Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
J Bodyw Mov Ther ; 38: 554-561, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38763608

ABSTRACT

INTRODUCTION: The effects of stretching exercises on muscle strength have been widely researched in the literature, however, there are no studies investigating the effects of Pilates stretching. OBJECTIVE: To compare the effects of static stretching and Pilates stretching on the concentric muscle strength of the knee extensors and flexors. METHOD: 102 trained young adults were randomized into three groups: static stretching (n = 33); Pilates stretching (n = 34); control (n = 35). Isokinetic evaluation of the knee extensor and flexor muscles was performed at 60°/s and 180°/s, pre and post acute intervention with stretching. Interventions in the static stretching and Pilates stretching groups occurred in 3 sets x 30 s for each body region considered (a-knee extensor muscles; b-knee flexor muscles). The control group did not perform any intervention. RESULTS: No difference (p > 0.05) was observed between the groups after the intervention. There was only a significant intragroup improvement for the control group on the isokinetic muscle strength of the knee flexors at 180°/s, with a moderate effect size, considering the entire sample (p = 0.040; d = 0.42) and when considering only male gender (p = 0.010; d = 0.60). CONCLUSION: Static stretching or Pilates stretching performed as a warm-up did not impair or enhance the concentric muscle strength performance of the knee extensors and flexors. In this way, both forms of stretching can be considered as preparatory exercises before muscle strength training.


Subject(s)
Exercise Movement Techniques , Muscle Strength , Muscle Stretching Exercises , Muscle, Skeletal , Humans , Muscle Stretching Exercises/physiology , Male , Female , Muscle Strength/physiology , Young Adult , Exercise Movement Techniques/methods , Muscle, Skeletal/physiology , Adult , Knee/physiology , Knee Joint/physiology , Range of Motion, Articular/physiology
2.
J Strength Cond Res ; 38(6): 1041-1047, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38595295

ABSTRACT

ABSTRACT: Sasajima, S and Kubo, K. Effect of static stretching on tendon hysteresis and efficiency during repetitive jumping. J Strength Cond Res 38(6): 1041-1047, 2024-To date, no studies have experimentally shown a relationship between tendon hysteresis and exercise efficiency. However, previous studies showed that tendon hysteresis decreased immediately after static stretching. The purposes of this study were to (a) investigate the change in tendon hysteresis during the recovery period after static stretching and (b) determine whether exercise efficiency is enhanced because of the decline of tendon hysteresis after static stretching. For stretching (1 minute × 4 sets) and control conditions, tendon hysteresis was measured during ramp (i.e., lower strain rate of tendon) and ballistic (i.e., higher strain rate of tendon) contractions before, immediately, 15, 30, 45, and 60 minutes after interventions. In addition, electromyograms of the plantar flexor muscles (medial gastrocnemius [MG], lateral gastrocnemius [LG], and soleus muscles [SOL]) and oxygen consumption (V̇O 2 ) were measured during 10 minutes of submaximal repetitive jumping after both interventions. Tendon hysteresis (during ramp and ballistic contractions) reduced by static stretching persisted for up to 60 minutes (effect of time p < 0.001). During repetitive jumping, no differences in electromyograms of the plantar flexor muscles (effect of condition p = 0.786 for MG, p = 0.124 for LG, p = 0.682 for SOL) or V̇O 2 (effect of condition p = 0.534) were found between stretching and control conditions. These results suggest that the reduction in tendon hysteresis because of static stretching continues until 60 minutes after the end of stretching, and static stretching does not change the efficiency (evaluated by electromyograms of the plantar flexor muscles and V̇O 2 ) during submaximal repetitive jumping.


Subject(s)
Electromyography , Muscle Stretching Exercises , Muscle, Skeletal , Oxygen Consumption , Tendons , Humans , Muscle Stretching Exercises/physiology , Male , Young Adult , Tendons/physiology , Muscle, Skeletal/physiology , Oxygen Consumption/physiology , Adult , Biomechanical Phenomena , Plyometric Exercise , Muscle Contraction/physiology
3.
J Sport Rehabil ; 33(4): 282-288, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38593993

ABSTRACT

CONTEXT: Piriformis syndrome is often associated with muscle spasms and shortening of the piriformis muscle (PM). Physical therapy, including static stretching of the PM, is one of the treatments for this syndrome. However, the effective stretching position of the PM is unclear in vivo. This study aimed to determine the effective stretching positions of the PM using ultrasonic shear wave elastography. DESIGN: Observational study. METHODS: Twenty-one healthy young men (22.7 [2.4] y) participated in this study. The shear elastic modulus of the PM was measured at 12 stretching positions using shear wave elastography. Three of the 12 positions were tested with maximum internal rotation at 0°, 20°, or 40° hip adduction in 90° hip flexion. Nine of the 12 positions were tested with maximum external rotation at positions combined with 3 hip-flexion angles (70°, 90°, and 110°) and 3 hip-adduction angles (0°, 20°, and 40°). RESULTS: The shear elastic modulus of the PM was significantly higher in the order of 40°, 20°, and 0° of adduction and higher in external rotation than in internal rotation. The shear elastic modulus of the PM was significantly greater in combined 110° hip flexion and 40° adduction with maximum external rotation than in all other positions. CONCLUSION: This study revealed that the position in which the PM was most stretched was maximum external rotation with 110° hip flexion and 40° hip adduction.


