Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139.244
Filter
1.
Sci Transl Med ; 16(750): eadk9811, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38838134

ABSTRACT

Clinical evidence indicates a close association between muscle dysfunction and bone loss; however, the underlying mechanisms remain unclear. Here, we report that muscle dysfunction-related bone loss in humans with limb-girdle muscular dystrophy is associated with decreased expression of folliculin-interacting protein 1 (FNIP1) in muscle tissue. Supporting this finding, murine gain- and loss-of-function genetic models demonstrated that muscle-specific ablation of FNIP1 caused decreased bone mass, increased osteoclastic activity, and mechanical impairment that could be rescued by myofiber-specific expression of FNIP1. Myofiber-specific FNIP1 deficiency stimulated expression of nuclear translocation of transcription factor EB, thereby activating transcription of insulin-like growth factor 2 (Igf2) at a conserved promoter-binding site and subsequent IGF2 secretion. Muscle-derived IGF2 stimulated osteoclastogenesis through IGF2 receptor signaling. AAV9-mediated overexpression of IGF2 was sufficient to decrease bone volume and impair bone mechanical properties in mice. Further, we found that serum IGF2 concentration was negatively correlated with bone health in humans in the context of osteoporosis. Our findings elucidate a muscle-bone cross-talk mechanism bridging the gap between muscle dysfunction and bone loss. This cross-talk represents a potential target to treat musculoskeletal diseases and osteoporosis.


Subject(s)
Bone and Bones , Insulin-Like Growth Factor II , Animals , Insulin-Like Growth Factor II/metabolism , Humans , Bone and Bones/metabolism , Mice , Signal Transduction , Muscle, Skeletal/metabolism , Osteogenesis , Muscles/metabolism , Male , Female , Osteoclasts/metabolism
2.
Sci Rep ; 14(1): 10863, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740831

ABSTRACT

Ticks are blood-feeding arthropods that require heme for their successful reproduction. During feeding they also acquire pathogens that are subsequently transmitted to humans, wildlife and/or livestock. Understanding the regulation of tick midgut is important for blood meal digestion, heme and nutrient absorption processes and for aspects of pathogen biology in the host. We previously demonstrated the activity of tick kinins on the cognate G protein-coupled receptor. Herein we uncovered the physiological role of the kinin receptor in the tick midgut. A fluorescently-labeled kinin peptide with the endogenous kinin 8 sequence (TMR-RK8), identical in the ticks Rhipicephalus microplus and R. sanguineus, activated and labeled the recombinant R. microplus receptor expressed in CHO-K1 cells. When applied to the live midgut the TMR-RK8 labeled the kinin receptor in muscles while the labeled peptide with the scrambled-sequence of kinin 8 (TMR-Scrambled) did not. The unlabeled kinin 8 peptide competed TMR-RK8, decreasing confocal microscopy signal intensity, indicating TMR-RK8 specificity to muscles. TMR-RK8 was active, inducing significant midgut peristalsis that was video-recorded and evaluated with video tracking software. The TMR-Scrambled peptide used as a negative control did not elicit peristalsis. The myotropic function of kinins in eliciting tick midgut peristalsis was established.


Subject(s)
Cricetulus , Kinins , Neuropeptides , Peristalsis , Animals , Kinins/metabolism , CHO Cells , Neuropeptides/metabolism , Neuropeptides/genetics , Muscles/metabolism , Muscles/physiology , Ticks/metabolism , Ticks/physiology , Rhipicephalus/metabolism , Rhipicephalus/physiology , Rhipicephalus/genetics , Arthropod Proteins/metabolism , Arthropod Proteins/genetics
3.
J Agric Food Chem ; 72(20): 11820-11835, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38710668

ABSTRACT

Physicochemical properties and protein alterations in Ovalipes punctatus during cold-chain transportation were examined via sensory scores, water-holding capacity (WHC), glucose (GLU) content, catalase (CAT) activity, urea nitrogen (UN) content, and tandem mass tag (TMT)-based proteomic analysis. The results revealed that sensory characteristics and texture of crab muscle deteriorated during transportation. Proteomic analysis revealed 442 and 470 different expressed proteins (DEPs) in crabs after 18 h (FC) and 36 h (DC) of transportation compared with live crabs (LC). Proteins related to muscle structure and amino acid metabolism significantly changed, as evidenced by the decreased WHC and sensory scores of crab muscle. Glycolysis, calcium signaling, and peroxisome pathways were upregulated in the FC/LC comparison, aligning with the changes in GLU content and CAT activity, revealing the stress response of energy metabolism and immune response in crabs during 0-18 h of transportation. The downregulated tricarboxylic acid (TCA) cycle and carcinogenesis-reactive oxygen species pathways were correlated with the decreasing trend in CAT activity, suggesting a gradual retardation in both energy and antioxidant metabolism in crabs during 18-36 h of transportation. Furthermore, the regulated purine nucleoside metabolic and nucleoside diphosphate-related processes, with the increasing changes in UN content, revealed the accumulation of metabolites in crabs.


