measured in the IVIS imaging procedure. Cetrorelix reduced the level of LH and the progesterone / estradiol ratio, increased the spontaneous activity of the cecum rings, and enhanced KCl-evoked contractions in the uterus. We found a significant change in the rate of SMEMG signals, indicating simultaneous increases in the contraction of the cecum and the non-pregnant uterus, as evidenced by isolated organ bath results. Fluorescence imaging showed high levels of uterine αvß3 integrin during the proestrus-estrus phase, but inhibiting the sexual cycle reduced fluorescence activity. Based on the results, the SMEMG and IVIS imaging methods are suitable for detecting estrus phase alterations in rats.


Subject(s)
Electromyography , Estrous Cycle , Rats, Sprague-Dawley , Animals , Female , Rats , Estrous Cycle/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Progesterone/blood , Muscle Contraction/drug effects , Estrus/physiology , Uterus/physiology , Uterus/drug effects , Cecum/drug effects , Integrin alphaVbeta3/metabolism , Estradiol/blood , Estradiol/analogs & derivatives
4.
Life Sci Alliance ; 7(11)2024 Nov.
Article in English | MEDLINE | ID: mdl-39122555

ABSTRACT

Reduction in muscle contractile force associated with many clinical conditions incurs serious morbidity and increased mortality. Here, we report the first evidence that JAK inhibition impacts contractile force in normal human muscle. Muscle biopsies were taken from patients who were randomized to receive tofacitinib (n = 16) or placebo (n = 17) for 48 h. Single-fiber contractile force and molecular studies were carried out. The contractile force of individual diaphragm myofibers pooled from the tofacitinib group (n = 248 fibers) was significantly higher than those from the placebo group (n = 238 fibers), with a 15.7% greater mean maximum specific force (P = 0.0016). Tofacitinib treatment similarly increased fiber force in the serratus anterior muscle. The increased force was associated with reduced muscle protein oxidation and FoxO-ubiquitination-proteasome signaling, and increased levels of smooth muscle MYLK. Inhibition of MYLK attenuated the tofacitinib-dependent increase in fiber force. These data demonstrate that tofacitinib increases the contractile force of skeletal muscle and offers several underlying mechanisms. Inhibition of the JAK-STAT pathway is thus a potential new therapy for the muscle dysfunction that occurs in many clinical conditions.


Subject(s)
Janus Kinase Inhibitors , Muscle Contraction , Muscle, Skeletal , Piperidines , Pyrimidines , Humans , Piperidines/pharmacology , Pyrimidines/pharmacology , Muscle Contraction/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Janus Kinase Inhibitors/pharmacology , Male , Pyrroles/pharmacology , Female , Adult , Signal Transduction/drug effects , Middle Aged , Janus Kinases/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism
5.
Toxicol Appl Pharmacol ; 491: 117070, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39151807

ABSTRACT

AIMS: It is well established that intracellular cAMP contributes to the relaxation of vas deferens smooth muscle. In many tissues, intracellular cAMP is actively transported to the extracellular space, where it exerts regulatory functions, via its metabolite adenosine. These actions take place through the cAMP conversion to adenosine by ectoenzymes, a process called "extracellular cAMP-adenosine pathway". Herein, we investigated whether, in addition to ATP, extracellular cAMP might be an alternative source of adenosine, influencing the contraction of vas deferens smooth muscle. MAIN METHODS: The effects of cAMP, 8-Br-cAMP and adenosine were analyzed in the isometric contractions of rat vas deferens. cAMP efflux was analyzed by measuring extracellular cAMP levels after exposure of vas deferens segments to isoproterenol and forskolin in the presence or absence of MK-571, an inhibitor of MRP/ABCC transporters. KEY FINDINGS: While 8-Br-cAMP, a cell-permeable cAMP analog, induced relaxation of KCl-precontracted vas deferens, the non-permeant cAMP increased the KCl-induced contractile response, which was mimicked by adenosine, but prevented by inhibitors of ecto-5'-nucleotidase or A1 receptors. Our results also showed that isoproterenol and forskolin increases cAMP efflux via an MRP/ABCC transporter-dependent mechanism, since it is inhibited by MK-571. SIGNIFICANCE: Our data show that activation of ß-adrenoceptors and adenylyl cyclase increases cAMP efflux from vas deferens tissue, which modulates the vas deferens contractile response via activation of adenosine A1 receptors. Assuming that inhibition of vas deferens contractility has been proposed as a strategy for male contraception, the extracellular cAMP-adenosine pathway emerges as a potential pharmacological target that should be considered in studies of male fertility.