Subject(s)
Elasticity Imaging Techniques , Muscle Stretching Exercises , Muscle, Skeletal , Humans , Male , Young Adult , Muscle Stretching Exercises/physiology , Muscle, Skeletal/physiology , Muscle, Skeletal/diagnostic imaging , Range of Motion, Articular/physiology , Elastic Modulus/physiology , Adult , Rotation , Hip Joint/physiology , Hip Joint/diagnostic imaging , Piriformis Muscle Syndrome/physiopathology , Piriformis Muscle Syndrome/therapy , Piriformis Muscle Syndrome/diagnostic imaging
4.
Eur J Appl Physiol ; 124(6): 1683-1692, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38217670

ABSTRACT

PURPOSE: We examined the effects of acute trunk stretching on central arterial stiffness and central and peripheral blood pressure in middle-aged to older adults. METHODS: Twenty-eight middle-aged to older adults (14M/14F, 72 ± 7 years, 28.5 ± 5.3 kg/m2) completed this randomized, controlled, crossover design trial. We measured carotid-femoral pulse wave velocity (cf-PWV) and central and peripheral blood pressures (BP) before and after a single bout of passively assisted trunk stretching (i.e., five rounds of six 30-s stretches) and a time-matched seated control visit (i.e., 30-min). Changes (Δ; post - pre) in cf-PWV and central and peripheral BP were compared between visits and sexes using separate linear mixed-effects models controlling for baseline values. RESULTS: Compared with seated control, central (systolic: - 3 ± 7 mmHg; diastolic: - 2 ± 5 mmHg) and peripheral (systolic: - 2 ± 8 mmHg; diastolic: - 1 ± 4 mmHg) BP were reduced following acute trunk stretching (ps ≤ 0.001). Between-visit differences for ∆cf-PWV (stretch: 0.09 ± 0.61 m/s; control: 0.37 ± 0.68 m/s, p = 0.038) were abolished when controlling for change in mean arterial pressure (∆MAP) (p = 0.687). The main effects of sex were detected for changes in systolic BPs (ps ≤ 0.029); more males (n = 13) saw BP reductions than females (n = 7). CONCLUSION: These findings demonstrate the superiority of acute trunk stretching over passive sitting of equated duration for BP in middle-aged to older adults, with an appreciable effect in males compared to females.


Subject(s)
Blood Pressure , Muscle Stretching Exercises , Vascular Stiffness , Humans , Male , Female , Vascular Stiffness/physiology , Aged , Blood Pressure/physiology , Muscle Stretching Exercises/physiology , Middle Aged , Torso/physiology , Cross-Over Studies , Pulse Wave Analysis
5.
Physiother Theory Pract ; 39(3): 490-503, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35094649

ABSTRACT

OBJECTIVES: Plantar fasciitis is a common problem in the foot region which has negative considerable impact on foot function. METHODS: In this parallel blinded randomized controlled trial, a total of thirty-seven subjects with plantar fasciitis (forty feet) were enrolled randomly to either the control group (stretching exercise) or the experimental group (stretching exercise plus dry needling). All interventions lasted six weeks and both groups were followed for two weeks. Primary outcomes were first step pain, pain, and activity daily function subscales of the FAOS questionnaire and secondary outcomes were plantar fascia thickness, and echogenicity. RESULTS: The mixed model ANOVAs showed significant group × time interactions for all primary outcomes. In both groups, first step pain and both subscales of the FAOS questionnaire were improved compared to baseline measurements. There were considerable differences between the two groups and the experimental group experienced more improvements in primary outcomes compared to the control group. For secondary outcomes, plantar fascia thickness at insertion significantly decreased, and the echogenicity in the two regions significantly increased in the experimental group compared to the control group. CONCLUSION: These results suggest that the combination of dry needling and stretching exercises can be an effective conservative treatment for plantar fasciitis subjects.