Subject(s)
Brachyura , Muscles , Proteomics , Animals , Brachyura/metabolism , Brachyura/chemistry , Muscles/metabolism , Muscles/chemistry , Transportation , Shellfish/analysis , Cold Temperature , Tandem Mass Spectrometry , Seafood/analysis
4.
PeerJ ; 12: e17216, 2024.
Article in English | MEDLINE | ID: mdl-38699190

ABSTRACT

This study is the first to determine the levels of heavy metals in commercially important fish species, namely Lates niloticus and Oreochromis niloticus and the potential human health risks associated with their consumption. A total of 120 fish samples were collected from the lower Omo river and Omo delta, with 60 samples from each water source. The fish tissue samples (liver and muscle) were analyzed using a flame atomic absorption spectrometer for nine heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn). The human health risk assessment tools used were the target hazard quotient (THQ), the hazard index (HI), and the target cancer risk (TCR). The mean levels of heavy metals detected in the liver and muscle of L. niloticus from the lower Omo river generally occurred in the order Fe > Zn > Pb> Cu > Mn> Cr > Co > Ni and Pb > Cu > Mn > Co > Ni, respectively. The mean levels of metals in the muscle and liver tissues of O. niloticus were in the order Fe > Pb > Zn > Mn > Cu > Cr > Co > Ni and Pb > Zn > Mn > Fe > Cu > Co > Ni, respectively. Similarly, the mean levels of heavy metals detected in the liver and muscle of L. niloticus from Omo delta occurred in the order Fe > Zn > Pb > Cu > Mn > Cr > Co > Ni and Fe > Pb > Zn > Mn > Cu > Co > Cr > Ni, respectively. The mean levels in the muscle and liver tissues of O. niloticus from the Omo delta were in the order Fe > Pb > Zn > Mn > Cu > Cr > Co > Ni and Pb > Fe > Zn > Mn > Co > Cu > Ni, respectively. The study revealed that the THQ values were below 1, indicating that consumption of L. niloticus and O. niloticus from the studied sites does not pose a potential non-carcinogenic health risk. Although the TCR values for Pb in this study were within the tolerable range, it's mean concentration in the muscle and liver tissues of both fish species from the two water bodies exceeded the permissible limit established by FAO/WHO. This is a warning sign for early intervention, and it emphasizes the need for regular monitoring of freshwater fish. Therefore, it is imperative to investigate the pollution levels and human health risks of heavy metals in fish tissues from lower Omo river and Omo delta for environmental and public health concerns.


Subject(s)
Food Contamination , Lakes , Metals, Heavy , Rivers , Water Pollutants, Chemical , Metals, Heavy/analysis , Humans , Animals , Rivers/chemistry , Risk Assessment , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/adverse effects , Food Contamination/analysis , Lakes/chemistry , Ethiopia , Fishes , Environmental Monitoring/methods , Liver/chemistry , Liver/metabolism , Cichlids/metabolism , Muscles/chemistry , Muscles/metabolism
5.
Molecules ; 29(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38792037

ABSTRACT

Hydrazine, a highly toxic compound, demands sensitive and selective detection methods. Building upon our previous studies with pre-coumarin OFF-ON sensors for fluoride anions, we extended our strategy to hydrazine sensing by adapting phenol protecting groups (propionate, levulinate, and γ-bromobutanoate) to our pre-coumarin scaffold. These probes reacted with hydrazine, yielding a fluorescent signal with low micromolar limits of detection. Mechanistic studies revealed that hydrazine deprotection may be outperformed by a retro-Knoevenagel reaction, where hydrazine acts as a nucleophile and a base yielding a fluorescent diimide compound (6,6'-((1E,1'E)-hydrazine-1,2diylidenebis(methaneylylidene))bis(3(diethylamino)phenol, 7). Additionally, our pre-coumarins unexpectedly reacted with primary amines, generating a fluorescent signal corresponding to phenol deprotection followed by cyclization and coumarin formation. The potential of compound 3 as a theranostic Turn-On coumarin precursor was also explored. We propose that its reaction with ALDOA produced a γ-lactam, blocking the catalytic nucleophilic amine in the enzyme's binding site. The cleavage of the ester group in compound 3 induced the formation of fluorescent coumarin 4. This fluorescent signal was proportional to ALDOA concentration, demonstrating the potential of compound 3 for future theranostic studies in vivo.


Subject(s)
Coumarins , Hydrazines , Coumarins/chemistry , Hydrazines/chemistry , Animals , Rabbits , Fluorescent Dyes/chemistry , Muscles/metabolism , Fluorescence , Molecular Structure
6.
J Exp Biol ; 227(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38774939

ABSTRACT

Anurans undergo significant physiological changes when exposed to environmental stressors such as low temperatures and humidity. Energy metabolism and substrate management play a crucial role in their survival success. Therefore, understanding the role of the gluconeogenic pathway and demonstrating its existence in amphibians is essential. In this study, we exposed the subtropical frog Boana pulchella to cooling (-2.5°C for 24 h) and dehydration conditions (40% of body water loss), followed by recovery (24 h), and assessed gluconeogenesis activity from alanine, lactate, glycerol and glutamine in the liver, muscle and kidney. We report for the first time that gluconeogenesis activity by 14C-alanine and 14C-lactate conversion to glucose occurs in the muscle tissue of frogs, and this tissue activity is influenced by environmental conditions. Against the control group, liver gluconeogenesis from 14C-lactate and 14C-glycerol was lower during cooling and recovery (P<0.01), and gluconeogenesis from 14C-glutamine in the kidneys was also lower during cooling (P<0.05). In dehydration exposure, gluconeogenesis from 14C-lactate in the liver was lower during recovery, and that from 14C-alanine in the muscle was lower during dehydration (P<0.05). Moreover, we observed that gluconeogenesis activity and substrate preference respond differently to cold and dehydration. These findings highlight tissue-specific plasticity dependent on the nature of the encountered stressor, offering valuable insights for future studies exploring this plasticity, elucidating the importance of the gluconeogenic pathway and characterizing it in anuran physiology.


Subject(s)
Anura , Cold Temperature , Dehydration , Gluconeogenesis , Animals , Gluconeogenesis/physiology , Anura/physiology , Anura/metabolism , Dehydration/physiopathology , Liver/metabolism , Kidney/metabolism , Kidney/physiology , Muscles/metabolism , Muscles/physiology , Male
7.
Mar Drugs ; 22(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38786589

ABSTRACT

Glycosaminoglycans (GAGs) are valuable bioactive polysaccharides with promising biomedical and pharmaceutical applications. In this study, we analyzed GAGs using HPLC-MS/MS from the bone (B), muscle (M), skin (S), and viscera (V) of Scophthalmus maximus (SM), Paralichthysi (P), Limanda ferruginea (LF), Cleisthenes herzensteini (G), Platichthys bicoloratus (PB), Pleuronichthys cornutus (PC), and Cleisthenes herzensteini (CH). Unsaturated disaccharide products were obtained by enzymatic hydrolysis of the GAGs and subjected to compositional analysis of chondroitin sulfate (CS), heparin sulfate (HS), and hyaluronic acid (HA), including the sulfation degree of CS and HS, as well as the content of each GAG. The contents of GAGs in the tissues and the sulfation degree differed significantly among the fish. The bone of S. maximus contained more than 12 µg of CS per mg of dry tissue. Although the fish typically contained high levels of CSA (CS-4S), some fish bone tissue exhibited elevated levels of CSC (CS-6S). The HS content was found to range from 10-150 ug/g, primarily distributed in viscera, with a predominant non-sulfated structure (HS-0S). The structure of HA is well-defined without sulfation modification. These analytical results are independent of biological classification. We provide a high-throughput rapid detection method for tissue samples using HPLC-MS/MS to rapidly screen ideal sources of GAG. On this basis, four kinds of CS were prepared and purified from flounder bone, and their molecular weight was determined to be 23-28 kDa by HPGPC-MALLS, and the disaccharide component unit was dominated by CS-6S, which is a potential substitute for CSC derived from shark cartilage.


Subject(s)
Chondroitin Sulfates , Flounder , Glycosaminoglycans , Tandem Mass Spectrometry , Animals , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/isolation & purification , Glycosaminoglycans/isolation & purification , Glycosaminoglycans/chemistry , Chromatography, High Pressure Liquid , Bone and Bones/chemistry , Skin/chemistry , Skin/metabolism , Hyaluronic Acid/chemistry , Hyaluronic Acid/isolation & purification , Muscles/chemistry
8.
Mar Drugs ; 22(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38786597

ABSTRACT

Abnormal melanogenesis can lead to hyperpigmentation. Tyrosinase (TYR), a key rate-limiting enzyme in melanin production, is an important therapeutic target for these disorders. We investigated the TYR inhibitory activity of hydrolysates extracted from the muscle tissue of Takifugu flavidus (TFMH). We used computer-aided virtual screening to identify a novel peptide that potently inhibited melanin synthesis, simulated its binding mode to TYR, and evaluated functional efficacy in vitro and in vivo. TFMH inhibited the diphenolase activities of mTYR, reducing TYR substrate binding activity and effectively inhibiting melanin synthesis. TFMH indirectly reduced cAMP response element-binding protein phosphorylation in vitro by downregulating melanocortin 1 receptor expression, thereby inhibiting expression of the microphthalmia-associated transcription factor, further decreasing TYR, tyrosinase related protein 1, and dopachrome tautomerase expression and ultimately impeding melanin synthesis. In zebrafish, TFMH significantly reduced black spot formation. TFMH (200 µg/mL) decreased zebrafish TYR activity by 43% and melanin content by 52%. Molecular dynamics simulations over 100 ns revealed that the FGFRSP (T-6) peptide stably binds mushroom TYR via hydrogen bonds and ionic interactions. T-6 (400 µmol/L) reduced melanin content in B16F10 melanoma cells by 71% and TYR activity by 79%. In zebrafish, T-6 (200 µmol/L) inhibited melanin production by 64%. TFMH and T-6 exhibit good potential for the development of natural skin-whitening cosmetic products.


Subject(s)
Melanins , Melanoma, Experimental , Monophenol Monooxygenase , Takifugu , Zebrafish , Animals , Melanins/biosynthesis , Takifugu/metabolism , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Mice , Melanoma, Experimental/drug therapy , Melanoma, Experimental/metabolism , Cell Line, Tumor , Microphthalmia-Associated Transcription Factor/metabolism , Muscles/drug effects , Muscles/metabolism , Intramolecular Oxidoreductases/metabolism , Receptor, Melanocortin, Type 1/metabolism , Molecular Dynamics Simulation , Cyclic AMP Response Element-Binding Protein/metabolism
9.
J Morphol ; 285(6): e21712, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38798246

ABSTRACT

Although the monophyly of Paraneoptera (=hemipteroid orders or Acercaria, composed of Psocodea, Thysanoptera and Hemiptera) has been widely accepted morphologically, the results from molecular phylogenetic and phylogenomic analyses contradict this hypothesis. In particular, phylogenomic analyses provide strong bootstrap support for the sister group relationship between Psocodea and Holometabola, that is, paraphyly of Paraneoptera. Here, we examined the pterothoracic musculature of Paraneoptera, as well as a wide range of other neopterous insect orders, and analysed its phylogenetic implication. By using the synchrotron microcomputed tomography (µCT) and parsimony-based ancestral state reconstruction, several apomorphic conditions suggesting the monophyly of Paraneoptera, such as the absence of the II/IIItpm7, IIscm3, IIIspm2 and IIIscm3 muscles, were identified. In contrast, no characters supporting Psocodea + Holometabola were recovered from the thoracic muscles. These results provide additional support for the monophyly of Paraneoptera, together with the previously detected morphological apomorphies of the head, wing base, and abdomen.


Subject(s)
Neoptera , Phylogeny , X-Ray Microtomography , Animals , Neoptera/anatomy & histology , Neoptera/genetics , Neoptera/classification , Muscles/anatomy & histology , Thorax/anatomy & histology
10.
Article in English | MEDLINE | ID: mdl-38749208

ABSTRACT

Pigmentation genes expressed in skin, body muscle and tail of Thai-flag compared with Blue, White and Red varieties of Siamese fighting fish Betta splendens were identified. In total, 22,919 new unigenes were found. Pearson correlation and PCA analysis revealed that expression profiles of genes in muscle, skin and tail across solid color variety were similar. In contrast, those in skin and red tail part of Thai-flag were closely related but they showed different expression profiles with the white tail part. Moreover, 21,347-64,965 SNPs were identified in exonic regions of identified genes. In total, 28,899 genes were differentially expressed between paired comparisons of libraries where 13,907 genes (48.12 %) were upregulated and 14,992 genes (51.88 %) were downregulated. DEGs between paired libraries were 106-5775 genes relative to the compared libraries (56-2982 and 50-2782 for upregulated and downregulated DEGs). Interestingly, 432 pigmentation genes of B. splendens were found. Of these, 297 DEGs showed differential expression between varieties. Many DEGs in melanogenesis (Bsmcr1r, Bsmcr5r, and Bsslc2a15b), tyrosine metabolism (Bstyr, Bstyrp1b and Bsdct), stripe repressor (BsAsip1 and BsAsip2b), pteridine (Bsgch2) and carotenoid (BsBco2) biosynthesis were downregulated in the Thai-flag compared with solid color varieties. Expression of Bsbco1l, Bsfrem2b, Bskcnj13, Bszic2a and Bspah in skin, muscle and tail of Thai-flag, Blue, Red and White varieties was analyzed by qRT-PCR and revealed differential expression between fish varieties and showed anatomical tissue-preferred expression patterns in the same fish variety. The information could be applied to assist genetic-based development of new B. splendens varieties in the future.


Subject(s)
Pigmentation , Animals , Pigmentation/genetics , Fishes/genetics , Fish Proteins/genetics , Skin/metabolism , Thailand , Muscles/metabolism , Tail , Skin Pigmentation/genetics , Transcriptome , Gene Expression Profiling , Polymorphism, Single Nucleotide , Southeast Asian People
11.
Proc Natl Acad Sci U S A ; 121(21): e2319060121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38753516

ABSTRACT

Multicellular organisms are composed of many tissue types that have distinct morphologies and functions, which are largely driven by specialized proteomes and interactomes. To define the proteome and interactome of a specific type of tissue in an intact animal, we developed a localized proteomics approach called Methionine Analog-based Cell-Specific Proteomics and Interactomics (MACSPI). This method uses the tissue-specific expression of an engineered methionyl-tRNA synthetase to label proteins with a bifunctional amino acid 2-amino-5-diazirinylnonynoic acid in selected cells. We applied MACSPI in Caenorhabditis elegans, a model multicellular organism, to selectively label, capture, and profile the proteomes of the body wall muscle and the nervous system, which led to the identification of tissue-specific proteins. Using the photo-cross-linker, we successfully profiled HSP90 interactors in muscles and neurons and identified tissue-specific interactors and stress-related interactors. Our study demonstrates that MACSPI can be used to profile tissue-specific proteomes and interactomes in intact multicellular organisms.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Proteome , Proteomics , Animals , Caenorhabditis elegans/metabolism , Proteomics/methods , Caenorhabditis elegans Proteins/metabolism , Proteome/metabolism , Methionine-tRNA Ligase/metabolism , Methionine-tRNA Ligase/genetics , HSP90 Heat-Shock Proteins/metabolism , Organ Specificity , Muscles/metabolism , Neurons/metabolism
12.
Dev Biol ; 512: 57-69, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38750688

ABSTRACT

Understanding the developmental processes and signaling pathways involved in larval myogenesis and metamorphosis is crucial for comprehending the life history and adaptive strategies of marine organisms. In this study, we investigated the temporal and spatial patterns of myogenesis in the mussel Mytilus coruscus (Mc), focusing on the emergence and transformation of major muscle groups during different larval stages. We also explored the role of the Hedgehog (Hh) signaling pathway in regulating myogenesis and larval metamorphosis. The results revealed distinct developmental stages characterized by the emergence of specific muscular components, such as velum retractor muscles and anterior adductor muscles, in D-veliger and umbo larvae, which are responsible for the planktonic stage. In the pediveliger stage, posterior ventral, posterior adductor, and foot muscles appeared. After larval metamorphosis, the velum structure and its corresponding retractor muscles degenerate, indicating the transition from planktonic to benthic life. We observed a conserved pattern of larval musculature development and revealed a high degree of conservation across bivalve species, with comparable emergence times during myogenesis. Furthermore, exposure to the Hh signaling inhibitor cyclopamine impaired larval muscle development, reduced larval swimming activity, and inhibited larval metamorphosis in M. coruscus. Cyclopamine-mediated inhibition of Hh signaling led to reduced expression of four key genes within the Hh signaling pathway (McHh, McPtc, McSmo, and McGli) and the striated myosin heavy chain gene (McMHC). It is hypothesised that the abnormal larval muscle development in cyclopamine-treated groups may be an indirect effect due to disrupted McMHC expression. We provide evidence for the first time that cyclopamine treatment inhibited larval metamorphosis in bivalves, highlighting the potential involvement of Hh signaling in mediating larval muscle development and metamorphosis in M. coruscus. The present study provides insights into the dynamic nature of myogenesis and the regulatory role of the Hh signaling pathway during larval development and metamorphosis in M. coruscus. The results obtained in this study contribute to a better understanding of the evolutionary significance of Hh signaling in bivalves and shed light on the mechanisms underlying larval muscle development and metamorphosis in marine invertebrates.


Subject(s)
Gene Expression Regulation, Developmental , Hedgehog Proteins , Larva , Metamorphosis, Biological , Muscle Development , Mytilus , Signal Transduction , Animals , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Larva/growth & development , Larva/metabolism , Mytilus/growth & development , Mytilus/metabolism , Veratrum Alkaloids/pharmacology , Muscles/metabolism
13.
J Cell Sci ; 137(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38757366

ABSTRACT

Nesprin proteins, which are components of the linker of nucleoskeleton and cytoskeleton (LINC) complex, are located within the nuclear envelope and play prominent roles in nuclear architecture. For example, LINC complex proteins interact with both chromatin and the cytoskeleton. Here, we report that the Drosophila Nesprin MSP300 has an additional function in autophagy within larval body wall muscles. RNAi-mediated MSP300 knockdown in larval body wall muscles resulted in defects in the contractile apparatus, muscle degeneration and defective autophagy. In particular, MSP300 knockdown caused accumulation of cytoplasmic aggregates that contained poly-ubiquitylated cargo, as well as the autophagy receptor ref(2)P (the fly homolog of p62 or SQSTM) and Atg8a. Furthermore, MSP300 knockdown larvae expressing an mCherry-GFP-tagged Atg8a transgene exhibited aberrant persistence of the GFP signal within these aggregates, indicating failure of autophagosome maturation. These autophagy deficits were similar to those exhibited by loss of the endoplasmic reticulum (ER) fusion protein Atlastin (Atl), raising the possibility that Atl and MSP300 might function in the same pathway. In support of this possibility, we found that a GFP-tagged MSP300 protein trap exhibited extensive localization to the ER. Alteration of ER-directed MSP300 might abrogate important cytoskeletal contacts necessary for autophagosome completion.


Subject(s)
Autophagy , Drosophila Proteins , Proteostasis , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Endoplasmic Reticulum/metabolism , Muscles/metabolism , Larva/metabolism , Larva/genetics , Microfilament Proteins , Muscle Proteins
14.
Ecotoxicol Environ Saf ; 279: 116514, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38810286

ABSTRACT

The aim of this study is to evaluate the toxic effects of different concentrations of cigarette butt leachate (CBL) (0.0, 0.5, 1, 1.5, and 2.0 µL L-1) on blood biochemistry, oxidative stress biomarkers, and the biochemical profile of the liver and muscle of Nile tilapia fish (Oreochromis niloticus) after 21 days. Increased activity of lactate dehydrogenase (LDH), gamma-glutamyl transferase (GGT), and aspartate aminotransferase (AST) in plasma, and decreased activity of alkaline phosphatase (ALP) in fish exposed to CBL, indicated cytotoxicity. Elevated cholesterol, triglycerides, and glucose levels, coupled with reduced total protein, albumin, and globulin levels in the plasma, indicated impaired liver function in the fish. An increase in creatinine showed kidney damage. Increased superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities, along with the decrease in liver glutathione (GSH) content and total antioxidant capacity in the hepatocytes of fish exposed to CBL, indicated the occurrence of oxidative stress. Malondialdehyde (MDA) elevation indicated heightened lipid peroxidation in CBL-exposed fish hepatocytes. Raman spectroscopy revealed altered biochemical profiles in fish liver and muscle post-CBL exposure. The results demonstrated that exposure to CBL led to a decrease in phospholipid levels, collagen destruction, changes in phenylalanine levels, and a decrease in the levels of lipids, proteins, and nucleic acids in fish liver and muscle tissue. Furthermore, the metabolites and compounds of cigarette butt juice were detectable in the liver and muscle tissue of fishes. In conclusion, this study showed that exposure to CBL can have adverse effects on fish health.


Subject(s)
Biomarkers , Cichlids , Liver , Oxidative Stress , Water Pollutants, Chemical , Animals , Cichlids/metabolism , Oxidative Stress/drug effects , Biomarkers/blood , Water Pollutants, Chemical/toxicity , Liver/drug effects , Liver/metabolism , Lipid Peroxidation/drug effects , Tobacco Products/toxicity , Metabolome/drug effects , Antioxidants/metabolism , Superoxide Dismutase/metabolism , Muscles/drug effects , Muscles/metabolism , Catalase/metabolism
15.
Chemosphere ; 359: 142289, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723690

ABSTRACT

The speciation of arsenic in fish has been widely investigated, but bioaccumulation and biotransformation of inorganic As in different tissues of Nile tilapia (Oreochromis niloticus) are not fully understood. The present study aimed to investigate the bioaccumulation of As in Nile tilapia, as well as to evaluate the distribution of the main arsenic species (As(III), As(V), MMA, DMA, and AsB) in liver, stomach, gill, and muscle, after controlled exposures to As(III) and As(V) at concentrations of 5.0 and 10.0 mg L-1 during periods of 1 and 7 days. Total As was determined by inductively coupled plasma mass spectroscopy (ICP-MS). For both exposures (As(III) and As(V)), the total As levels after 7-day exposure were highest in the liver and lowest in the muscle. Overall, the Nile tilapia exposed to As(III) showed higher tissue levels of As after the treatments, compared to As(V) exposure. Speciation of arsenic present in the tissues employed liquid chromatography coupled to ICP-MS (LC-ICP-MS), revealing that the biotransformation of As included As(V) reduction to As(III), methylation to monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), and subsequent conversion to nontoxic arsenobetaine (AsB), which was the predominant arsenic form. Finally, the interactions and antagonistic effects of selenium in the bioaccumulation processes were tested by the combined exposure to As(III), the most toxic species of As, together with tetravalent selenium (Se(IV)). The results indicated a 4-6 times reduction of arsenic toxicity in the tilapia.


Subject(s)
Arsenic , Bioaccumulation , Biotransformation , Cichlids , Liver , Selenium , Water Pollutants, Chemical , Animals , Arsenic/metabolism , Cichlids/metabolism , Water Pollutants, Chemical/metabolism , Selenium/metabolism , Liver/metabolism , Liver/drug effects , Gills/metabolism , Muscles/metabolism
16.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38605642

ABSTRACT

MicroRNAs (miRNAs) synergize with various biomolecules in human cells resulting in diverse functions in regulating a wide range of biological processes. Predicting potential disease-associated miRNAs as valuable biomarkers contributes to the treatment of human diseases. However, few previous methods take a holistic perspective and only concentrate on isolated miRNA and disease objects, thereby ignoring that human cells are responsible for multiple relationships. In this work, we first constructed a multi-view graph based on the relationships between miRNAs and various biomolecules, and then utilized graph attention neural network to learn the graph topology features of miRNAs and diseases for each view. Next, we added an attention mechanism again, and developed a multi-scale feature fusion module, aiming to determine the optimal fusion results for the multi-view topology features of miRNAs and diseases. In addition, the prior attribute knowledge of miRNAs and diseases was simultaneously added to achieve better prediction results and solve the cold start problem. Finally, the learned miRNA and disease representations were then concatenated and fed into a multi-layer perceptron for end-to-end training and predicting potential miRNA-disease associations. To assess the efficacy of our model (called MUSCLE), we performed 5- and 10-fold cross-validation (CV), which got average the Area under ROC curves of 0.966${\pm }$0.0102 and 0.973${\pm }$0.0135, respectively, outperforming most current state-of-the-art models. We then examined the impact of crucial parameters on prediction performance and performed ablation experiments on the feature combination and model architecture. Furthermore, the case studies about colon cancer, lung cancer and breast cancer also fully demonstrate the good inductive capability of MUSCLE. Our data and code are free available at a public GitHub repository: https://github.com/zht-code/MUSCLE.git.


Subject(s)
Colonic Neoplasms , Lung Neoplasms , MicroRNAs , Humans , Muscles , Learning , MicroRNAs/genetics , Algorithms , Computational Biology
17.
Front Endocrinol (Lausanne) ; 15: 1309082, 2024.
Article in English | MEDLINE | ID: mdl-38606086

ABSTRACT

Purpose: This study aims to investigate the relationship between the total muscle-to-fat ratio (tMFR) and female urinary incontinence (UI), determine whether tMFR can serve as a useful index for predicting UI, and identify factors that may influence this relationship. Methods: We retrospectively analyzed data from 4391 adult women participating in the National Health and Nutrition Examination Survey (NHANES) conducted between 2011 and 2018. The correlation between tMFR and UI was examined using a dose-response curve generated through a restricted cubic spline (RCS) function, LASSO and multivariate logistic regression. Furthermore, predictive models were constructed incorporating factors such as age, race, hypertension, diabetes, cotinine levels, and tMFR. The performance of these predictive models was evaluated using training and test datasets, employing calibration curves, receiver operating characteristic curves, and clinical decision curves. Mediation effects were also analyzed to explore potential relationships between tMFR and female UI. Results: In a sample of 4391 adult women, 1073 (24.4%) self-reported experiencing UI, while 3318 (75.6%) reported not having UI. Based on the analyses involving LASSO regression and multivariate logistic regression, it was found that tMFR exhibited a negative association with UI (OR = 0.599, 95% CI: 0.497-0.719, P < 0.001). The results from the restricted cubic spline chart indicated a decreasing risk of UI in women as tMFR increased. Furthermore, the model constructed based on logistic regression analysis demonstrated a certain level of accuracy (in the training dataset: area under the curve (AUC) = 0.663; in the test dataset: AUC = 0.662) and clinical applicability. The mediation analysis revealed that the influence of tMFR on the occurrence of UI in women might potentially occur through the blood index lymphocyte count (P = 0.040). Conclusion: A high tMFR serves as a protective factor against UI in women. Furthermore, lymphocyte might be involved in the relationship between tMFR and female UI.


Subject(s)
Urinary Incontinence , Adult , Humans , Female , United States/epidemiology , Nutrition Surveys , Retrospective Studies , Urinary Incontinence/diagnosis , Urinary Incontinence/epidemiology , Muscles , ROC Curve
18.
Cells ; 13(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38607042

ABSTRACT

Understanding the structure and function of intermediate filaments (IFs) is necessary in order to explain why more than 70 related IF genes have evolved in vertebrates while maintaining such dramatically tissue-specific expression. Desmin is a member of the large multigene family of IF proteins and is specifically expressed in myocytes. In an effort to elucidate its muscle-specific behavior, we have used a yeast two-hybrid system in order to identify desmin's head binding partners. We described a mitochondrial and a lysosomal protein, NADH ubiquinone oxidoreductase core subunit S2 (NDUFS2), and saposin D, respectively, as direct desmin binding partners. In silico analysis indicated that both interactions at the atomic level occur in a very similar way, by the formation of a three-helix bundle with hydrophobic interactions in the interdomain space and hydrogen bonds at R16 and S32 of the desmin head domain. The interactions, confirmed also by GST pull-down assays, indicating the necessity of the desmin head domain and, furthermore, point out its role in function of mitochondria and lysosomes, organelles which are disrupted in myopathies due to desmin head domain mutations.


Subject(s)
Desmin , Animals , Desmin/chemistry , Desmin/metabolism , Intermediate Filaments/metabolism , Muscles/metabolism , Muscular Diseases/genetics , Muscular Diseases/metabolism , Mutation , Humans
19.
Int J Mol Sci ; 25(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38612497

ABSTRACT

Scar tissue formation presents a significant barrier to peripheral nerve recovery in clinical practice. While different experimental methods have been described, there is no clinically available gold standard for its prevention. This study aims to determine the potential of fibrin glue (FG) to limit scarring around peripheral nerves. Thirty rats were divided into three groups: glutaraldehyde-induced sciatic nerve injury treated with FG (GA + FG), sciatic nerve injury with no treatment (GA), and no sciatic nerve injury (Sham). Neural regeneration was assessed with weekly measurements of the visual static sciatic index as a parameter for sciatic nerve function across a 12-week period. After 12 weeks, qualitative and quantitative histological analysis of scar tissue formation was performed. Furthermore, histomorphometric analysis and wet muscle weight analysis were performed after the postoperative observation period. The GA + FG group showed a faster functional recovery (6 versus 9 weeks) compared to the GA group. The FG-treated group showed significantly lower perineural scar tissue formation and significantly higher fiber density, myelin thickness, axon thickness, and myelinated fiber thickness than the GA group. A significantly higher wet muscle weight ratio of the tibialis anterior muscle was found in the GA + FG group compared to the GA group. Our results suggest that applying FG to injured nerves is a promising scar tissue prevention strategy associated with improved regeneration both at the microscopic and at the functional level. Our results can serve as a platform for innovation in the field of perineural regeneration with immense clinical potential.


Subject(s)
Cicatrix , Peripheral Nerve Injuries , Animals , Rats , Cicatrix/prevention & control , Fibrin Tissue Adhesive/pharmacology , Peripheral Nerve Injuries/prevention & control , Sciatic Nerve , Muscles
20.
Int J Mol Sci ; 25(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38612863

ABSTRACT

Our study aimed to explore the potential positive effects of cold water exercise on mitochondrial biogenesis and muscle energy metabolism in aging rats. The study involved 32 male and 32 female rats aged 15 months, randomly assigned to control sedentary animals, animals training in cold water at 5 ± 2 °C, or animals training in water at thermal comfort temperature (36 ± 2 °C). The rats underwent swimming training for nine weeks, gradually increasing the duration of the sessions from 2 min to 4 min per day, five days a week. The results demonstrated that swimming in thermally comfortable water improved the energy metabolism of aging rat muscles (increased metabolic rates expressed as increased ATP, ADP concentration, TAN (total adenine nucleotide) and AEC (adenylate energy charge value)) and increased mRNA and protein expression of fusion regulatory proteins. Similarly, cold-water swimming improved muscle energy metabolism in aging rats, as shown by an increase in muscle energy metabolites and enhanced mitochondrial biogenesis and dynamics. It can be concluded that the additive effect of daily activity in cold water influenced both an increase in the rate of energy metabolism in the muscles of the studied animals and an intensification of mitochondrial biogenesis and dynamics (related to fusion and fragmentation processes). Daily activity in warm water also resulted in an increase in the rate of energy metabolism in muscles, but at the same time did not cause significant changes in mitochondrial dynamics.


Subject(s)
Organelle Biogenesis , Swimming , Female , Male , Animals , Rats , Muscles , Energy Metabolism , Aging , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...