Subject(s)
5'-Nucleotidase , Cyclic AMP , Muscle Contraction , Rats, Wistar , Receptor, Adenosine A1 , Vas Deferens , Male , Animals , Vas Deferens/drug effects , Vas Deferens/metabolism , Cyclic AMP/metabolism , 5'-Nucleotidase/metabolism , Receptor, Adenosine A1/metabolism , Receptor, Adenosine A1/drug effects , Rats , Muscle Contraction/drug effects , Adenosine/pharmacology , Adenosine/analogs & derivatives , Adenosine/metabolism , Isoproterenol/pharmacology , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Colforsin/pharmacology
6.
Int J Nanomedicine ; 19: 8043-8058, 2024.
Article in English | MEDLINE | ID: mdl-39130686

ABSTRACT

Introduction: Rhabdomyolysis, as an acute stage of myopathy, causes kidney damage. It is known that this pathology is caused by the accumulation of muscle breakdown products and is associated with oxidative stress. Therefore, the present study evaluated the effect of intraperitoneal administration (dose 1 mg/kg) of water-soluble C60 fullerenes, as powerful antioxidants, on the development of rat kidney damage due to rhabdomyolysis caused by mechanical trauma of the muscle soleus of different severity (crush syndrome lasting 1 min under a pressure of 2.5, 3.5, and 4.5 kg/cm2, respectively). Methods: Using tensometry, biochemical and histopathological analyses, the biomechanical parameters of muscle soleus contraction (contraction force and integrated muscle power), biochemical indicators of rat blood (concentrations of creatinine, creatine phosphokinase, urea and hydrogen peroxide, catalase and superoxide dismutase activity), glomerular filtration rate and fractional sodium excretion value, as well as pathohistological and morphometric features of muscle and kidney damages in rats on days 1, 3, 6 and 9 after the initiation of the injury were studied. Results: Positive changes in biomechanical and biochemical parameters were found during the experiment by about 27-30 ± 2%, as well as a decrease in pathohistological and morphometric features of muscle and kidney damages in rats treated with water-soluble C60 fullerenes. Conclusion: These findings indicate the potential application of water-soluble C60 fullerenes in the treatment of pathological conditions of the muscular system caused by rhabdomyolysis and the associated oxidative stress.


Subject(s)
Acute Kidney Injury , Fullerenes , Muscle, Skeletal , Rats, Wistar , Rhabdomyolysis , Animals , Fullerenes/chemistry , Fullerenes/pharmacology , Fullerenes/administration & dosage , Male , Acute Kidney Injury/etiology , Acute Kidney Injury/drug therapy , Muscle, Skeletal/drug effects , Rats , Antioxidants/pharmacology , Oxidative Stress/drug effects , Kidney/drug effects , Muscle Contraction/drug effects
7.
J Biochem Mol Toxicol ; 38(9): e23813, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39148253

ABSTRACT

The rupture of intracranial aneurysm (IA) is the primary reason contributing to the occurrence of life-threatening subarachnoid hemorrhages. The oxidative stress-induced phenotypic transformation from the contractile phenotype to the synthetic phenotype of vascular smooth muscle cells (VSMCs) plays a pivotal role in IA formation and rupture. Our study aimed to figure out the role of phoenixin-14 in VSMC phenotypic switching during the pathogenesis of IA by using both cellular and animal models. Primary rat VSMCs were isolated from the Willis circle of male Sprague-Dawley rats. VSMCs were stimulated by hydrogen peroxide (H2O2) to establish a cell oxidative damage model. After pretreatment with phoenixin-14 and exposure to H2O2, VSMC viability, migration, and invasion were examined through cell counting kit-8 (CCK-8), wound healing, and Transwell assays. Intracellular reactive oxygen species (ROS) production in VSMCs was evaluated by using 2',7'-Dichlorofluorescin diacetate (DCFH-DA) fluorescence probes and flow cytometry. Rat IA models were established by ligation of the left common carotid arteries and posterior branches of both renal arteries. The histopathological changes of rat intracranial blood vessels were observed through hematoxylin and eosin staining. The levels of contractile phenotype markers (alpha-smooth muscle actin [α-SMA] and smooth muscle 22 alpha [SM22α]) in VSMCs and rat arterial rings were determined through real-time quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. Our results showed that H2O2 stimulated the production of intracellular ROS and induced oxidative stress in VSMCs, while phoenixin-14 pretreatment attenuated intracellular ROS levels in H2O2-exposed VSMCs. H2O2 exposure promoted VSMC migration and invasion, which, however, was reversed by phoenixin-14 pretreatment. Besides, phoenixin-14 administration inhibited IA formation and rupture in rat models. The decrease in α-SMA and SM22α levels in H2O2-exposed VSMCs and IA rat models was antagonized by phoenixin-14. Collectively, phoenixin-14 ameliorates the progression of IA through preventing the loss of the contractile phenotype of VSMCs.