Subject(s)
Dry Needling , Fasciitis, Plantar , Muscle Stretching Exercises , Humans , Fascia/diagnostic imaging , Fasciitis, Plantar/complications , Fasciitis, Plantar/diagnostic imaging , Fasciitis, Plantar/therapy , Pain/etiology , Pain Measurement/methods , Treatment Outcome , Ultrasonography , Muscle Stretching Exercises/physiology , Foot/diagnostic imaging , Single-Blind Method , Conservative Treatment
6.
Med Sci Sports Exerc ; 54(3): 475-488, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34690287

ABSTRACT

PURPOSE: The current study compared the local and systemic vascular responsiveness after small muscle mass endurance training or passive stretching training (PST). METHODS: Thirty-six sex-matched healthy participants underwent 8-wk single-leg knee extension (SLKE) (n = 12) training or PST (n = 12), or no intervention (control, n = 12). Before and after the intervention, local and systemic vascular responsiveness was assessed by Doppler ultrasound at the femoral (local effect) and brachial artery (systemic effect) during single passive leg movement and brachial flow-mediated dilation (FMD) test, respectively. RESULTS: After training, delta femoral blood flow (representing the local vascular responsiveness) increased after SLKE and PST by +54 (7)% (effect size, 2.72; P < 0.001) and +20 (2)% (effect size, 2.43; P < 0.001), respectively, albeit with a greater extent in SLKE (post-SLKE vs post-PST: +56 [8]% [effect size, 2.92; P < 0.001]). Interestingly, the %FMD (standing for the systemic effect) increased after SLKE and PST by +12 (2)% (effect size, 0.68; P < 0.001) and +11 (1)% (effect size, 0.83; P < 0.001), respectively, without any between-groups difference (P > 0.05). No changes occurred in control. CONCLUSIONS: The present findings revealed that both active and passive training modalities induced similar improvements in the brachial artery dilatation capacity, whereas the former was more effective in improving femoral artery blood flow. Passive stretching could be used in people with limited mobility to improve vascular responsiveness both at the local and systemic level and in this latter case has similar effects as small muscle mass endurance training.


Subject(s)
Brachial Artery/physiology , Endurance Training/methods , Femoral Artery/physiology , Muscle Stretching Exercises/physiology , Regional Blood Flow/physiology , Adult , Female , Healthy Volunteers , Humans , Lower Extremity/blood supply , Male , Young Adult
7.
Sci Rep ; 11(1): 21778, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34741110

ABSTRACT

The purpose of the present study was to examine the association between static stretching load and changes in the flexibility of the hamstrings. Twelve healthy men received static stretching for 60 s at two different intensities based on the point of discomfort (100%POD and 120%POD intensity), in random order. To assess the flexibility of the hamstrings, the knee extension range of motion (ROM). Passive torque at end ROM, and muscle-tendon unit stiffness were measured before and after stretching. The static stretching load was calculated from the passive torque throughout static stretching. The knee extension ROM and passive torque at end ROM increased in both intensities (p < 0.01). The muscle-tendon unit stiffness decreased only in the 120%POD (p < 0.01). There were significant correlations between the static stretching load and the relative changes in the knee extension ROM (r = 0.56, p < 0.01) and muscle-tendon unit stiffness (r = - 0.76, p < 0.01). The results suggested that the static stretching load had significant effects on changes in the knee extension ROM and muscle-tendon unit stiffness of the hamstrings, and high-intensity static stretching was useful for improving the flexibility of the hamstrings because of its high static stretching load.


Subject(s)
Hamstring Muscles/physiology , Muscle Stretching Exercises/physiology , Humans , Male , Range of Motion, Articular , Young Adult
8.
PLoS One ; 16(9): e0257367, 2021.
Article in English | MEDLINE | ID: mdl-34520498

ABSTRACT

OBJECTIVES: The purpose of this study was to examine the time course of changes in the range of motion and muscle-tendon unit stiffness of the hamstrings after two different intensities of static stretching. METHODS: Fourteen healthy men (20.9 ± 0.7 years, 169.1 ± 7.5cm, 61.6 ± 6.5kg) received static stretching for 60 seconds at two different intensities based on the point of discomfort (100%POD and 120%POD) of each participant, in random order. To evaluate the time course of changes in the flexibility of the hamstrings, the knee extension range of motion (ROM), passive torque at end ROM, and muscle-tendon unit stiffness were measured pre-stretching, post-stretching, and at both 10 and 20 minutes after static stretching. RESULTS: For both intensities, ROM and passive torque at pre-stretching were significantly smaller than those at post-stretching (p < 0.01 in both intensities), 10 minutes (p < 0.01 in both intensities), and 20 minutes (p < 0.01 in both intensities). The muscle-tendon unit stiffness at pre-stretching was significantly higher than that at post-stretching (p < 0.01), 10 minutes (p < 0.01), and 20 minutes (p < 0.01) only in the 120%POD, but it showed no change in the 100%POD. CONCLUSION: The results showed that ROM and passive torque increased in both intensities, and the effects continued for at least 20 minutes after stretching regardless of stretching intensity. However, the muscle-tendon unit stiffness of the hamstrings decreased only after static stretching at the intensity of 120%POD, and the effects continued for at least 20 minutes after stretching.


