Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.542
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732027

ABSTRACT

Antisense oligonucleotides (ASOs) are short oligodeoxynucleotides designed to bind to specific regions of target mRNA. ASOs can modulate pre-mRNA splicing, increase levels of functional proteins, and decrease levels of toxic proteins. ASOs are being developed for the treatment of motor neuron diseases (MNDs), including spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS) and spinal and bulbar muscular atrophy (SBMA). The biggest success has been the ASO known as nusinersen, the first effective therapy for SMA, able to improve symptoms and slow disease progression. Another success is tofersen, an ASO designed to treat ALS patients with SOD1 gene mutations. Both ASOs have been approved by the FDA and EMA. On the other hand, ASO treatment in ALS patients with the C9orf72 gene mutation did not show any improvement in disease progression. The aim of this review is to provide an up-to-date overview of ASO research in MNDs, from preclinical studies to clinical trials and, where available, regulatory approval. We highlight the successes and failures, underline the strengths and limitations of the current ASO research, and suggest possible approaches that could lead to more effective treatments.


Subject(s)
Motor Neuron Disease , Oligonucleotides, Antisense , Humans , Oligonucleotides, Antisense/therapeutic use , Motor Neuron Disease/genetics , Motor Neuron Disease/therapy , Animals , Muscular Atrophy, Spinal/therapy , Muscular Atrophy, Spinal/genetics , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/therapy
2.
Clin Lab ; 70(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38747911

ABSTRACT

BACKGROUND: This study aims to evaluate the ability of laboratories to perform spinal muscular atrophy (SMA) genetic testing in newborns based on dried blood spot (DBS) samples, and to provide reference data and advance preparation for establishing the pilot external quality assessment (EQA) scheme for SMA genetic testing of newborns in China. METHODS: The pilot EQA scheme contents and evaluation principles of this project were designed by National Center for Clinical Laboratories (NCCL), National Health Commission. Two surveys were carried out in 2022, and 5 batches of blood spots were submitted to the participating laboratory each time. All participating laboratories conducted testing upon receiving samples, and test results were submitted to NCCL within the specified date. RESULTS: The return rates were 75.0% (21/28) and 95.2% (20/21) in the first and second surveys, respectively. The total return rate of the two examinations was 83.7% (41/49). Nineteen laboratories (19/21, 90.5%) had a full score passing on the first survey, while in the second survey twenty laboratories (20/20, 100%) scored full. CONCLUSIONS: This pilot EQA survey provides a preliminary understanding of the capability of SMA genetic testing for newborns across laboratories in China. A few laboratories had technical or operational problems in testing. It is, therefore, of importance to strengthen laboratory management and to improve testing capacity for the establishment of a national EQA scheme for newborn SMA genetic testing.


Subject(s)
Genetic Testing , Muscular Atrophy, Spinal , Neonatal Screening , Humans , Infant, Newborn , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics , Pilot Projects , Genetic Testing/standards , Genetic Testing/methods , Neonatal Screening/standards , Neonatal Screening/methods , China , Dried Blood Spot Testing/standards , Dried Blood Spot Testing/methods , Quality Assurance, Health Care , Laboratories, Clinical/standards , Survival of Motor Neuron 1 Protein/genetics
3.
Nat Commun ; 15(1): 4120, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750052

ABSTRACT

5q-associated spinal muscular atrophy (SMA) is a motoneuron disease caused by mutations in the survival motor neuron 1 (SMN1) gene. Adaptive immunity may contribute to SMA as described in other motoneuron diseases, yet mechanisms remain elusive. Nusinersen, an antisense treatment, enhances SMN2 expression, benefiting SMA patients. Here we have longitudinally investigated SMA and nusinersen effects on local immune responses in the cerebrospinal fluid (CSF) - a surrogate of central nervous system parenchyma. Single-cell transcriptomics (SMA: N = 9 versus Control: N = 9) reveal NK cell and CD8+ T cell expansions in untreated SMA CSF, exhibiting activation and degranulation markers. Spatial transcriptomics coupled with multiplex immunohistochemistry elucidate cytotoxicity near chromatolytic motoneurons (N = 4). Post-nusinersen treatment, CSF shows unaltered protein/transcriptional profiles. These findings underscore cytotoxicity's role in SMA pathogenesis and propose it as a therapeutic target. Our study illuminates cell-mediated cytotoxicity as shared features across motoneuron diseases, suggesting broader implications.