Subject(s)
Intracranial Aneurysm , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Rats, Sprague-Dawley , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Rats , Male , Intracranial Aneurysm/pathology , Intracranial Aneurysm/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Hydrogen Peroxide/pharmacology , Muscle Contraction/drug effects
8.
Molecules ; 29(16)2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39202883

ABSTRACT

The synthesized compound 1-(2-chlorophenyl) 6-7-dimethoxy-3-methyl-3,4-dihydroisoquinoline (DIQ) was investigated as a biological agent. Its potential to affect muscle contractility was predicted through in silico PASS analysis. Based on the in silico analysis, its capabilities were experimentally investigated. The study aimed to investigate the effects of DIQ on the ex vivo spontaneous contractile activity (CA) of smooth muscle (SM) tissue. DIQ was observed to reduce the strength of Ca2+-dependent contractions in SM preparations (SMP), possibly by increasing cytosolic Ca2+ levels through the activation of a voltage-gated L-type Ca2+ channel. DIQ potently affected calcium currents by modulating the function of muscarinic acetylcholine receptors (mAChRs) and 5-hydroxytryptamine (5-HT) receptors at a concentration of 50 µM. Immunohistochemical tests showed a 47% reduction in 5-HT2A and 5-HT2B receptor activity in SM cells and neurons in the myenteric plexus (MP), further confirming the effects of DIQ. Furthermore, a significant inhibition of neuronal activity was observed when the compound was co-administered with 5-HT to SM tissues. The conducted experiments confirm the ability of the isoquinoline analog to act as a physiologically active molecule to control muscle contractility and related physiological processes.


Subject(s)
Isoquinolines , Muscle Contraction , Muscle, Smooth , Animals , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Isoquinolines/pharmacology , Isoquinolines/chemistry , Calcium/metabolism , Receptors, Serotonin/metabolism , Rats , Receptors, Muscarinic/metabolism , Male , Neurons/drug effects , Neurons/metabolism
9.
Neurogastroenterol Motil ; 36(9): e14859, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38988105

ABSTRACT

BACKGROUND: Esophagogastric junction outflow obstruction (EGJOO) is a heterogenous disorder in which the correct management strategy is unclear. We assessed whether functional lumen imaging probe (FLIP) topography data could select EGJOO, which would benefit from lower esophageal sphincter Botulinum toxin (Botox) injection. METHODS: This was a single-center prospective study of adult patients meeting Chicago Classification (CC) v3.0 criteria for EGJOO. We assessed differences in pretreatment physiologic measurements on high-resolution manometry (HRM) and FLIP and other relevant clinical variables in predicting Botox response (>50% in BEDQ at 2 months). KEY RESULTS: Sixty-nine patients were included (ages 33-90, 73.9% female). Of these, 42 (61%) were Botox responders. Majority of physiologic measures on HRM and FLIP and esophageal emptying were not different based on Botox response. However, a spastic-reactive (SR) FLIP contractile response (CR) pattern predicted a Botox response with OR 25.6 (CI 2.9-229.6) when compared to antegrade FLIP CR; and OR for impaired-disordered/absent CR was 22.5 (CI 2.5-206.7). Logistic regression model using backward elimination (p value = 0.0001, AUC 0.79) showed that a SRCR or IDCR/absent response and the upright IRP predicted Botox response. Response rates in tiered diagnostic groups were: (i) CCv3.0 EGJOO (60.9%), (ii) CCv4.0 EGJOO (73.1%), (iii) CCv4.0 + FLIP REO (80%), (iv) CCv4.0, FLIP REO, and abnormal FLIP CR (84.2%), and (v) CCv4.0, FLIP REO, and SR FLIP CR (90%). CONCLUSIONS AND INFERENCES: FLIP helps identify patients with EGJOO who are likely to response to LES Botox therapy. An abnormal FLIP contractile response pattern is the single-most important predictor of a Botox response.


Subject(s)
Botulinum Toxins, Type A , Esophageal Motility Disorders , Esophagogastric Junction , Manometry , Humans , Female , Middle Aged , Male , Aged , Adult , Esophagogastric Junction/physiopathology , Esophagogastric Junction/drug effects , Manometry/methods , Esophageal Motility Disorders/drug therapy , Esophageal Motility Disorders/physiopathology , Prospective Studies , Botulinum Toxins, Type A/pharmacology , Botulinum Toxins, Type A/therapeutic use , Aged, 80 and over , Muscle Contraction/drug effects , Neuromuscular Agents/pharmacology , Neuromuscular Agents/therapeutic use , Treatment Outcome
10.
Sci Rep ; 14(1): 16442, 2024 07 16.
Article in English | MEDLINE | ID: mdl-39013997