Subject(s)
Muscle Strength/physiology , Muscle Stretching Exercises/physiology , Range of Motion, Articular/physiology , Tendons/physiology , Hamstring Muscles , Humans , Knee , Male , Motion , Torque , Young Adult
9.
PLoS One ; 16(9): e0256656, 2021.
Article in English | MEDLINE | ID: mdl-34550984

ABSTRACT

The current study aimed to verify whether or not passive static stretching affects balance control capacity. Thirty-eight participants (19 women and 19 men) underwent a passive static stretching session, involving the knee extensor/flexor and dorsi/plantarflexor muscles, and a control session (no stretching, CTRL). Before (PRE), immediately after (POST), after 15 (POST15) and 30 min (POST30) from stretching (or rest in CTRL), balance control was evaluated under static and dynamic conditions, with open/closed eyes, and with/without somatosensory perturbation (foam under the feet). During tests, centre of pressure (CoP) sway area and perimeter and antero-posterior and medio-lateral sway mean speed were computed. Surface electromyography root mean square (sEMG RMS) was calculated from the vastus lateralis, biceps femoris, gastrocnemius medialis, and tibialis anterior muscles during MVC and during the balance tests. Hip flexion/extension and dorsi/plantarflexion range of motion (ROM), maximum voluntary contraction (MVC) and sEMG RMS during MVC were measured at the same time points. After stretching, ROM increased (≈6.5%; P<0.05), while MVC and sEMG RMS decreased (≈9% and ≈7.5%, respectively; P<0.05). Regardless of the testing condition, CoP sway area and the perimeter remained similar, while antero-posterior and medio-lateral sway mean speed decreased by ≈8% and ≈12%, respectively (P<0.05). sEMG RMS during the balance tests increased in all muscles in POST (≈7%, P<0.05). All variables recovered in POST30. No changes occurred in CTRL. Passive static stretching did not affect the overall balance control ability. However, greater muscle activation was required to maintain similar CoP sway, thus suggesting a decrease in muscle efficiency.


Subject(s)
Muscle Contraction/physiology , Muscle Stretching Exercises/physiology , Muscle, Skeletal/diagnostic imaging , Postural Balance/physiology , Adult , Electromyography/methods , Female , Foot/diagnostic imaging , Foot/physiology , Humans , Knee/diagnostic imaging , Knee/physiology , Leg/diagnostic imaging , Leg/physiology , Male , Muscle, Skeletal/physiology , Range of Motion, Articular/physiology
10.
Med Sci Sports Exerc ; 53(9): 1975-1986, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34398062

ABSTRACT

INTRODUCTION: This study examined the effects of 24 wk of daily static stretching of the plantarflexors (unilateral 4 × 60-s stretching, whereas the contralateral leg served as a control; n = 26) on joint range of motion (ROM), muscle-tendon unit morphological and mechanical properties, neural activation, and contractile function. METHODS: Torque-angle/velocity was obtained in passive and active conditions using isokinetic dynamometry, whereas muscle-tendon morphology and mechanical properties were examined using ultrasonography. RESULTS: After the intervention, ROM increased (stretching, +11° ± 7°; control, 4° ± 8°), and passive torque (stretching, -10 ± 11 N·m; control, -7 ± 10 N·m) and normalized EMG amplitude (stretching, -3% ± 6%; control, -3% ± 4%) at a standardized dorsiflexion angle decreased. Increases were seen in passive tendon elongation at a standardized force (stretching, +1.3 ± 1.6 mm; control, +1.4 ± 2.1 mm) and in maximal passive muscle and tendon elongation. Angle of peak torque shifted toward dorsiflexion. No changes were seen in tendon stiffness, resting tendon length, or gastrocnemius medialis fascicle length. Conformable changes in ROM, passive dorsiflexion variables, tendon elongation, and angle of peak torque were observed in the nonstretched leg. CONCLUSIONS: The present findings indicate that habitual stretching increases ROM and decreases passive torque, altering muscle-tendon behavior with the potential to modify contractile function.


Subject(s)
Muscle Contraction/physiology , Muscle Stretching Exercises/physiology , Muscle, Skeletal/physiology , Range of Motion, Articular/physiology , Electromyography , Female , Humans , Male , Muscle, Skeletal/diagnostic imaging , Ultrasonography , Young Adult
11.
J Sports Sci Med ; 20(2): 258-267, 2021 06.
Article in English | MEDLINE | ID: mdl-34211318

ABSTRACT

Stretching is commonly used to increase range of motion and flexibility. Therefore, investigations are usually oriented towards the muscle-tendon unit. Limited evidence exists regarding potential effects of stretching on peripheral nerves which lie within muscles. The objective of this investigation will be to elucidate the responses of peripheral nerves to stretching. A literature search was performed using the following databases: Scopus, NLM Pubmed and ScienceDirect. Studies regarding the effects of stretching protocols on responses of peripheral nerves were retrieved for investigation. The NHLBI tool was used for quality assessment. Outcomes included nerve stiffness, nerve displacement, pain pressure thresholds and resistive torque. A total of 10 studies were considered eligible and were included in this investigation. The quality assessment of the studies revealed an overall "fair to good" methodological quality across the included studies. All studies except for one involved healthy participants. High heterogeneity of stretching protocols was retrieved. As a consequence of stretching, nerve stiffness (-15.6%) and pain pressure thresholds (-1.9kg) increased. Nerve displacements on each movement plane for all the considered nerves and nerve deformation were also frequently observed. Peripheral nerve responses to muscle stretching include decreased nerve stiffness and increased pain pressure thresholds. Nerve displacement also frequently occurs. It is still unclear if reduced nerve displacement may lead to clinical outcomes. There is a lack of longitudinal studies regarding peripheral nerve adaptations to stretching.


Subject(s)
Muscle Stretching Exercises/physiology , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Peripheral Nerves/physiology , Humans , Neuralgia/physiopathology , Range of Motion, Articular
12.
J Sports Sci Med ; 20(3): 492-499, 2021 09.
Article in English | MEDLINE | ID: mdl-34267589

ABSTRACT

The aim of this study was to determine whether the first sensation of stretching (ROMFSS) may predict the maximum range of motion (ROMMAX) in male (N = 37) and female (N = 32) volunteer subjects, and to assess the reliability of the ROM perceived by subjects in relation to a pre-determined ROM (ROM50%). Subjects attempted three experimental sessions with 48 hours between sessions 1 and 2 and 28 days between sessions 1 and 3. Within each session, five trials were performed with isokinetic equipment to assess posterior thigh muscle flexibility. The results revealed a strong and significant correlation between ROMMAX and ROMFSS for both sexes, females (r = 0.96, p < 0.001, R2 = 0.92) and males (r = 0.91, p < 0.001; R2 = 0.82). The accuracy of the model verified by the standard error of estimate (SEE) was high in the equations proposed for both female (SEE = 4.53%) and male (SEE = 5.45%). Our results revealed that ROMFSS may predict the ROMMAX for both male and female subjects. The ROMFSS may contribute to the development of evaluation methods that do not subject the individuals to conditions that may include unnecessary risk of injury and is well suited to monitor the training process of stretching exercises with submaximal loads.


Subject(s)
Muscle Stretching Exercises/physiology , Muscle, Skeletal/physiology , Sensation/physiology , Female , Humans , Male , Muscle, Skeletal/injuries , Perception/physiology , Risk Factors , Thigh
13.
J Sports Sci Med ; 20(3): 535-545, 2021 09.
Article in English | MEDLINE | ID: mdl-34267594

ABSTRACT

Although it is well known that both stretching and foam rolling can acutely increase the range of motion (ROM) and affect performance, the effects of a combined treatment (foam rolling and stretching) are not yet clear. Hence, the purpose of this meta-analysis was to compare the combined effect to that of stretching or foam rolling alone on both ROM and performance. We assessed the effect of a combined treatment on ROM and compared it to the effect of stretching, foam rolling, and a control condition by applying a random-effect meta-analysis. We also applied the same model to compare the effect of the combined treatment on performance. Moreover, by applying a mixed-effect model, we performed subgroup analyses with the stretching technique, type of foam rolling, tested muscles, type of task, and the order of the combined treatment. We found a significant overall effect on ROM change when comparing the combined treatment with the control condition (effect size (ES) = -0.332); however, no significant effect was found when comparing it to stretching (ES = 0.032) or foam rolling alone (ES = -0.225). The meta-analysis revealed no significant overall effect on performance when the combined treatment was compared to stretching alone (ES = -0.029). However, the subgroup analysis for performance revealed a superior effect for the combined treatment compared to stretching alone, but only if foam rolling was followed by stretching (ES = -0.17), and not vice versa. Athletes do not have to combine stretching with foam rolling since no additional effect was observed. However, to increase performance, the combination of foam rolling followed by stretching can lead to greater improvements.