Subject(s)
Brain , Killer Cells, Natural , Motor Neurons , Muscular Atrophy, Spinal , Oligonucleotides , Humans , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/pathology , Muscular Atrophy, Spinal/genetics , Motor Neurons/drug effects , Motor Neurons/pathology , Motor Neurons/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Brain/pathology , Brain/drug effects , Female , Male , Survival of Motor Neuron 2 Protein/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism , Single-Cell Analysis , Cytotoxicity, Immunologic/drug effects , Infant , Child, Preschool , Child , Transcriptome
4.
Sci Rep ; 14(1): 11838, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38783003

ABSTRACT

5q-spinal muscular atrophy (SMA) is a neuromuscular disorder (NMD) that has become one of the first 5% treatable rare diseases. The efficacy of new SMA therapies is creating a dynamic SMA patient landscape, where disease progression and scoliosis development play a central role, however, remain difficult to anticipate. New approaches to anticipate disease progression and associated sequelae will be needed to continuously provide these patients the best standard of care. Here we developed an interpretable machine learning (ML) model that can function as an assistive tool in the anticipation of SMA-associated scoliosis based on disease progression markers. We collected longitudinal data from 86 genetically confirmed SMA patients. We selected six features routinely assessed over time to train a random forest classifier. The model achieved a mean accuracy of 0.77 (SD 0.2) and an average ROC AUC of 0.85 (SD 0.17). For class 1 'scoliosis' the average precision was 0.84 (SD 0.11), recall 0.89 (SD 0.22), F1-score of 0.85 (SD 0.17), respectively. Our trained model could predict scoliosis using selected disease progression markers and was consistent with the radiological measurements. During post validation, the model could predict scoliosis in patients who were unseen during training. We also demonstrate that rare disease data sets can be wrangled to build predictive ML models. Interpretable ML models can function as assistive tools in a changing disease landscape and have the potential to democratize expertise that is otherwise clustered at specialized centers.


Subject(s)
Disease Progression , Machine Learning , Muscular Atrophy, Spinal , Scoliosis , Humans , Scoliosis/therapy , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/therapy , Male , Female , Child , Genetic Therapy/methods , Adolescent , Child, Preschool
5.
Nat Commun ; 15(1): 3839, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714659

ABSTRACT

Pre-mRNA splicing, a key process in gene expression, can be therapeutically modulated using various drug modalities, including antisense oligonucleotides (ASOs). However, determining promising targets is hampered by the challenge of systematically mapping splicing-regulatory elements (SREs) in their native sequence context. Here, we use the catalytically inactive CRISPR-RfxCas13d RNA-targeting system (dCas13d/gRNA) as a programmable platform to bind SREs and modulate splicing by competing against endogenous splicing factors. SpliceRUSH, a high-throughput screening method, was developed to map SREs in any gene of interest using a lentivirus gRNA library that tiles the genetic region, including distal intronic sequences. When applied to SMN2, a therapeutic target for spinal muscular atrophy, SpliceRUSH robustly identifies not only known SREs but also a previously unknown distal intronic SRE, which can be targeted to alter exon 7 splicing using either dCas13d/gRNA or ASOs. This technology enables a deeper understanding of splicing regulation with applications for RNA-based drug discovery.


Subject(s)
CRISPR-Cas Systems , Exons , Introns , RNA Splicing , RNA, Guide, CRISPR-Cas Systems , Survival of Motor Neuron 2 Protein , Humans , RNA Splicing/genetics , Survival of Motor Neuron 2 Protein/genetics , RNA, Guide, CRISPR-Cas Systems/genetics , Introns/genetics , Exons/genetics , HEK293 Cells , Oligonucleotides, Antisense/genetics , Muscular Atrophy, Spinal/genetics , Regulatory Sequences, Nucleic Acid/genetics , RNA Precursors/genetics , RNA Precursors/metabolism
6.
Sci Rep ; 14(1): 10442, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714739