ABSTRACT

Wounds that occur in adults form scars due to fibrosis, whereas those in embryos regenerate. If wound healing in embryos is mimicked in adults, scarring can be reduced. We found that mouse fetuses could regenerate tissues up to embryonic day (E) 13, but visible scars remained thereafter. This regeneration pattern requires actin cable formation at the epithelial wound margin via activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK). Here, we investigated whether the AMPK-activating effect of salicylate, an anti-inflammatory drug, promotes regenerative wound healing. Salicylate administration resulted in actin cable formation and complete wound regeneration in E14 fetuses, in which scarring should have normally occurred, and promoted contraction of the panniculus carnosus muscle, resulting in complete wound regeneration. In vitro, salicylate further induced actin remodeling in mouse epidermal keratinocytes in a manner dependent on cell and substrate target-specific AMPK activation and subsequent regulation of Rac1 signaling. Furthermore, salicylate promoted epithelialization, enhanced panniculus carnosus muscle contraction, and inhibited scar formation in adult mice. Administration of salicylates to wounds immediately after injury may be a novel method for preventing scarring by promoting a wound healing pattern similar to that of embryonic wounds.


Subject(s)
AMP-Activated Protein Kinases , Actins , Wound Healing , Animals , AMP-Activated Protein Kinases/metabolism , Wound Healing/drug effects , Mice , Actins/metabolism , Salicylates/pharmacology , Keratinocytes/drug effects , Keratinocytes/metabolism , rac1 GTP-Binding Protein/metabolism , Muscle Contraction/drug effects , Signal Transduction/drug effects , Cicatrix/metabolism , Cicatrix/pathology , Enzyme Activation/drug effects
11.
Pflugers Arch ; 476(8): 1263-1277, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38963545

ABSTRACT

6-Cyanodopamine is a novel catecholamine released from rabbit isolated heart. However, it is not known whether this catecholamine presents any biological activity. Here, it was evaluated whether 6-cyanodopamine (6-CYD) is released from rat vas deferens and its effect on this tissue contractility. Basal release of 6-CYD, 6-nitrodopamine (6-ND), 6-bromodopamine, 6-nitrodopa, and 6-nitroadrenaline from vas deferens were quantified by LC-MS/MS. Electric-field stimulation (EFS) and concentration-response curves to noradrenaline, adrenaline, and dopamine of the rat isolated epididymal vas deferens (RIEVD) were performed in the absence and presence of 6-CYD and /or 6-ND. Expression of tyrosine hydroxylase was assessed by immunohistochemistry. The rat isolated vas deferens released significant amounts of both 6-CYD and 6-ND. The voltage-gated sodium channel blocker tetrodotoxin had no effect on the release of 6-CYD, but it virtually abolished 6-ND release. 6-CYD alone exhibited a negligible RIEVD contractile activity; however, at 10 nM, 6-CYD significantly potentiated the noradrenaline- and EFS-induced RIEVD contractions, whereas at 10 and 100 nM, it also significantly potentiated the adrenaline- and dopamine-induced contractions. The potentiation of noradrenaline- and adrenaline-induced contractions by 6-CYD was unaffected by tetrodotoxin. Co-incubation of 6-CYD (100 pM) with 6-ND (10 pM) caused a significant leftward shift and increased the maximal contractile responses to noradrenaline, even in the presence of tetrodotoxin. Immunohistochemistry revealed the presence of tyrosine hydroxylase in both epithelial cell cytoplasm of the mucosae and nerve fibers of RIEVD. The identification of epithelium-derived 6-CYD and its remarkable synergism with catecholamines indicate that epithelial cells may regulate vas deferens smooth muscle contractility.


Subject(s)
Dopamine , Muscle Contraction , Vas Deferens , Male , Animals , Vas Deferens/drug effects , Vas Deferens/metabolism , Vas Deferens/physiology , Muscle Contraction/drug effects , Rats , Dopamine/metabolism , Dopamine/pharmacology , Rats, Wistar , Norepinephrine/pharmacology , Norepinephrine/metabolism , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Muscle, Smooth/physiology , Electric Stimulation , Epinephrine/pharmacology , Tyrosine 3-Monooxygenase/metabolism
12.
Exp Physiol ; 109(9): 1545-1556, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38979869