Subject(s)
Athletic Performance/physiology , Muscle Stretching Exercises/physiology , Physical Functional Performance , Sports Equipment , Warm-Up Exercise/physiology , Adult , Female , Humans , Male , Muscle, Skeletal/physiology , Range of Motion, Articular , Young Adult
14.
J Manipulative Physiol Ther ; 44(4): 289-294, 2021 05.
Article in English | MEDLINE | ID: mdl-34090549

ABSTRACT

OBJECTIVE: The purpose of this study was to assess the association between hip flexor length and pelvic tilt or lumbar lordosis by quantifying the effect of stretching on pelvic tilt and lumbar lordosis. METHODS: We quantified pelvic tilt and lumbar lordosis before and after a single session of passive hip flexor stretching in a sample of 23 male participants. Changes in hip flexor length were also characterized, using a Thomas test protocol to measure passive hip extension in supine lying. We investigated both the mean effect of the stretching protocol and potential correlations between changes in passive hip extension and changes in pelvic tilt or lumbar lordosis. RESULTS: Following the stretching protocol, there was a mean increase of 2.6° (P < .001) in passive hip extension and a corresponding mean reduction of 1.2° (P < .001) in anterior pelvic tilt. However, there was no change in lumbar lordosis, nor were there any meaningful correlations between change in passive hip extension and change in pelvic tilt or lumbar lordosis. CONCLUSION: The results suggest that hip muscle stretching may lead to immediate reductions in pelvic tilt during relaxed standing. Such stretching programs could play an important role in interventions designed to improve standing postural alignment.


Subject(s)
Hip/physiology , Lordosis/prevention & control , Lumbar Vertebrae/physiology , Muscle Stretching Exercises/physiology , Muscle, Skeletal/physiology , Posture/physiology , Abdominal Muscles , Adult , Humans , Male , Middle Aged , Standing Position
15.
Med Sci Sports Exerc ; 53(10): 2066-2075, 2021 10 01.
Article in English | MEDLINE | ID: mdl-33831897

ABSTRACT

PURPOSE: The current study investigated the effects of unilateral passive stretching on the neuromuscular mechanisms involved in the force-generating capacity of the contralateral muscle. METHODS: Twenty-six healthy men underwent unilateral passive stretching of the plantarflexors (5 × 45 s on + 15 s off; total stretching time, 225 s). Before and after the stretching protocol, contralateral ankle range of motion, maximum voluntary contraction (MVC) of the plantarflexors, and surface electromyographic root-mean-square (sEMG RMS) of the soleus and the gastrocnemii muscles were determined. Concurrently, V-wave, maximum and superimposed H-reflex, and M-wave were elicited via nerve stimulation to estimate the supraspinal, spinal, and peripheral mechanisms, respectively. sEMG RMS, V-wave, and H-reflex were normalized to the M-wave. RESULTS: After passive stretching, contralateral ankle range of motion was increased (+8% [1%/15%], effect size [ES] = 0.43 [0.02/0.84], P < 0.001), MVC of the plantarflexors was decreased (-9% [-21%/-2%], ES = -0.96 [-1.53/-0.38], P < 0.001), and the sEMG RMS/M-wave of the soleus and the gastrocnemii muscles was decreased (≈-9%, ES ≈ -0.33, P < 0.05). Concurrently, the V-wave/M-wave superimposed was decreased in all muscles (≈-13%, ES = -0.81 to -0.52, P < 0.05). No change in H-reflex/M-wave and M-wave was observed under both maximum and superimposed condition. The decrease in the MVC and the sEMG RMS of the contralateral muscle was accompanied by a decrease in the V-wave/M-wave but not the H-reflex/M-wave ratios and the M-wave. CONCLUSIONS: The present outcomes suggest that only supraspinal mechanisms might be involved in the contralateral decrease in the maximum force-generating capacity.


Subject(s)
Evoked Potentials, Motor , Muscle Stretching Exercises/physiology , Muscle, Skeletal/physiology , Ankle Joint/physiology , Cross-Sectional Studies , Electromyography , H-Reflex , Humans , Male , Motor Neurons/physiology , Muscle Contraction , Range of Motion, Articular , Young Adult
16.
J Sports Sci Med ; 20(1): 17-25, 2021 03.
Article in English | MEDLINE | ID: mdl-33707982