ABSTRACT

Spinal muscular atrophy (SMA) genes, SMN1 and SMN2 (hereinafter referred to as SMN1/2), produce multiple circular RNAs (circRNAs), including C2A-2B-3-4 that encompasses early exons 2A, 2B, 3 and 4. C2A-2B-3-4 is a universally and abundantly expressed circRNA of SMN1/2. Here we report the transcriptome- and proteome-wide effects of overexpression of C2A-2B-3-4 in inducible HEK293 cells. Our RNA-Seq analysis revealed altered expression of ~ 15% genes (4172 genes) by C2A-2B-3-4. About half of the affected genes by C2A-2B-3-4 remained unaffected by L2A-2B-3-4, a linear transcript encompassing exons 2A, 2B, 3 and 4 of SMN1/2. These findings underscore the unique role of the structural context of C2A-2B-3-4 in gene regulation. A surprisingly high number of upregulated genes by C2A-2B-3-4 were located on chromosomes 4 and 7, whereas many of the downregulated genes were located on chromosomes 10 and X. Supporting a cross-regulation of SMN1/2 transcripts, C2A-2B-3-4 and L2A-2B-3-4 upregulated and downregulated SMN1/2 mRNAs, respectively. Proteome analysis revealed 61 upregulated and 57 downregulated proteins by C2A-2B-3-4 with very limited overlap with those affected by L2A-2B-3-4. Independent validations confirmed the effect of C2A-2B-3-4 on expression of genes associated with chromatin remodeling, transcription, spliceosome function, ribosome biogenesis, lipid metabolism, cytoskeletal formation, cell proliferation and neuromuscular junction formation. Our findings reveal a broad role of C2A-2B-3-4, and expands our understanding of functions of SMN1/2 genes.


Subject(s)
Exons , Muscular Atrophy, Spinal , Proteome , RNA, Circular , Survival of Motor Neuron 1 Protein , Survival of Motor Neuron 2 Protein , Transcriptome , Humans , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Proteome/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Survival of Motor Neuron 2 Protein/genetics , Survival of Motor Neuron 2 Protein/metabolism , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism , HEK293 Cells , Exons/genetics , Gene Expression Regulation
7.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(6): 661-668, 2024 Jun 10.
Article in Chinese | MEDLINE | ID: mdl-38818549

ABSTRACT

Spinal muscular atrophy (SMA), an autosomal recessive neuromuscular disease with a carrier frequency of 1/60 ~ 1/40, is characterized by severe clinical symptoms, high mortality rate, and expensive treatment costs. Carrier screening is of paramount importance to detect high-risk couples, and therefore to reduce the occurrence of SMA. In China, SMA carrier screening has become widespread, though there is still a lack of genetic counseling expertise. This article has focused on the current challenges for SMA carrier screening, including the screening methods, target population, screening procedures, and pre-/post-testing counseling. The aim is to standardize its application and counseling in the clinical practice.


Subject(s)
Genetic Carrier Screening , Genetic Counseling , Muscular Atrophy, Spinal , Humans , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/diagnosis , Genetic Carrier Screening/methods , Genetic Testing/methods , Consensus , China
8.
Int J Biol Macromol ; 269(Pt 1): 131960, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697430

ABSTRACT

Rare diseases, defined by their low prevalence, present significant challenges, including delayed detection, expensive treatments, and limited research. This study delves into the genetic basis of two noteworthy rare diseases in Saudi Arabia: Phenylketonuria (PKU) and Spinal Muscular Atrophy (SMA). PKU, resulting from mutations in the phenylalanine hydroxylase (PAH) gene, exhibits geographical variability and impacts intellectual abilities. SMA, characterized by motor neuron loss, is linked to mutations in the survival of motor neuron 1 (SMN1) gene. Recognizing the importance of unveiling signature genomics in rare diseases, we conducted a quantitative study on PAH and SMN1 proteins of multiple organisms by employing various quantitative techniques to assess genetic variations. The derived signature-genomics contributes to a deeper understanding of these critical genes, paving the way for enhanced diagnostics for disorders associated with PAH and SMN1.


Subject(s)
Genomics , Muscular Atrophy, Spinal , Phenylalanine Hydroxylase , Phenylketonurias , Rare Diseases , Survival of Motor Neuron 1 Protein , Muscular Atrophy, Spinal/genetics , Phenylketonurias/genetics , Humans , Phenylalanine Hydroxylase/genetics , Survival of Motor Neuron 1 Protein/genetics , Genomics/methods , Rare Diseases/genetics , Mutation , Saudi Arabia/epidemiology
9.
BMC Biol ; 22(1): 94, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664795

ABSTRACT

BACKGROUND: Spinal muscular atrophy (SMA) is a devastating neuromuscular disease caused by hypomorphic loss of function in the survival motor neuron (SMN) protein. SMA presents across a broad spectrum of disease severity. Unfortunately, genetic models of intermediate SMA have been difficult to generate in vertebrates and are thus unable to address key aspects of disease etiology. To address these issues, we developed a Drosophila model system that recapitulates the full range of SMA severity, allowing studies of pre-onset biology as well as late-stage disease processes. RESULTS: Here, we carried out transcriptomic and proteomic profiling of mild and intermediate Drosophila models of SMA to elucidate molecules and pathways that contribute to the disease. Using this approach, we elaborated a role for the SMN complex in the regulation of innate immune signaling. We find that mutation or tissue-specific depletion of SMN induces hyperactivation of the immune deficiency (IMD) and Toll pathways, leading to overexpression of antimicrobial peptides (AMPs) and ectopic formation of melanotic masses in the absence of an external challenge. Furthermore, the knockdown of downstream targets of these signaling pathways reduced melanotic mass formation caused by SMN loss. Importantly, we identify SMN as a negative regulator of a ubiquitylation complex that includes Traf6, Bendless, and Diap2 and plays a pivotal role in several signaling networks. CONCLUSIONS: In alignment with recent research on other neurodegenerative diseases, these findings suggest that hyperactivation of innate immunity contributes to SMA pathology. This work not only provides compelling evidence that hyperactive innate immune signaling is a primary effect of SMN depletion, but it also suggests that the SMN complex plays a regulatory role in this process in vivo. In summary, immune dysfunction in SMA is a consequence of reduced SMN levels and is driven by cellular and molecular mechanisms that are conserved between insects and mammals.


Subject(s)
Disease Models, Animal , Immunity, Innate , Muscular Atrophy, Spinal , Signal Transduction , Animals , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/immunology , Drosophila melanogaster/immunology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism
10.
Acta Myol ; 43(1): 1-7, 2024.
Article in English | MEDLINE | ID: mdl-38586164

ABSTRACT

Hereditary proximal 5q Spinal Muscular Atrophy (SMA) is a severe neuromuscular disorder with onset mainly in infancy or childhood. The underlying pathogenic mechanism is the loss of alpha motor neurons in the anterior horns of spine, due to deficiency of the survival motor neuron (SMN) protein as a consequence of the deletion of the SMN1 gene. Clinically, SMA is characterized by progressive loss of muscle strength and motor function ranging from the extremely severe, the neonatal onset type 1, to the mild type 4 arising in the adult life. All the clinical variants share the same molecular defect, the difference being driven mainly by the copy number of SMN2 gene, a centromeric gene nearly identical to SMN1 with a unique C to T transition in Exon 7 that results in exclusion of Exon 7 during post-transcriptional processing. In all the types of SMA the clinical picture is characterized by hypotonia, weakness and areflexia. Clinical severity can vary a lot between the four main recognized types of SMA. As for the most of patients affected by different neuromuscular disorders, also in SMA fatigability is a major complaint as it is frequently reported in common daily activities and negatively impacts on the overall quality of life. The increasing awareness of fatigability as an important dimension of impairment in Neuromuscular Disorders and particularly in SMA, is making it both a relevant subject of study and identifies it as a fundamental therapeutic target. In this review, we aimed to overview the current literature articles concerning this problem, in order to highlight what is known and what deserves further research.


Subject(s)
Muscular Atrophy, Spinal , Neuromuscular Diseases , Adult , Child , Humans , Infant, Newborn , Exons , Fatigue , Muscular Atrophy, Spinal/genetics , Neuromuscular Diseases/genetics , Quality of Life , Transcription Factors/genetics
11.
Ann Clin Transl Neurol ; 11(5): 1090-1096, 2024 May.
Article in English | MEDLINE | ID: mdl-38600653

ABSTRACT

OBJECTIVES: Mandatory newborn screening (NBS) for spinal muscular atrophy (SMA) was implemented for the first time in Italy at the end of 2021, allowing the identification and treatment of patients at an asymptomatic stage. METHODS: DNA samples extracted from dried blood spot (DBS) from newborns in Apulia region were analysed for SMA screening by using a real-time PCR-based assay. Infants harbouring homozygous deletion of SMN1 exon 7 confirmed by diagnostic molecular tests underwent clinical and neurophysiological assessment and received a timely treatment. RESULTS: Over the first 20 months since regional NBS introduction, four out of 42,492 (0.009%) screened children were found to carry a homozygous deletion in the exon 7 of SMN1 gene, with an annual incidence of 1:10,623. No false negatives were present. Median age at diagnosis was 7 days and median age at treatment was 20.5 days. Three of them had two copies of SMN2 and received gene therapy, while the one with three SMN2 copies was treated with nusinersen. All but one were asymptomatic at birth, showed no clinical signs of disease after a maximum follow-up of 16 months and reached motor milestones appropriate with their age. The minimum interval between diagnosis and the treatment initiation was 9 days. INTERPRETATION: The timely administration of disease-modifying therapies prevented presymptomatic subjects to develop disease symptoms. Mandatory NBS for SMA should be implemented on a national scale.


Subject(s)
Muscular Atrophy, Spinal , Neonatal Screening , Survival of Motor Neuron 1 Protein , Humans , Italy , Infant, Newborn , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/therapy , Survival of Motor Neuron 1 Protein/genetics , Female , Male , Survival of Motor Neuron 2 Protein/genetics , Oligonucleotides/administration & dosage , Oligonucleotides/pharmacology , Infant
12.
Curr Opin Pediatr ; 36(3): 296-303, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38655811

ABSTRACT

PURPOSE OF REVIEW: Genetic therapies made a significant impact to the clinical course of patients with spinal muscular atrophy and Duchenne muscular dystrophy. Clinicians and therapists who care for these patients want to know the changes in respiratory sequelae and implications for clinical care for treated patients. RECENT FINDINGS: Different genetic therapy approaches have been developed to replace the deficient protein product in spinal muscular atrophy and Duchenne muscular dystrophy. The natural history of these conditions needed to be understood in order to design clinical trials. Respiratory parameters were not the primary outcome measures for the clinical trials. The impact of these therapies is described in subsequent clinical trial reports or real-world data. SUMMARY: Genetic therapies are able to stabilize or improve the respiratory sequelae in patients with spinal muscular atrophy and Duchenne muscular dystrophy. Standardized reporting of these outcomes is needed to help inform the future revisions of clinical standards of care and practice guidelines.


Subject(s)
Genetic Therapy , Muscular Dystrophy, Duchenne , Humans , Genetic Therapy/methods , Muscular Dystrophy, Duchenne/complications , Muscular Dystrophy, Duchenne/therapy , Muscular Dystrophy, Duchenne/genetics , Child , Muscular Atrophy, Spinal/therapy , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/complications , Treatment Outcome
13.
Mol Genet Genomic Med ; 12(4): e2425, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38562051

ABSTRACT

BACKGROUND: To explore the clinical application value of pre-conception expanded carrier screening (PECS) in the Chinese Han ethnicity population of childbearing age. METHODS: The results of genetic testing of infertile parents who underwent PECS in the Reproductive Medicine Center of the Second Affiliated Hospital of Zhengzhou University, China, from September 2019 to December 2021, were retrospectively analyzed. The carrier rate of single gene disease, the detection rate of high-risk parents, and the clinical outcome of high-risk parents were statistically analyzed. RESULTS: A total of 1372 Chinese Han ethnicity patients underwent PECS, among which 458 patients underwent the extended 108-gene test, their overall carrier rate was 31.7%, and the detection rate of high-risk parents was 0.3%. The highest carrier rates were SLC22A (2.4%), ATP7B (2.4%), MMACHC (2.2%), PAH (1.8%), GALC (1.8%), MLC1 (1.3%), UNC13D (1.1%), CAPN3 (1.1%), and PKHD1 (1.1%). There were 488 women with fragile X syndrome-FMR1 gene detection, and 6 patients (1.2%) had FMR1 gene mutation. A total of 426 patients were screened for spinal muscular atrophy-SMN1, and the carrier rate was 3.5%, and the detection rate of parents' co-carrier was 0.5%. CONCLUSION: Monogenic recessive hereditary diseases had a high carrier rate in the population. Pre-pregnancy screening could provide good prenatal and postnatal care guidance for patients and preimplantation genetic testing for monogenic/single gene disorders (PGT-M) and prenatal diagnosis could provide more precise reproductive choices for high-risk parents.


Subject(s)
Genetic Testing , Muscular Atrophy, Spinal , Pregnancy , Humans , Female , Retrospective Studies , Genetic Testing/methods , Prenatal Diagnosis/methods , Mutation , Muscular Atrophy, Spinal/genetics , Fragile X Mental Retardation Protein/genetics , Oxidoreductases/genetics , Membrane Proteins/genetics
14.
Stem Cell Res Ther ; 15(1): 94, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561840

ABSTRACT

BACKGROUND: Spinal Muscular Atrophy (SMA) is an autosomal-recessive neuromuscular disease affecting children. It is caused by the mutation or deletion of the survival motor neuron 1 (SMN1) gene resulting in lower motor neuron (MN) degeneration followed by motor impairment, progressive skeletal muscle paralysis and respiratory failure. In addition to the already existing therapies, a possible combinatorial strategy could be represented by the use of adipose-derived mesenchymal stem cells (ASCs) that can be obtained easily and in large amounts from adipose tissue. Their efficacy seems to be correlated to their paracrine activity and the production of soluble factors released through extracellular vesicles (EVs). EVs are important mediators of intercellular communication with a diameter between 30 and 100 nm. Their use in other neurodegenerative disorders showed a neuroprotective effect thanks to the release of their content, especially proteins, miRNAs and mRNAs. METHODS: In this study, we evaluated the effect of EVs isolated from ASCs (ASC-EVs) in the SMNΔ7 mice, a severe SMA model. With this purpose, we performed two administrations of ASC-EVs (0.5 µg) in SMA pups via intracerebroventricular injections at post-natal day 3 (P3) and P6. We then assessed the treatment efficacy by behavioural test from P2 to P10 and histological analyses at P10. RESULTS: The results showed positive effects of ASC-EVs on the disease progression, with improved motor performance and a significant delay in spinal MN degeneration of treated animals. ASC-EVs could also reduce the apoptotic activation (cleaved Caspase-3) and modulate the neuroinflammation with an observed decreased glial activation in lumbar spinal cord, while at peripheral level ASC-EVs could only partially limit the muscular atrophy and fiber denervation. CONCLUSIONS: Our results could encourage the use of ASC-EVs as a therapeutic combinatorial treatment for SMA, bypassing the controversial use of stem cells.


Subject(s)
Extracellular Vesicles , Muscular Atrophy, Spinal , Humans , Child , Mice , Animals , Disease Models, Animal , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/therapy , Muscular Atrophy, Spinal/pathology , Motor Neurons , Stem Cells/metabolism , Extracellular Vesicles/metabolism
15.
J Mol Diagn ; 26(5): 364-373, 2024 May.
Article in English | MEDLINE | ID: mdl-38490302

ABSTRACT

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder primarily caused by the deletion or mutation of the survival motor neuron 1 (SMN1) gene. This study assesses the diagnostic potential of long-read sequencing (LRS) in three patients with SMA. For Patient 1, who has a heterozygous SMN1 deletion, LRS unveiled a missense mutation in SMN1 exon 5. In Patient 2, an Alu/Alu-mediated rearrangement covering the SMN1 promoter and exon 1 was identified through a blend of multiplex ligation-dependent probe amplification, LRS, and PCR across the breakpoint. The third patient, born to a consanguineous family, bore four copies of hybrid SMN genes. LRS determined the genomic structures, indicating two distinct hybrids of SMN2 exon 7 and SMN1 exon 8. However, a discrepancy was found between the SMN1/SMN2 ratio interpretations by LRS (0:2) and multiplex ligation-dependent probe amplification (0:4), which suggested a limitation of LRS in SMA diagnosis. In conclusion, this newly adapted long PCR-based third-generation sequencing introduces an additional avenue for SMA diagnosis.


Subject(s)
Muscular Atrophy, Spinal , Humans , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics , Mutation , Motor Neurons , Exons/genetics , Heterozygote , Survival of Motor Neuron 1 Protein/genetics
16.
Neuromuscul Disord ; 37: 29-35, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38520993

ABSTRACT

5q-associated spinal muscular atrophy (SMA) is the most common autosomal recessive neurological disease. Depletion in functional SMN protein leads to dysfunction and irreversible degeneration of the motor neurons. Over 95 % of individuals with SMA have homozygous exon 7 deletions in the SMN1 gene. Most of the remaining 4-5 % are compound heterozygous for deletion and a disease-associated sequence variant in the non-deleted allele. Individuals with SMA due to bi-allelic SMN1 sequence variants have rarely been reported. Data regarding their clinical phenotype, disease progression, outcome and treatment response are sparse. This study describes six individuals from three families, all with homozygous sequence variants in SMN1, and four of whom received treatment with disease-modifying therapies. We also describe the challenges faced during the diagnostic process and intrafamilial phenotypic variability observed between siblings.


Subject(s)
Muscular Atrophy, Spinal , Child , Humans , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/diagnosis , Motor Neurons , Exons , Nerve Tissue Proteins/genetics , Phenotype , Survival of Motor Neuron 1 Protein/genetics
17.
Genes (Basel) ; 15(3)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38540372

ABSTRACT

In newborn screening (NBS), it is important to consider the availability of multiplex assays or other tests that can be integrated into existing systems when attempting to implement NBS for new target diseases. Recent developments in innovative testing technology have made it possible to simultaneously screen for severe primary immunodeficiency (PID) and spinal muscular atrophy (SMA) using quantitative real-time polymerase chain reaction (qPCR) assays. We describe our experience of optional NBS for severe PID and SMA in Osaka, Japan. A multiplex TaqMan qPCR assay was used for the optional NBS program. The assay was able to quantify the levels of T-cell receptor excision circles and kappa-deleting recombination excision circles, which is useful for severe combined immunodeficiency and B-cell deficiency screening, and can simultaneously detect the homozygous deletion of SMN1 exon 7, which is useful for NBS for SMA. In total, 105,419 newborns were eligible for the optional NBS program between 1 August 2020 and 31 August 2023. A case each of X-linked agammaglobulinemia and SMA were diagnosed through the optional NBS and treated at early stages (before symptoms appeared). Our results show how multiplex PCR-based NBS can benefit large-scale NBS implementation projects for new target diseases.


Subject(s)
Muscular Atrophy, Spinal , Neonatal Screening , Infant, Newborn , Humans , Neonatal Screening/methods , Real-Time Polymerase Chain Reaction/methods , Homozygote , Japan , Sequence Deletion , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics
18.
Med ; 5(5): 469-478.e3, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38531362

ABSTRACT

BACKGROUND: Spinal muscular atrophy is a progressive neuromuscular disorder and among the most frequent genetic causes of infant mortality. While recent advancements in gene therapy provide the potential to ameliorate the disease severity, there is currently no modality in clinical use to visualize dynamic pathophysiological changes in disease progression and regression after therapy. METHODS: In this prospective diagnostic clinical study, ten pediatric patients with spinal muscular atrophy and ten age- and sex-matched controls have been examined with three-dimensional optoacoustic imaging and clinical standard examinations to compare the spectral profile of muscle tissue and correlate it with motor function (ClinicalTrials.gov: NCT04115475). FINDINGS: We observed a reduced optoacoustic signal in muscle tissue of pediatric patients with spinal muscular atrophy. The reduction in signal intensity correlated with disease severity as assessed by grayscale ultrasound and standard motor function tests. In a cohort of patients who received disease-modifying therapy prior to the study, the optoacoustic signal intensity was similar to healthy controls. CONCLUSIONS: This translational study provides early evidence that three-dimensional optoacoustic imaging could have clinical implications in monitoring disease activity in spinal muscular atrophy. By visualizing and quantifying molecular changes in muscle tissue, disease progression and effects of gene therapy can be assessed in real time. FUNDING: The project was funded by ELAN Fonds (P055) at the University Hospital of the Friedrich-Alexander-Universität (FAU) Erlangen-Nurnberg to A.P.R.


Subject(s)
Imaging, Three-Dimensional , Muscular Atrophy, Spinal , Photoacoustic Techniques , Humans , Female , Male , Prospective Studies , Child, Preschool , Imaging, Three-Dimensional/methods , Photoacoustic Techniques/methods , Child , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/diagnostic imaging , Muscular Atrophy, Spinal/therapy , Infant , Disease Progression , Case-Control Studies , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Adolescent , Spinal Muscular Atrophies of Childhood/diagnostic imaging , Spinal Muscular Atrophies of Childhood/genetics , Spinal Muscular Atrophies of Childhood/therapy , Spinal Muscular Atrophies of Childhood/physiopathology , Spinal Muscular Atrophies of Childhood/diagnosis
19.
Comput Biol Chem ; 110: 108038, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38461796

ABSTRACT

The local disruptions caused by the genes of one disease can influence the pathways associated with the other diseases resulting in comorbidity. For gene therapies, it is necessary to prioritize the key genes that regulate common biological mechanisms to tackle the issues caused by overlapping diseases. This work proposes a clustering-based computational approach for prioritising the comorbid genes within the overlapping disease modules by analyzing Protein-Protein Interaction networks. For this, a sub-network with gene interactions of the disease pair was extracted from the interactome. The edge weights are assigned by combining the pairwise gene expression correlation and betweenness centrality scores. Further, a weighted graph clustering algorithm is applied and dominant nodes of high-density clusters are ranked based on clustering coefficients and neighborhood connectivity. Case studies based on neurodegenerative diseases such as Amyotrophic Lateral Sclerosis- Spinal Muscular Atrophy (ALS-SMA) pair and cancers such as Ovarian Carcinoma-Invasive Ductal Breast Carcinoma (OC-IDBC) pair were conducted to examine the efficacy of the proposed method. To identify the mechanistic role of top-ranked genes, we used Functional and Pathway enrichment analysis, connectivity analysis with leave-one-out (LOO) method, analysis of associated disease-related protein complexes, and prioritization tools such as TOPPGENE and Heml2.0. From pathway analysis, it was observed that the top 10 genes obtained using the proposed method were associated with 10 pathways in ALS-SMA comorbidity and 15 in the case of OC-IDBC, while that in similar methods like SAPDSB and S2B were 4, 6 respectively for ALS-SMA and 9, 10 respectively for OC-IDBC. In both case studies, 70 % of the disease-specific benchmark protein complexes were linked to top-ranked genes of the proposed method while that of SAPDSB and S2B were 55 % and 60 % respectively. Additionally, it was found that the removal of the top 10 genes disconnect the network into 14 distinct components in the case of ALS-SMA and 9 in the case of OC-IDBC. The experimental results shows that the proposed method can be effectively used for identifying key genes in comorbidity and can offer insights about the intricate molecular relationship driving comorbid diseases.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/genetics , Protein Interaction Maps/genetics , Cluster Analysis , Transcriptome/genetics , Algorithms , Gene Regulatory Networks , Female , Computational Biology , Comorbidity , Muscular Atrophy, Spinal/genetics , Ovarian Neoplasms/genetics
20.
Neuromuscul Disord ; 37: 13-22, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38493520

ABSTRACT

Spinal muscular atrophy (SMA) is an autosomal recessive disease that affects 1 out of every 6,000-10,000 individuals at birth, making it the leading genetic cause of infant mortality. In recent years, reports of sex differences in SMA patients have become noticeable. The SMNΔ7 mouse model is commonly used to investigate pathologies and treatments in SMA. However, studies on sex as a contributing biological variable are few and dated. Here, we rigorously investigated the effect of sex on a series of characteristics in SMA mice of the SMNΔ7 model. Incidence and lifespan of 23 mouse litters were tracked and phenotypic assessments were performed at 2-day intervals starting at postnatal day 6 for every pup until the death of the SMA pup(s) in each litter. Brain weights were also collected post-mortem. We found that male and female SMA incidence does not differ significantly, survival periods are the same across sexes, and there was no phenotypic difference between male and female SMA pups, other than for females exhibiting lesser body weights at early ages. Overall, this study ensures that sex is not a biological variable that contributes to the incidence ratio or disease severity in the SMNΔ7 mouse model.


Subject(s)
Muscular Atrophy, Spinal , Sex Characteristics , Mice , Humans , Animals , Female , Male , Incidence , Muscular Atrophy, Spinal/epidemiology , Muscular Atrophy, Spinal/genetics , Phenotype , Disease Models, Animal , Survival of Motor Neuron 1 Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...