ABSTRACT

Gut motility undergoes a switch from myogenic to neurogenic control in late embryonic development. Here, we report on the electrical events that underlie this transition in the enteric nervous system, using the GCaMP6f reporter in neural crest cell derivatives. We found that spontaneous calcium activity is tetrodotoxin (TTX) resistant at stage E11.5, but not at E18.5. Motility at E18.5 was characterized by periodic, alternating high- and low-frequency contractions of the circular smooth muscle; this frequency modulation was inhibited by TTX. Calcium imaging at the neurogenic-motility stages E18.5-P3 showed that CaV1.2-positive neurons exhibited spontaneous calcium activity, which was inhibited by nicardipine and 2-aminoethoxydiphenyl borate (2-APB). Our protocol locally prevented muscle tone relaxation, arguing for a direct effect of nicardipine on enteric neurons, rather than indirectly by its relaxing effect on muscle. We demonstrated that the ENS was mechanosensitive from early stages on (E14.5) and that this behaviour was TTX and 2-APB resistant. We extended our results on L-type channel-dependent spontaneous activity and TTX-resistant mechanosensitivity to the adult colon. Our results shed light on the critical transition from myogenic to neurogenic motility in the developing gut, as well as on the intriguing pathways mediating electro-mechanical sensitivity in the enteric nervous system. HIGHLIGHTS: What is the central question of this study? What are the first neural electric events underlying the transition from myogenic to neurogenic motility in the developing gut, what channels do they depend on, and does the enteric nervous system already exhibit mechanosensitivity? What is the main finding and its importance? ENS calcium activity is sensitive to tetrodotoxin at stage E18.5 but not E11.5. Spontaneous electric activity at fetal and adult stages is crucially dependent on L-type calcium channels and IP3R receptors, and the enteric nervous system exhibits a tetrodotoxin-resistant mechanosensitive response. Abstract figure legend Tetrodotoxin-resistant Ca2+ rise induced by mechanical stimulation in the E18.5 mouse duodenum.


Subject(s)
Calcium Channels, L-Type , Calcium , Enteric Nervous System , Gastrointestinal Motility , Neurons , Tetrodotoxin , Animals , Calcium Channels, L-Type/metabolism , Tetrodotoxin/pharmacology , Enteric Nervous System/drug effects , Enteric Nervous System/metabolism , Enteric Nervous System/physiology , Mice , Neurons/drug effects , Neurons/metabolism , Neurons/physiology , Gastrointestinal Motility/drug effects , Gastrointestinal Motility/physiology , Calcium/metabolism , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Muscle, Smooth/physiology , Mice, Inbred C57BL , Calcium Channel Blockers/pharmacology , Female , Muscle Contraction/drug effects , Muscle Contraction/physiology , Nicardipine/pharmacology , Boron Compounds
13.
Function (Oxf) ; 5(5)2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39075985

ABSTRACT

Lymphatic dysfunction is an underlying component of multiple metabolic diseases, including diabetes, obesity, and metabolic syndrome. We investigated the roles of KATP channels in lymphatic contractile dysfunction in response to acute metabolic stress induced by inhibition of the mitochondrial electron transport chain. Ex vivo popliteal lymphatic vessels from mice were exposed to the electron transport chain inhibitors antimycin A and rotenone, or the oxidative phosphorylation inhibitor/protonophore, CCCP. Each inhibitor led to a significant reduction in the frequency of spontaneous lymphatic contractions and calculated pump flow, without a significant change in contraction amplitude. Contraction frequency was restored by the KATP channel inhibitor, glibenclamide. Lymphatic vessels from mice with global Kir6.1 deficiency or expressing a smooth muscle-specific dominant negative Kir6.1 channel were resistant to inhibition. Antimycin A inhibited the spontaneous action potentials generated in lymphatic muscle and this effect was reversed by glibenclamide, confirming the role of KATP channels. Antimycin A, but not rotenone or CCCP, increased dihydrorhodamine fluorescence in lymphatic muscle, indicating ROS production. Pretreatment with tiron or catalase prevented the effect of antimycin A on wild-type lymphatic vessels, consistent with its action being mediated by ROS. Our results support the conclusion that KATP channels in lymphatic muscle can be directly activated by reduced mitochondrial ATP production or ROS generation, consequent to acute metabolic stress, leading to contractile dysfunction through inhibition of the ionic pacemaker controlling spontaneous lymphatic contractions. We propose that a similar activation of KATP channels contributes to lymphatic dysfunction in metabolic disease.


Subject(s)
KATP Channels , Lymphatic Vessels , Muscle Contraction , Stress, Physiological , Animals , KATP Channels/metabolism , Mice , Lymphatic Vessels/metabolism , Lymphatic Vessels/drug effects , Muscle Contraction/drug effects , Stress, Physiological/physiology , Stress, Physiological/drug effects , Glyburide/pharmacology , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Antimycin A/pharmacology , Male
14.
Biomed Pharmacother ; 177: 117066, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38981242