ABSTRACT

Increased muscle stiffness of the pectoralis minor (PMi) could deteriorate shoulder function. Stretching is useful for maintaining and improving muscle stiffness in rehabilitation and sport practice. However, the acute and prolonged effect of stretching on the PMi muscle stiffness is unclear due to limited methodology for assessing individual muscle stiffness. Using shear wave elastography, we explored the responses of shear modulus to stretching in the PMi over time. The first experiment (n = 20) aimed to clarify the acute change in the shear modulus during stretching. The shear modulus was measured at intervals of 30 s × 10 sets. The second experiment (n = 16) aimed to observe and compare the prolonged effect of different durations of stretching on the shear modulus. Short and long stretching duration groups underwent 30s × 1 set and 30s × 10 sets, respectively. The assessments of shear modulus were conducted before, immediately after, and at 5, 10, and 15 min post-stretching. In experiment I, the shear modulus decreased immediately after a bout (30 s) of stretching (p < 0.001, change: -2.3 kPa, effect size: r = 0.72) and further decreased after 3 repetitions (i.e., 90 s) of stretching (p = 0.03, change: -1.0 kPa, effect size: r = 0.53). In experiment II, the change in the shear modulus after stretching was greater in the long duration group than in the short duration group (p = 0.013, group mean difference: -2.5 kPa, partial η2 = 0.36). The shear modulus of PMi decreased immediately after stretching, and stretching for a long duration was promising to maintain the decreased shear modulus. The acute and prolonged effects on the PMi shear modulus provide information relevant to minimum and persistent stretching time in rehabilitation and sport practice.


Subject(s)
Elastic Modulus/physiology , Muscle Stretching Exercises/physiology , Pectoralis Muscles/physiology , Adult , Analysis of Variance , Biomechanical Phenomena/physiology , Elasticity Imaging Techniques , Humans , Male , Muscle Tonus/physiology , Pectoralis Muscles/diagnostic imaging , Time Factors
17.
Eur J Appl Physiol ; 121(6): 1517-1529, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33715049

ABSTRACT

BACKGROUND: Static stretching (SS) can impair performance and increase range of motion of a non-exercised or non-stretched muscle, respectively. An underdeveloped research area is the effect of unilateral stretching on non-local force output. OBJECTIVE: The objective of this review was to describe the effects of unilateral SS on contralateral, non-stretched, muscle force and identify gaps in the literature. METHODS: A systematic literature search following preferred reporting items for systematic review and meta-analyses Protocols guidelines was performed according to prescribed inclusion and exclusion criteria. Weighted means and ranges highlighted the non-local force output response to unilateral stretching. The physiotherapy evidence database scale was used to assess study risk of bias and methodological quality. RESULTS: Unilateral stretching protocols from six studies involved 6.3 ± 2 repetitions of 36.3 ± 7.4 s with 19.3 ± 5.7 s recovery between stretches. The mean stretch-induced force deficits exhibited small magnitude effect sizes for both the stretched (-6.7 ± 7.1%, d = -0.35: 0.01 to -1.8) and contralateral, non-stretched, muscles (-4.0 ± 4.9%, d = , 0.22: 0.08 to 1.1). Control measures exhibited trivial deficits. CONCLUSION: The limited literature examining non-local effects of prolonged SS revealed that both the stretched and contralateral, non-stretched, limbs of young adults demonstrate small magnitude force deficits. However, the frequency of studies with these effects were similar with three measures demonstrating deficits, and four measures showing trivial changes. These results highlight the possible global (non-local) effects of prolonged SS. Further research should investigate effects of lower intensity stretching, upper versus lower body stretching, different age groups, incorporate full warm-ups, and identify predominant mechanisms among others.


Subject(s)
Muscle Strength/physiology , Muscle Stretching Exercises/physiology , Humans , Young Adult
18.
Eur J Appl Physiol ; 121(5): 1461-1471, 2021 May.
Article in English | MEDLINE | ID: mdl-33638016

ABSTRACT

PURPOSE: The purpose of the study was to investigate the effects of using a vibration foam roll (VFR) or a non-vibration foam roll (NVFR) on maximum voluntary isometric contraction peak torque (MVIC), range of motion (ROM), passive resistive torque (PRT), and shear modulus. METHODS: Twenty-one male volunteers visited the laboratory on two separate days and were randomly assigned to either a VFR group or a NVFR group. Both interventions were performed for 3 × 1 min each. Before and after each intervention, passive resistive torque and maximum voluntary isometric contraction peak torque of the leg extensors were assessed with a dynamometer. Hip extension ROM was assessed using a modified Thomas test with 3D-motion caption. Muscle shear modulus of the vastus lateralis (VL), vastus medialis (VM), and rectus femoris (RF) was assessed with shear wave elastography (SWE). RESULTS: In both groups (VFR, NVFR) we observed an increase in MVIC peak torque (+ 14.2 Nm, + 8.6 Nm) and a decrease in shear modulus of the RF (- 7.2 kPa, - 4.7 kPa). However, an increase in hip extension ROM (3.3°) was only observed in the VFR group. There was no change in PRT and shear modulus of the VL and VM, in both the VFR group and the NVFR group. Our findings demonstrate a muscle-specific acute decrease in passive RF stiffness after VFR and NVFR, with an effect on joint flexibility found only after VFR. CONCLUSION: The findings of this study suggest that VFR might be a more efficient approach to maximize performance in sports with flexibility demands.


Subject(s)
Isometric Contraction/physiology , Muscle Stretching Exercises/physiology , Quadriceps Muscle/physiology , Vibration , Adult , Biomechanical Phenomena , Elastic Modulus , Elasticity Imaging Techniques , Healthy Volunteers , Humans , Imaging, Three-Dimensional , Male , Range of Motion, Articular/physiology , Torque
19.
J Sport Rehabil ; 30(5): 824-827, 2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33418538

ABSTRACT

CONTEXT: Serratus anterior tightness is associated with scapular dyskinesis and overall shoulder dysfunction, which affects the range of motion. The most effective intervention to stretch the serratus anterior is unknown. OBJECTIVE: To evaluate the effect of a therapist-administered novel serratus anterior stretch (SAS) on shoulder range of motion. METHOD: This study recruited 30 healthy subjects of age 21.20 (1.69) years, height 1.65 (0.11) m, and weight 60.90 (10.36) kg in equal ratio of males and females who scored 1 or 2 on the shoulder mobility test of functional movement screening. A single intervention of a novel SAS was applied to the shoulder. Outcome variables before and after the SAS included the following: shoulder ROM (flexion, abduction, internal rotation, and external rotation) and functional movements of reaching up behind the back and reaching down behind the neck. RESULTS: A paired t test was used to analyze the data. Following the acute SAS intervention, all shoulder ROM improved significantly (P < .000). The change in internal rotation was 6.00° (7.47°), external rotation was 5.66° (9.35°), abduction was 13.50° (11.82°), flexion was 20° (13.33°), reaching up behind the back was 5.10 (2.21) cm, and reaching down behind the neck was 5.41 (2.89) cm. The most marked improvement was in reaching up behind the back (24.48%) and reaching down behind the neck (22.78%). A very large effect size (>1) was observed across most of the variables. CONCLUSION: An acute SAS intervention improves shoulder mobility in healthy individuals. It is recommended for the trial on the prevention and rehabilitation of shoulder pathologies with restriction in shoulder mobility.


Subject(s)
Muscle Stretching Exercises/physiology , Range of Motion, Articular/physiology , Shoulder Joint/physiology , Superficial Back Muscles/physiology , Female , Humans , Male , Patient Positioning/methods , Rotation , Scapula/physiology , Young Adult
20.
Eur J Appl Physiol ; 121(3): 957-967, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33417034

ABSTRACT

PURPOSE: The present study aimed to investigate the acute effects of dynamic stretching on neurophysiological and mechanical properties of plantar flexor muscles and to test the hypothesis that dynamic stretching resulted from an interaction between stretching, movement, and contraction. METHODS: The dynamic stretching conditioning activity (DS) was compared to static stretching (SS), passive cyclic stretching (PCS), isometric contractions (IC), static stretching followed by isometric contractions (SSIC), and control (CO) conditions. Stretching amplitude (DS, SS, PCS and SSIC), contraction intensity (DS, IC and SSIC) and duration (all 6 conditions) were matched. Thirteen volunteers were included. Passive torque, fascicle length, and stiffness were evaluated from a dynamometer and ultrasonography during passive dorsiflexion. Neuromuscular electrical stimulation was used to investigate contractile properties [peak twitch torque (PTT), and rate of torque development (RTD)] and muscle voluntary activation (%VA). Gastrocnemius lateralis electromyographic activity (GL EMG/Mwave) was obtained during maximal voluntary contraction. All of these parameters were measured immediately before and 10 s after each experimental condition. RESULTS: Peak twitch torque, RTD, %VA, GL EMG/Mwave remained unaltered, while passive torque was significantly reduced after DS (- 8.14 ± 2.21%). SS decreased GL EMG/Mwave (- 7.83 ± 12.01%) and passive torque (- 2.16 ± 7.25%). PCS decreased PTT (- 3.40 ± 6.03%), RTD (- 2.96 ± 5.16%), and passive torque (- 2.16 ± 2.05%). IC decreased passive torque (- 7.72 ± 1.97%) and enhanced PTT (+ 5.77 ± 5.19%) and RTD (+ 7.36 ± 8.35%). However, SSIC attenuated PTT and RTD improvements as compared to IC. CONCLUSION: These results suggested that dynamic stretching is multi-component and would result from an interaction between stretching, contraction, and movement.


Subject(s)
Isometric Contraction/physiology , Muscle Strength/physiology , Muscle Stretching Exercises/physiology , Adult , Biomechanical Phenomena , Humans , Male , Movement , Muscle Contraction , Range of Motion, Articular , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...