ABSTRACT

BACKGROUND: The immunomodulatory imide drugs (IMiDs) thalidomide, lenalidomide and pomalidomide may exhibit therapeutic efficacy in the prostate. In lower urinary tract symptoms (LUTS), voiding and storage disorders may arise from benign prostate hyperplasia, or overactive bladder. While current therapeutic options target smooth muscle contraction or cell proliferation, side effects are mostly cardiovascular. Therefore, we investigated effects of IMiDs on human detrusor and porcine artery smooth muscle contraction, and growth-related functions in detrusor smooth muscle cells (HBdSMC). METHODS: Cell viability was assessed by CCK8, and apoptosis and cell death by flow cytometry in cultured HBdSMC. Contractions of human detrusor tissues and porcine interlobar and coronary arteries were induced by contractile agonists, or electric field stimulation (EFS) in the presence or absence of an IMID using an organ bath. Proliferation was assessed by EdU assay and colony formation, cytoskeletal organization by phalloidin staining, RESULTS: Depending on tissue type, IMiDs inhibited cholinergic contractions with varying degree, up to 50 %, while non-cholinergic contractions were inhibited up to 80 % and 60 % for U46619 and endothelin-1, respectively, and EFS-induced contractions up to 75 %. IMiDs reduced viable HBdSM cells in a time-dependent manner. Correspondingly, proliferation was reduced, without showing pro-apoptotic effects. In parallel, IMiDs induced cytoskeletal disorganization. CONCLUSIONS: IMiDs exhibit regulatory functions in various smooth muscle-rich tissues, and of cell proliferation in the lower urinary tract. This points to a novel drug class effect for IMiDs, in which the molecular mechanisms of action of IMiDs merit further consideration for the application in LUTS.


Subject(s)
Cell Proliferation , Muscle Contraction , Myocytes, Smooth Muscle , Urinary Bladder , Humans , Muscle Contraction/drug effects , Cell Proliferation/drug effects , Urinary Bladder/drug effects , Myocytes, Smooth Muscle/drug effects , Animals , Swine , Male , Thalidomide/pharmacology , Thalidomide/analogs & derivatives , Muscle, Smooth/drug effects , Immunomodulating Agents/pharmacology , Cells, Cultured , Apoptosis/drug effects , Cell Survival/drug effects , Lenalidomide/pharmacology
15.
Bull Exp Biol Med ; 177(1): 47-50, 2024 May.
Article in English | MEDLINE | ID: mdl-38955852

ABSTRACT

Ectonucleotidases play an important role in regulating the level of extracellular nucleotides and nucleosides and are an important part of the regulation of the effects of adenosine and ATP on adenosine and P2 receptors, respectively. We have previously established the ambiguous effect of P2 receptor agonists on the contractile activity of smooth muscle tissue in rats with the valproate model of autism. In this work, HPLC was used to evaluate the activity of ectonucleotidases in the smooth muscle tissues of the internal organs of rats with a valproate model of autism. The activity of ectonucleotidases was significantly higher in the smooth muscle tissues of the duodenum, vas deferens, and bladder, but lower in the ileum and uterus. The results obtained make it possible to compare the activity of ectonucleotidases identified here with changes in P2 receptor-mediated contractility of smooth muscle tissues revealed in our previous experiments.


Subject(s)
Autistic Disorder , Muscle Contraction , Muscle, Smooth , Urinary Bladder , Valproic Acid , Vas Deferens , Animals , Rats , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Valproic Acid/pharmacology , Autistic Disorder/metabolism , Autistic Disorder/chemically induced , Autistic Disorder/drug therapy , Male , Female , Vas Deferens/drug effects , Vas Deferens/metabolism , Urinary Bladder/drug effects , Urinary Bladder/metabolism , Urinary Bladder/enzymology , Muscle Contraction/drug effects , Uterus/drug effects , Uterus/metabolism , Ileum/drug effects , Ileum/metabolism , Ileum/enzymology , Disease Models, Animal , Rats, Wistar , Receptors, Purinergic P2/metabolism , Adenosine Triphosphatases/metabolism
16.
Int J Med Sci ; 21(9): 1783-1789, 2024.
Article in English | MEDLINE | ID: mdl-39006842

ABSTRACT

Objectives: Nocturia with or without asthma is one of the aging diseases. Desmopressin has been used as a nasal spray for patients who are suffering from nocturia. This study determined the effects of desmopressin on isolated tracheal smooth muscle in vitro. Methods: We evaluated desmopressin's efficiency on isolated rat tracheal smooth muscle. Desmopressin was evaluated for the following effects on tracheal smooth muscle: (1) effect on resting tension; (2) effect on contraction brought on by parasympathetic mimetic 10-6 M methacholine; and (3) effect on electrically produced tracheal smooth muscle contractions. Results: As the concentration grew, desmopressin by itself had no impact on the trachea's baseline tension. Addition of desmopressin at doses of 10-5 M or above elicited a significant relaxation response to 10-6 M methacholine-induced contraction. Desmopressin could also inhibit spike contraction of the trachea induced by electrical field. Conclusion: According to this study, desmopressin at high quantities may prevent the trachea's parasympathetic activity. Due to its ability to block parasympathetic activity and lessen the contraction of the tracheal smooth muscle brought on by methacholine, Desmopressin nasal spray might help nocturia sufferers experience fewer asthma attacks.


Subject(s)
Deamino Arginine Vasopressin , Muscle Contraction , Muscle, Smooth , Nasal Sprays , Trachea , Animals , Trachea/drug effects , Muscle, Smooth/drug effects , Deamino Arginine Vasopressin/pharmacology , Deamino Arginine Vasopressin/administration & dosage , Rats , Muscle Contraction/drug effects , Male , Methacholine Chloride/administration & dosage , Methacholine Chloride/pharmacology , Humans , Parasympathetic Nervous System/drug effects
17.
Biol Pharm Bull ; 47(7): 1368-1375, 2024.
Article in English | MEDLINE | ID: mdl-39085076

ABSTRACT

We previously reported that the sustained component of contraction induced by depolarizing stimulation by high K+ concentration in rat caudal arterial smooth muscle involves a Ca2+-induced Ca2+ sensitization mechanism whereby Ca2+ entry through voltage-gated Ca2+ channels activates proline-rich tyrosine kinase 2 (Pyk2), leading to activation of RhoA/Rho-associated kinase (ROCK). In the present study, we investigated a potential role for Pyk2-mediated RhoA/ROCK activation in contraction mediated by elevation of cytosolic free Ca2+ concentration ([Ca2+]i) induced by a Ca2+ ionophore, ionomycin, rather than by depolarizing stimulation. Ionomycin (60 µM) induced slow and sustained contraction of rat caudal arterial smooth muscle due to influx of Ca2+. Pre-treatment with a myosin light chain kinase (MLCK) inhibitor, ML-9 (30 µM), inhibited both the early phase (4 min) and the sustained phase (30 min) of ionomycin-induced contraction. On the other hand, a ROCK inhibitor, HA-1077 (3 µM), and Pyk2 inhibitors, sodium salicylate (10 mM) and PF-431396 (3 µM), suppressed only the sustained phase of ionomycin-induced contraction. A calmodulin (CaM) inhibitor, W-7 (150 µM), but not W-5 (150 µM), suppressed the early phase of contraction. Early or sustained increase of ionomycin-induced 20 kDa light chain of myosin (LC20) phosphorylation was inhibited by each inhibitor in a manner similar to the attenuation of contraction. These results indicate that the early phase of ionomycin-induced contraction is mediated by MLCK activation by [Ca2+]i elevation, whereas the sustained phase of ionomycin-induced contraction involves RhoA/ROCK activation and inhibition of myosin light chain phosphatase (MLCP) through CaM-independent Pyk2 activation by [Ca2+]i elevation.


Subject(s)
Calcium , Ionomycin , Muscle Contraction , rho-Associated Kinases , Animals , Ionomycin/pharmacology , Male , Muscle Contraction/drug effects , Calcium/metabolism , rho-Associated Kinases/metabolism , rho-Associated Kinases/antagonists & inhibitors , Myosin-Light-Chain Kinase/metabolism , Myosin-Light-Chain Kinase/antagonists & inhibitors , Rats , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/physiology , Muscle, Smooth, Vascular/metabolism , Focal Adhesion Kinase 2/metabolism , Calcium Ionophores/pharmacology , rhoA GTP-Binding Protein/metabolism , Rats, Sprague-Dawley , Rats, Wistar , Calmodulin/metabolism
18.
Pharmacol Rep ; 76(4): 807-822, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38858312

ABSTRACT

BACKGROUND: Apart from antagonizing ß-adrenoceptors, carvedilol antagonizes vascular α1-adrenoceptors and activates G protein-independent signaling. Even though it is a commonly used antihypertensive and α1-adrenoceptors are essential for the treatment of voiding symptoms in benign prostatic hyperplasia, its actions in the human prostate are still unknown. Here, we examined carvedilol effects on contractions of human prostate tissues, and on stromal cell growth. METHODS: Contractions of prostate tissues from radical prostatectomy were induced by electric field stimulation (EFS) or α1-agonists. Growth-related functions were examined in cultured stromal cells. RESULTS: Concentration-response curves for phenylephrine, methoxamine and noradrenaline were right shifted by carvedilol (0.1-10 µM), around half a magnitude with 100 nM, half to one magnitude with 1 µM, and two magnitudes with 10 µM. Right shifts were reflected by increased EC50 values for agonists, with unchanged Emax values. EFS-induced contractions were reduced by 21-54% with 0.01-1 µM carvedilol, and by 94% by 10 µM. Colony numbers of stromal cells were increased by 500 nM, but reduced by 1-10 µM carvedilol, while all concentrations reduced colony size. Decreases in viability were time-dependent with 0.1-0.3 µM, but complete with 10 µM. Proliferation was slightly increased by 0.1-0.5 µM, but reduced with 1-10 µM. CONCLUSIONS: Carvedilol antagonizes α1-adrenoceptors in the human prostate, starting with concentrations in ranges of known plasma levels. In vitro, effect sizes resemble those of α1-blockers used for the treatment of voiding symptoms, which requires concentrations beyond plasma levels. Bidirectional and dynamic effects on the growth of stromal cells may be attributed to "biased agonism".


Subject(s)
Carvedilol , Cell Proliferation , Dose-Response Relationship, Drug , Prostate , Stromal Cells , Carvedilol/pharmacology , Humans , Male , Stromal Cells/drug effects , Stromal Cells/metabolism , Prostate/drug effects , Cell Proliferation/drug effects , Muscle Contraction/drug effects , Adrenergic alpha-1 Receptor Antagonists/pharmacology , Cells, Cultured , Electric Stimulation , Norepinephrine/pharmacology , Propanolamines/pharmacology , Middle Aged , Aged , Methoxamine/pharmacology , Phenylephrine/pharmacology , Prostatic Hyperplasia/drug therapy , Prostatic Hyperplasia/pathology , Adrenergic alpha-1 Receptor Agonists/pharmacology , Receptors, Adrenergic, alpha-1/drug effects , Receptors, Adrenergic, alpha-1/metabolism
19.
Int J Mol Sci ; 25(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38892380

ABSTRACT

Levosimendan's calcium sensitizing effects in heart muscle cells are well established; yet, its potential impact on skeletal muscle cells has not been evidently determined. Despite controversial results, levosimendan is still expected to interact with skeletal muscle through off-target sites (further than troponin C). Adding to this debate, we investigated levosimendan's acute impact on fast-twitch skeletal muscle biomechanics in a length-dependent activation study by submersing single muscle fibres in a levosimendan-supplemented solution. We employed our MyoRobot technology to investigate the calcium sensitivity of skinned single muscle fibres alongside their stress-strain response in the presence or absence of levosimendan (100 µM). While control data are in agreement with the theory of length-dependent activation, levosimendan appears to shift the onset of the 'descending limb' of active force generation to longer sarcomere lengths without notably improving myofibrillar calcium sensitivity. Passive stretches in the presence of levosimendan yielded over twice the amount of enlarged restoration stress and Young's modulus in comparison to control single fibres. Both effects have not been described before and may point towards potential off-target sites of levosimendan.


Subject(s)
Calcium , Muscle Fibers, Fast-Twitch , Simendan , Simendan/pharmacology , Animals , Mice , Calcium/metabolism , Muscle Fibers, Fast-Twitch/drug effects , Muscle Fibers, Fast-Twitch/metabolism , Muscle Contraction/drug effects , Sarcomeres/metabolism , Sarcomeres/drug effects , Male , Myofibrils/metabolism , Myofibrils/drug effects
20.
Toxicon ; 247: 107833, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-38942241

ABSTRACT

Presynaptic- or ß-neurotoxicity of secreted phospholipases A2 (sPLA2) is a complex process. For full expression of ß-neurotoxicity, the enzymatic activity of the toxin is essential. However, it has been shown that not all toxic effects of a ß-neurotoxin depend on its enzymatic activity, for example, the inhibition of mitochondrial cytochrome c oxidase. The main objective of this study was to verify whether it is possible to observe and study the phospholipase-independent actions of ß-neurotoxins by a standard ex vivo twitch-tension experimental approach. To this end, we compared the effects of a potent snake venom ß-neurotoxin, ammodytoxin A (AtxA), and its enzymatically inactive mutant AtxA(D49S) on muscle contraction of the mouse phrenic nerve-hemidiaphragm preparation. While AtxA significantly affected the amplitude of the indirectly evoked isometric muscle contraction, the resting tension of the neuromuscular (NM) preparation, the amplitude of the end-plate potential (EPP), the EPP half decay time and the resting membrane potential, AtxA(D49S) without enzymatic activity did not. From this, we can conclude that the effects of AtxA independent of enzymatic activity cannot be studied with classical electrophysiological measurements on the isolated NM preparation. Our results also suggest that the inhibition of cytochrome c oxidase activity by AtxA is not involved in the rapid NM blockade by this ß-neurotoxin, but that its pathological consequences are rather long-term. Interestingly, in our experimental setup, AtxA upon direct stimulation reduced the amplitude of muscle contraction and induced contracture of the hemidiaphragm, effects that could be interpreted as myotoxic.


Subject(s)
Viper Venoms , Animals , Mice , Viper Venoms/toxicity , Neurotoxins/toxicity , Muscle Contraction/drug effects , Diaphragm/drug effects , Phrenic Nerve/drug effects , Neuromuscular Junction/drug effects , Male , Electrophysiological Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL