ABSTRACT
The aim of the present study was to summarize the effectiveness of amino acid supplementation on muscle strength, muscle volume, and functional capacity in patients undergoing total knee arthroplasty. For this, in November 2022, a search was carried out in the PubMed, Cochrane Library, and EMBASE databases, identifying a total of 2182 documents, of which only 4 were included in the present review. The included studies had 148 participants (47 men and 101 women), with a minimum age of 53 and a maximum of 92 years, and supplementation times of 13 to 30 days (1 to 3 times a day). For the results, in relation to muscle performance, when comparing the control and experimental groups, greater muscle atrophy was observed in the pre- and post-moments of the control group, in relation to the experimental group. In addition, studies suggest a good tendency for muscle mass gain, and improvement in the functional capacities of patients who used supplementation. Therefore, the use of amino acids after TKA surgery reduces muscle atrophy, which preserves muscle mass and leads to better performance in tests of strength and functional capacity, when compared to the use of a placebo.
Subject(s)
Amino Acids , Arthroplasty, Replacement, Knee , Dietary Supplements , Muscle Strength , Muscle, Skeletal , Randomized Controlled Trials as Topic , Aged , Humans , Male , Amino Acids/administration & dosage , Arthroplasty, Replacement, Knee/adverse effects , Arthroplasty, Replacement, Knee/methods , Muscle, Skeletal/physiopathology , Muscular Atrophy/prevention & control , Muscular Atrophy/etiologyABSTRACT
Increased muscle protein catabolism leading to muscle wasting is a prominent feature of the syndrome of protein-energy wasting (PEW) in patients with chronic kidney disease (CKD). PEW and muscle wasting are induced by factors such as inflammation, oxidative stress and metabolic acidosis that activate the ubiquitin-proteasome system, the main regulatory mechanism of skeletal muscle degradation. Whether deficiency of nuclear factor erythroid 2-related factor 2 (NRF2), which regulates expression of antioxidant proteins protecting against oxidative damage triggered by inflammation, may exacerbate PEW has yet to be examined in aging patients with CKD. This review focuses on the hypothesis that NRF2 is involved in the maintenance of muscle mass and explores whether sustained activation of NRF2 by non-pharmacological interventions using nutraceutical activators to improve redox homeostasis could be a plausible strategy to prevent skeletal muscle disorders, including muscle wasting, sarcopenia and frailty associated with PEW in aging CKD patients.
Subject(s)
NF-E2-Related Factor 2 , Renal Insufficiency, Chronic , Humans , NF-E2-Related Factor 2/metabolism , Muscular Atrophy/etiology , Muscular Atrophy/prevention & control , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/therapy , Renal Insufficiency, Chronic/metabolism , Cachexia/complications , Cachexia/metabolism , Cachexia/pathology , Aging , Muscle, Skeletal/metabolism , Inflammation/complicationsABSTRACT
BACKGROUND: Burn injuries (BIs) due to scalding are one of the most common accidents among children. BIs greater than 40% of total body surface area are considered extensive and result in local and systemic response. We sought to assess morphological and myogenic mechanisms through both short- and long-term intensive insulin therapies that affect the skeletal muscle after extensive skin BI in young rats. MATERIALS AND METHODS: Wistar rats aged 21 d were distributed into four groups: control (C), control with insulin (C + I), scald burn injury (SI), and SI with insulin (SI + I). The SI groups were submitted to a 45% total body surface area burn, and the C + I and SI + I groups received insulin (5 UI/Kg/d) for 4 or 14 d. Glucose tolerance and the homeostatic model assessment of insulin resistance index were determined. Gastrocnemius muscles were analyzed for histopathological, morphometric, and immunohistochemical myogenic parameters (Pax7, MyoD, and MyoG); in addition, the expression of genes related to muscle atrophy (MuRF1 and MAFbx) and its regulation (IGF-1) were also assessed. RESULTS: Short-term treatment with insulin favored muscle regeneration by primary myogenesis and decreased muscle atrophy in animals with BIs, whereas the long-term treatment modulated myogenesis by increasing the MyoD protein. Both treatments improved histopathological parameters and secondary myogenesis by increasing the MyoG protein. CONCLUSIONS: Treatment with insulin benefits myogenic parameters during regeneration and modulates MuRF1, an important mediator of muscle atrophy.
Subject(s)
Burns/complications , Insulin/administration & dosage , Muscle Development/drug effects , Muscular Atrophy/prevention & control , Animals , Blood Glucose/analysis , Body Surface Area , Burns/pathology , Burns/physiopathology , Gene Expression/drug effects , Insulin-Like Growth Factor I/genetics , Male , Muscle Proteins/genetics , Muscle, Skeletal/chemistry , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Muscular Atrophy/etiology , Muscular Atrophy/genetics , MyoD Protein/analysis , Myogenin/analysis , Paired Box Transcription Factors/analysis , Rats , Rats, Wistar , SKP Cullin F-Box Protein Ligases/genetics , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/geneticsABSTRACT
The skeletal muscle mass reduces 30-60% after spinal cord injury, this is mostly due to protein degradation through ubiquitin-proteasome system. In this work, we propose that the flavanol (-)-epicatechin, due its widespread biological effects on muscle health, can prevent muscle mass decrease after spinal cord injury. Thirty-six female Long Evans rats were randomized into 5 groups: (1) Spinal cord injury 7 days, (2) Spinal cord injury + (-)-epicatechin 7 days, (3) Spinal cord injury 30 days, (4) Spinal cord injury + (-)-epicatechin 30 days and (5) Sham (Only laminectomy). Hind limb perimeter, muscle cross section area, fiber cross section area and ubiquitin-proteasome system protein expression together with total protein ubiquitination were assessed. At 30 days Spinal cord injury group lost 49.52 ± 2.023% of muscle cross section area (-)-epicatechin treated group lost only 24.28 ± 15.45% being a significant difference. Ubiquitin-proteasome markers showed significant changes. FOXO1a increased in spinal cord injury group vs Sham (-)-epicatechin reduced this increase. In spinal cord injury group MAFbx increased significantly vs Sham but decrease in (-)-epicatechin treatment group at 30 days. At 7 and 30 days MuRF1 increased in the spinal cord injury and decreased in the (-)-epicatechin group. The global protein ubiquitination increases after spinal cord injury, epicatechin treatment induce a significant decrease in protein ubiquitination. These results suggest that (-)-epicatechin reduces the muscle waste after spinal cord injury through down regulation of the ubiquitin-proteasome system.
Subject(s)
Catechin/pharmacology , Disease Models, Animal , Muscle, Skeletal/drug effects , Proteasome Endopeptidase Complex/metabolism , Spinal Cord Injuries/metabolism , Animals , Female , Magnetic Resonance Imaging/methods , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/diagnostic imaging , Muscular Atrophy/metabolism , Muscular Atrophy/prevention & control , Myofibrils/metabolism , Rats, Long-Evans , Spinal Cord Injuries/pathologyABSTRACT
PURPOSE: The aim of this study was to investigate the effects of creatine supplementation on muscle wasting in Walker-256 tumor-bearing rats. METHODS: Wistar rats were randomly assigned into three groups (n = 10/group): control (C), tumor bearing (T), and tumor bearing supplemented with creatine (TCr). Creatine was provided in drinking water for a total of 21 days. After 11 days of supplementation, tumor cells were implanted subcutaneously into T and TCr groups. The animals' weight, food and water intake were evaluated along the experimental protocol. After 10 days of tumor implantation (21 total), animals were euthanized for inflammatory state and skeletal muscle cross-sectional area measurements. Skeletal muscle components of ubiquitin-proteasome pathways were also evaluated using real-time PCR and immunoblotting. RESULTS: The results showed that creatine supplementation protected tumor-bearing rats against body weight loss and skeletal muscle atrophy. Creatine intake promoted lower levels of plasma TNF-α and IL-6 and smaller spleen morphology changes such as reduced size of white pulp and lymphoid follicle compared to tumor-bearing rats. In addition, creatine prevented increased levels of skeletal muscle Atrogin-1 and MuRF-1, key regulators of muscle atrophy. CONCLUSION: Creatine supplementation prevents skeletal muscle atrophy by attenuating tumor-induced pro-inflammatory environment, a condition that minimizes Atrogin-1 and MuRF-1-dependent proteolysis.
Subject(s)
Carcinoma 256, Walker/metabolism , Creatine/pharmacology , Dietary Supplements , Inflammation/prevention & control , Muscular Atrophy/prevention & control , Proteolysis/drug effects , Animals , Creatine/administration & dosage , Disease Models, Animal , Male , Muscle, Skeletal/drug effects , Rats , Rats, Wistar , Signal Transduction/drug effectsABSTRACT
Physical exercise is a known preventive and therapeutic alternative for several cerebrovascular diseases. Therefore, the objective of the present study was to evaluate the motor performance and histomorphometry of the biceps brachii, soleus, and tibialis anterior muscles of rats submitted to a treadmill training program prior to the induction of cerebral ischemia via occlusion of the middle cerebral artery (OMCA). A total of 24 Wistar rats were distributed into four groups: Sham-Sed: sedentary control animals (n=6), who underwent sham surgery (in which OMCA did not occur); Sham+Ex: control animals exercised before the sham surgery (n=6); I-Sed: sedentary animals with cerebral ischemia (n=6); and I+Ex: animals exercised before the induction of ischemia (n=6). The physical exercise consisted of treadmill training for five weeks, 30 min/day (5 days/week), at a speed of 14 m/min. The results showed that the type-I fibers presented greater fiber area in the exercised ischemic group (I+Ex: 2347.96±202.77 µm2) compared to the other groups (Sham-Sed: 1676.46±132.21 µm2; Sham+Ex: 1647.63±191.09 µm2; I+Ex: 1566.93±185.09 µm2; P=0.0002). Our findings suggested that the angiogenesis process may have influenced muscle recovery and reduced muscle atrophy of type-I fibers in the animals that exercised before cerebral ischemia.
Subject(s)
Brain Ischemia/complications , Infarction, Middle Cerebral Artery , Muscle, Skeletal/physiopathology , Muscular Atrophy/prevention & control , Physical Conditioning, Animal/physiology , Animals , Brain Ischemia/physiopathology , Disease Models, Animal , Male , Muscular Atrophy/etiology , Muscular Atrophy/pathology , Rats , Rats, WistarABSTRACT
RESUMO O objetivo deste estudo foi avaliar os efeitos do exercício passivo precoce em cicloergômetro na espessura muscular (EM) do quadríceps femoral (EMQ) de pacientes críticos admitidos em uma Unidade de Terapia Intensiva (UTI) de um hospital universitário terciário. O método utilizado foi um estudo-piloto randomizado controlado conduzido em uma amostra de 24 pacientes (51±18,11 anos, 16 do sexo masculino), com 24 a 48 horas de ventilação mecânica (VM), aleatoriamente divididos em dois grupos: grupo-controle (n=12), que recebeu a fisioterapia convencional; e grupo-intervenção (n=12), que recebeu o exercício passivo em cicloergômetro, uma vez ao dia, durante o período de sete dias do protocolo, em adição à fisioterapia convencional. A EMQ foi mensurada através da ultrassonografia. A primeira medida ultrassonográfica foi realizada entre as primeiras 48 horas de VM e a segunda ao término do protocolo. Não houve diferenças significativas na EMQ esquerda (27,29±5,86mm vs. 25,95±10,89mm; p=0,558) e direita (24,96±5,59mm vs 25,9±9,21mm; p=0,682) do grupo-controle e na EMQ esquerda (27,2±7,38mm vs 29,57±7,89mm; p=0,299) e direita (26,67±8,16mm vs 28,65±8,04mm; p=0,381) do grupo-intervenção. Na comparação entre os grupos, não houve alterações significativas em relação à EMQ esquerda (3,61±1,07mm; p=0,248) e a EMQ direita (2,75±0,85mm; p=0,738). Os resultados deste estudo-piloto demonstraram que a aplicação precoce do exercício passivo em cicloergômetro não promoveu mudanças significativas na espessura da camada muscular avaliada. No entanto, nossos achados sinalizam que a fisioterapia convencional foi capaz de preservar a EMQ de pacientes críticos admitidos em UTI.
RESUMEN El presente estudio tuvo como objetivo evaluar los efectos del ejercicio pasivo precoz en cicloergómetro en el espesor muscular (EM) del cuádriceps femoral (EMC) de pacientes críticos ingresados en una Unidad de Cuidados Intensivos (UCI) de un hospital universitario terciario. Se utilizó como método un estudio piloto aleatorizado controlado con una muestra de 24 pacientes (51±18,11 años, 16 varones), con 24 a 48 horas de ventilación mecánica (VM), quienes fueron divididos aleatoriamente en dos grupos: grupo de control (n=12), que recibió fisioterapia convencional; y grupo intervención (n=12), que recibió el ejercicio pasivo en cicloergómetro una vez al día durante el período de protocolo de siete días, además de la fisioterapia convencional. El EMC se midió por ecografía. La primera medición ecográfica se realizó entre las primeras 48 horas de VM, y la segunda al final del protocolo. No hubo diferencias significativas en el EMC izquierdo (27,29±5,86 mm vs. 25,95±10,89mm; p=0,558) y derecho (24,96±5,59mm vs 25,9±9,21mm; p=0,682) del grupo de control; y en el EMC izquierdo (27,2±7,38mm vs 29,57±7,89mm; p=0,299) y derecho (26,67±8,16mm vs 28,65±8,04mm; p=0,381) del grupo intervención. En la comparación entre grupos, no hubo cambios significativos en el EMC izquierdo (3,61±1,07 mm; p=0,248) y en el EMC derecho (2,75±0,85 mm, p=0,738). Los resultados de este estudio piloto demostraron que la aplicación precoz del ejercicio pasivo en cicloergómetro no promovió cambios significativos en el espesor de la capa muscular evaluada. Sin embargo, nuestros hallazgos indican que la fisioterapia convencional pudo preservar el EMC de pacientes críticos ingresados en la UCI.
ABSTRACT The objective of this study was to evaluate the effects of early passive cycling exercise on quadriceps femoris thickness (QFT) in critically ill patients admitted in the intensive care unit (ICU) of a tertiary care university hospital. A controlled randomized pilot study was conducted with a sample of 24 patients (51±18.11 years, 16 male), on mechanical ventilation (MV) from 24 to 48 hours, who were randomly divided into two groups: control group (n=12), receiving conventional physical therapy; and an intervention one (n=12), receiving passive cycle ergometer, once a day, throughout seven days of protocol, in addition to conventional physical therapy. The QFT was measured by ultrasonography. The first ultrasonographic measurement was performed within 48 hours after the start of MV, and the second at the end of the protocol. There were no significant differences in QFT of the left (27,29±5,86mm vs 25,95±10,89mm; p=0,558) and right (24,96±5,59mm vs 25,9±9,21mm; p=0,682) in the control group, and in QFT of the left (27,2±7,38mm vs 29,57±7,89mm; p=0,299) and right (26,67±8,16mm vs 28,65±8,04mm; p=0,381) in the intervention group. There were no significant between-groups differences for left QFT (3,61±1,07mm; p=0,248) and right QFT (2,75±0,85mm; p=0,738). The results of this pilot study demonstrate that application of early passive cycle ergometer exercises has not significantly change the muscle layer thickness. However, our findings indicate that conventional physical therapy is able to preserve the quadriceps femoris thickness in critically ill patients admitted in ICU.
Subject(s)
Humans , Male , Female , Adult , Middle Aged , Aged , Early Ambulation , Quadriceps Muscle/anatomy & histology , Exercise Therapy/methods , Muscular Atrophy/prevention & control , Pilot Projects , Ultrasonography , Physical Therapy Modalities/instrumentation , Quadriceps Muscle/diagnostic imaging , Intensive Care UnitsABSTRACT
Physical exercise is a known preventive and therapeutic alternative for several cerebrovascular diseases. Therefore, the objective of the present study was to evaluate the motor performance and histomorphometry of the biceps brachii, soleus, and tibialis anterior muscles of rats submitted to a treadmill training program prior to the induction of cerebral ischemia via occlusion of the middle cerebral artery (OMCA). A total of 24 Wistar rats were distributed into four groups: Sham-Sed: sedentary control animals (n=6), who underwent sham surgery (in which OMCA did not occur); Sham+Ex: control animals exercised before the sham surgery (n=6); I-Sed: sedentary animals with cerebral ischemia (n=6); and I+Ex: animals exercised before the induction of ischemia (n=6). The physical exercise consisted of treadmill training for five weeks, 30 min/day (5 days/week), at a speed of 14 m/min. The results showed that the type-I fibers presented greater fiber area in the exercised ischemic group (I+Ex: 2347.96±202.77 µm2) compared to the other groups (Sham-Sed: 1676.46±132.21 µm2; Sham+Ex: 1647.63±191.09 µm2; I+Ex: 1566.93±185.09 µm2; P=0.0002). Our findings suggested that the angiogenesis process may have influenced muscle recovery and reduced muscle atrophy of type-I fibers in the animals that exercised before cerebral ischemia.
Subject(s)
Animals , Male , Rats , Physical Conditioning, Animal/physiology , Muscular Atrophy/prevention & control , Brain Ischemia/complications , Muscle, Skeletal/physiopathology , Infarction, Middle Cerebral Artery , Muscular Atrophy/etiology , Muscular Atrophy/pathology , Brain Ischemia/physiopathology , Rats, Wistar , Disease Models, AnimalABSTRACT
Assisted-treadmill training, may be helpful in promoting muscle mass preservation after incomplete spinal cord injury (SCI). However, biological mechanism involved in this process is still not fully understood. This study investigated the effects of locomotor treadmill training on muscle trophism mediated by protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/p70 ribosomal protein S6 kinase (p70S6K) in paraplegic rats. Adult female Wistar rats underwent an incomplete thoracic SCI induced by compression using an aneurysm clip. After 7 days, injured animals started a 3-week locomotor treadmill training with body weight-support and manual step help. Soleus trophism was measured by muscle weight and transverse myofiber cross-sectional area (CSA). An enzyme-linked immunosorbent assay (ELISA) and western blot analysis were used to detect brain-derived neurotrophic factor (BDNF), tropomyosin-related kinase B (TrkB), Akt, mTOR and p70S6K in paretic soleus. Trained animals did not show locomotor improved, but present an increase in muscle weight and myofiber CSA. Furthermore, the levels of Akt, p70S6K phosphorylation, mTOR and TrkB receptor were increased by training in soleus. In contrast, muscle BDNF levels were significantly reduced after training. The results suggest locomotor treadmill training partially reverts/prevents soleus muscle hypotrophy in rats with SCI. Furthermore, this study provided the first evidence that morphological muscle changes were caused by Akt/mTOR/p70S6K signaling pathway and TrkB up-regulation, which may increase the sensitivity of muscle, reducing autocrine signaling pathway demand of BDNF for cell growth.
Subject(s)
Exercise Test/methods , Locomotion/physiology , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Paraplegia/metabolism , TOR Serine-Threonine Kinases/biosynthesis , Animals , Female , Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Muscular Atrophy/prevention & control , Paraplegia/pathology , Paraplegia/rehabilitation , Rats , Rats, WistarABSTRACT
Advances in the knowledge of the mechanisms controlling protein breakdown in skeletal muscles have allowed the exploration of new options for treating muscle-wasting conditions. Pentoxifylline (PTX), a nonselective phosphodiesterase (PDE) inhibitor, attenuates the loss of muscle mass during catabolic conditions, mainly via inhibiting protein breakdown. The aim of this study was to explore the mechanisms by which PTX inhibits proteolysis in the soleus and extensor digitorum longus (EDL) muscles of streptozotocin-induced diabetic rats. The levels of atrogin-1 and muscle RING finger-1 were decreased, as were the activities of caspase-3 (EDL) and calpains (soleus and EDL), in diabetic rats treated with PTX, which at least partly explains the drop in the ubiquitin conjugate (EDL) levels and in proteasome activity (soleus and EDL). Treatment with PTX decreased PDE activity and increased cAMP content in muscles of diabetic rats; moreover, it also increased both the protein levels of exchange protein directly activated by cAMP (EPAC, a cAMP effector) and the phosphorylation of Akt. The loss of muscle mass was practically prevented in diabetic rats treated with PTX. These findings advance our understanding of the mechanisms underlying the antiproteolytic effects of PTX and suggest the use of PDE inhibitors as a strategy to activate cAMP signaling, which is emerging as a promising target for treating muscle mass loss during atrophic conditions. NEW & NOTEWORTHY cAMP signaling has been explored as a strategy to attenuate skeletal muscle atrophies. Therefore, in addition to ß2AR agonists, phosphodiesterase inhibitors such as pentoxifylline (PTX) can be an interesting option. This study advances the understanding of the mechanisms related to the antiproteolytic effects of PTX on skeletal muscles of diabetic rats, which involve the activation of both exchange protein directly activated by cAMP and Akt effectors, inhibiting the expression of atrogenes and calpain/caspase-3-proteolytic machinery.
Subject(s)
Diabetes Mellitus, Experimental/complications , Muscle, Skeletal/drug effects , Muscular Atrophy/prevention & control , Pentoxifylline/therapeutic use , Phosphodiesterase Inhibitors/therapeutic use , Proteolysis/drug effects , Animals , Blood Glucose/drug effects , Body Weight/drug effects , Cyclic AMP/metabolism , Drug Evaluation, Preclinical , Guanine Nucleotide Exchange Factors/metabolism , Male , Muscle, Skeletal/metabolism , Muscular Atrophy/etiology , Muscular Atrophy/metabolism , Pentoxifylline/pharmacology , Phosphodiesterase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Rats, Wistar , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/bloodABSTRACT
We tested whether aerobic exercise training (AET) would modulate the skeletal muscle protein quality control (PQC) in a model of chronic kidney disease (CKD) in rats. Adult Wistar rats were evaluated in four groups: control (CS) or trained (CE), and 5/6 nephrectomy sedentary (5/6NxS) or trained (5/6NxE). Exercised rats were submitted to treadmill exercise (60 min., five times/wk for 2 months). We evaluated motor performance (tolerance to exercise on the treadmill and rotarod), cross-sectional area (CSA), gene and protein levels related to the unfolded protein response (UPR), protein synthesis/survive and apoptosis signalling, accumulated misfolded proteins, chymotrypsin-like proteasome activity (UPS activity), redox balance and heat-shock protein (HSP) levels in the tibialis anterior. 5/6NxS presented a trend towards to atrophy, with a reduction in motor performance, down-regulation of protein synthesis and up-regulation of apoptosis signalling; increases in UPS activity, misfolded proteins, GRP78, derlin, HSP27 and HSP70 protein levels, ATF4 and GRP78 genes; and increase in oxidative damage compared to CS group. In 5/6NxE, we observed a restoration in exercise tolerance, accumulated misfolded proteins, UPS activity, protein synthesis/apoptosis signalling, derlin, HSPs protein levels as well as increase in ATF4, GRP78 genes and ATF6α protein levels accompanied by a decrease in oxidative damage and increased catalase and glutathione peroxidase activities. The results suggest a disruption of PQC in white muscle fibres of CKD rats previous to the atrophy. AET can rescue this disruption for the UPR, prevent accumulated misfolded proteins and reduce oxidative damage, HSPs protein levels and exercise tolerance.
Subject(s)
Motor Activity/physiology , Muscular Atrophy/prevention & control , Physical Conditioning, Animal , Protein Biosynthesis , Renal Insufficiency, Chronic/therapy , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 6/genetics , Activating Transcription Factor 6/metabolism , Animals , Catalase/genetics , Catalase/metabolism , Disease Models, Animal , Gene Expression Regulation , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Kidney Function Tests , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Muscular Atrophy/genetics , Muscular Atrophy/metabolism , Muscular Atrophy/physiopathology , Nephrectomy/methods , Proteasome Endopeptidase Complex/metabolism , Rats , Rats, Wistar , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/physiopathology , Renal Insufficiency, Chronic/surgery , Rotarod Performance Test , Sedentary Behavior , Signal TransductionABSTRACT
The consequences of two-week hindlimb suspension (HS) on skeletal muscle atrophy were investigated in balanced diet-fed Fat-1 transgenic and C57BL/6 wild-type mice. Body composition and gastrocnemius fatty acid composition were measured. Skeletal muscle force, cross-sectional area (CSA), and signaling pathways associated with protein synthesis (protein kinase B, Akt; ribosomal protein S6, S6, eukaryotic translation initiation factor 4E-binding protein 1, 4EBP1; glycogen synthase kinase3-beta, GSK3-beta; and extracellular-signal-regulated kinases 1/2, ERK 1/2) and protein degradation (atrophy gene-1/muscle atrophy F-box, atrogin-1/MAFbx and muscle RING finger 1, MuRF1) were evaluated in the soleus muscle. HS decreased soleus muscle wet and dry weights (by 43% and 26%, respectively), muscle isotonic and tetanic force (by 29% and 18%, respectively), CSA of the soleus muscle (by 36%), and soleus muscle fibers (by 45%). Fat-1 transgenic mice had a decrease in the ω-6/ω-3 polyunsaturated fatty acids (PUFAs) ratio as compared with C57BL/6 wild-type mice (56%, p < 0.001). Fat-1 mice had lower soleus muscle dry mass loss (by 10%) and preserved absolute isotonic force (by 17%) and CSA of the soleus muscle (by 28%) after HS as compared with C57BL/6 wild-type mice. p-GSK3B/GSK3B ratio was increased (by 70%) and MuRF-1 content decreased (by 50%) in the soleus muscle of Fat-1 mice after HS. Balanced diet-fed Fat-1 mice are able to preserve in part the soleus muscle mass, absolute isotonic force and CSA of the soleus muscle in a disuse condition.
Subject(s)
Cadherins/metabolism , Hindlimb Suspension , Muscle, Skeletal/metabolism , Muscular Atrophy/prevention & control , Adiposity , Animals , Cadherins/genetics , Disease Models, Animal , Genetic Predisposition to Disease , Glycogen Synthase Kinase 3 beta/biosynthesis , Isotonic Contraction , Mice, Inbred C57BL , Mice, Transgenic , Muscle Fatigue , Muscle Proteins/metabolism , Muscle Strength , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Muscular Atrophy/genetics , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Phenotype , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Signal Transduction , Time Factors , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolismABSTRACT
This study aimed to evaluate the effects of neuromuscular electrical stimulation (NMES) on muscle strength and architecture, functional capacity, and endothelial function in patients with chronic kidney failure (CKF) on hemodialysis (HD). Twenty-one patients with CKF on HD were randomized into a control group (CG; n = 10) and neuromuscular electrical stimulation group (NMESG; n = 11) who received NMES in the quadriceps muscle for 8 weeks, 3 times/week (20-34 min) during HD sessions. The muscle strength of the lower limbs was evaluated by dynamometry and sit-and-stand test (SST); muscle architecture through ultrasonography; functional capacity by the distance covered in a 6-min walk test and the endothelial function by flow-mediated dilatation technique of the brachial artery. There was an increase in the strength of the lower limbs in the NMESG compared to the CG (dynamometry: 43.28 ± 16.94 vs. 35.84 ± 16.89, P = 0.006; SST: 16.10 ± 6.51 vs. 12.50 ± 4.7, P = 0.029). There was a significant reduction in pennation angles of the right vastus lateralis (RVL) and left vastus lateralis (LVL) in the CG when compared to the NMESG (RVL: 11.93 [10.70-15.11] vs. 13.57 [11.81-15.96], P = 0.039; LVL: 11.62 [9.00-14.20] vs. 15.52 [12.86-20.02], P = 0.042). There was no change in functional capacity and in the endothelial function for CG and NMESG, respectively. In conclusion, NMES increases muscle strength and has a protective effect against muscle atrophy of the lower limbs of patients with chronic kidney failure on HD.
Subject(s)
Electric Stimulation Therapy/methods , Kidney Failure, Chronic/therapy , Muscle Strength , Muscular Atrophy/prevention & control , Quadriceps Muscle/innervation , Renal Dialysis , Aged , Brachial Artery/diagnostic imaging , Brachial Artery/physiopathology , Brazil , Endothelium, Vascular/diagnostic imaging , Endothelium, Vascular/physiopathology , Female , Humans , Kidney Failure, Chronic/diagnosis , Kidney Failure, Chronic/physiopathology , Male , Middle Aged , Muscle Strength Dynamometer , Muscular Atrophy/diagnostic imaging , Muscular Atrophy/etiology , Muscular Atrophy/physiopathology , Quadriceps Muscle/diagnostic imaging , Recovery of Function , Renal Dialysis/adverse effects , Time Factors , Treatment Outcome , Ultrasonography, Doppler , Walk TestABSTRACT
OBJECTIVE: To investigate if electrical stimulation through Russian current is able to maintain morphology of the cranial tibial muscle of experimentally denervated rats. METHODS: Thirty-six Wistar rats were divided into four groups: the Initial Control Group, Final Control Group, Experimental Denervated and Treated Group, Experimental Denervated Group. The electrostimulation was performed with a protocol of Russian current applied three times per week, for 45 days. At the end, the animals were euthanized and histological and morphometric analyses were performed. Data were submitted to statistical analysis with a significance level of p<0.05. RESULTS: The Experimental Denervated Group and the Experimental Denervated and Treated Group had cross-sectional area of smaller fiber compared to the Final Control Group. However, there was significant difference between the Experimental Denervated Group and Experimental Denervated and Treated Group, showing that electrical stimulation minimized muscle atrophy. The Experimental Denervated and Treated Group and Initial Control Group showed similar results. CONCLUSION: Electrical stimulation through Russian current acted favorably in maintaining morphology of the cranial tibial muscle that was experimentally denervated, minimizing muscle atrophy. OBJETIVO: Investigar se a estimulação elétrica pela corrente russa é capaz de manter a morfologia do músculo tibial cranial de ratos desnervados experimentalmente. MÉTODOS: Foram utilizados 36 ratos Wistar, distribuídos em quatro grupos: Grupo Controle Inicial, Grupo Controle Final, Grupo Experimental Desnervado Tratado, Grupo Experimental Desnervado. A eletroestimulação foi realizada com um protocolo de corrente russa aplicada três vezes por semanas, durante 45 dias. Ao final, os animais foram eutanasiados e, em seguida, foram realizadas as análises histológica e morfométrica. Os dados foram submetidos à análise estatística, com nível de significância de p<0,05. RESULTADOS: Os Grupos Experimental Desnervado e o Grupo Experimental Desnervado Tratado apresentaram área de secção transversal da fibra menor quando comparados ao Grupo Controle Final. Entretanto, constatou-se diferença significativa entre o Grupo Experimental Desnervado e o Grupo Experimental Desnervado Tratado, mostrando que a estimulação elétrica minimizou atrofia muscular. Ainda, observou-se que o Grupo Experimental Desnervado Tratado apresentou resultados semelhantes ao Grupo Controle Inicial. CONCLUSÃO: A estimulação elétrica por meio da corrente russa foi favorável na manutenção da morfologia do músculo tibial cranial desnervado experimentalmente, minimizando a atrofia muscular.
Subject(s)
Electric Stimulation Therapy/methods , Muscle Denervation , Muscle, Skeletal/innervation , Muscle, Skeletal/physiopathology , Muscular Atrophy/prevention & control , Anatomy, Cross-Sectional , Animals , Male , Muscle, Skeletal/pathology , Muscular Atrophy/physiopathology , Rats, Wistar , Reproducibility of Results , Tibia/innervation , Treatment OutcomeABSTRACT
OBJECTIVE:: The passive cycle ergometer aims to prevent hypotrophy and improve muscle strength, with a consequent reduction in hospitalization time in the intensive care unit and functional improvement. However, its effects on oxidative stress and immune system parameters remain unknown. The aim of this study is to analyze the effects of a passive cycle ergometer on the immune system and oxidative stress in critical patients. METHODS:: This paper describes a randomized controlled trial in a sample of 19 patients of both genders who were on mechanical ventilation and hospitalized in the intensive care unit of the Hospital Agamenom Magalhães. The patients were divided into two groups: one group underwent cycle ergometer passive exercise for 30 cycles/min on the lower limbs for 20 minutes; the other group did not undergo any therapeutic intervention during the study and served as the control group. A total of 20 ml of blood was analysed, in which nitric oxide levels and some specific inflammatory cytokines (tumour necrosis factor alpha (TNF-α), interferon gamma (IFN-γ) and interleukins 6 (IL-6) and 10 (IL-10)) were evaluated before and after the study protocol. RESULTS:: Regarding the demographic and clinical variables, the groups were homogeneous in the early phases of the study. The nitric oxide analysis revealed a reduction in nitric oxide variation in stimulated cells (p=0.0021) and those stimulated (p=0.0076) after passive cycle ergometer use compared to the control group. No differences in the evaluated inflammatory cytokines were observed between the two groups. CONCLUSION:: We can conclude that the passive cycle ergometer promoted reduced levels of nitric oxide, showing beneficial effects on oxidative stress reduction. As assessed by inflammatory cytokines, the treatment was not associated with changes in the immune system. However, further research in a larger population is necessary for more conclusive results.
Subject(s)
Critical Illness/therapy , Exercise/physiology , Motion Therapy, Continuous Passive/methods , Oxidative Stress/physiology , Adult , Aged , Aged, 80 and over , Cytokines/blood , Enzyme-Linked Immunosorbent Assay , Female , Humans , Intensive Care Units , Lipopolysaccharides/therapeutic use , Male , Middle Aged , Muscle Strength/physiology , Muscular Atrophy/prevention & control , Nitric Oxide/immunology , Nitric Oxide/metabolism , Oxidative Stress/immunology , Reproducibility of Results , Respiration, Artificial/methods , Statistics, Nonparametric , Time Factors , Treatment OutcomeABSTRACT
OBJECTIVE: The passive cycle ergometer aims to prevent hypotrophy and improve muscle strength, with a consequent reduction in hospitalization time in the intensive care unit and functional improvement. However, its effects on oxidative stress and immune system parameters remain unknown. The aim of this study is to analyze the effects of a passive cycle ergometer on the immune system and oxidative stress in critical patients. METHODS: This paper describes a randomized controlled trial in a sample of 19 patients of both genders who were on mechanical ventilation and hospitalized in the intensive care unit of the Hospital Agamenom Magalhães. The patients were divided into two groups: one group underwent cycle ergometer passive exercise for 30 cycles/min on the lower limbs for 20 minutes; the other group did not undergo any therapeutic intervention during the study and served as the control group. A total of 20 ml of blood was analysed, in which nitric oxide levels and some specific inflammatory cytokines (tumour necrosis factor alpha (TNF-α), interferon gamma (IFN-γ) and interleukins 6 (IL-6) and 10 (IL-10)) were evaluated before and after the study protocol. RESULTS: Regarding the demographic and clinical variables, the groups were homogeneous in the early phases of the study. The nitric oxide analysis revealed a reduction in nitric oxide variation in stimulated cells (p=0.0021) and those stimulated (p=0.0076) after passive cycle ergometer use compared to the control group. No differences in the evaluated inflammatory cytokines were observed between the two groups. CONCLUSION: We can conclude that the passive cycle ergometer promoted reduced levels of nitric oxide, showing beneficial effects on oxidative stress reduction. As assessed by inflammatory cytokines, the treatment was not associated with changes in the immune system. However, further research in a larger population is necessary for more conclusive results.
Subject(s)
Humans , Male , Female , Adult , Middle Aged , Aged , Aged, 80 and over , Critical Illness/therapy , Exercise/physiology , Motion Therapy, Continuous Passive/methods , Oxidative Stress/physiology , Cytokines/blood , Enzyme-Linked Immunosorbent Assay , Intensive Care Units , Lipopolysaccharides/therapeutic use , Muscle Strength/physiology , Muscular Atrophy/prevention & control , Nitric Oxide/immunology , Nitric Oxide/metabolism , Oxidative Stress/immunology , Reproducibility of Results , Respiration, Artificial/methods , Statistics, Nonparametric , Time Factors , Treatment OutcomeABSTRACT
ABSTRACT Objective To investigate if electrical stimulation through Russian current is able to maintain morphology of the cranial tibial muscle of experimentally denervated rats. Methods Thirty-six Wistar rats were divided into four groups: the Initial Control Group, Final Control Group, Experimental Denervated and Treated Group, Experimental Denervated Group. The electrostimulation was performed with a protocol of Russian current applied three times per week, for 45 days. At the end, the animals were euthanized and histological and morphometric analyses were performed. Data were submitted to statistical analysis with a significance level of p<0.05. Results The Experimental Denervated Group and the Experimental Denervated and Treated Group had cross-sectional area of smaller fiber compared to the Final Control Group. However, there was significant difference between the Experimental Denervated Group and Experimental Denervated and Treated Group, showing that electrical stimulation minimized muscle atrophy. The Experimental Denervated and Treated Group and Initial Control Group showed similar results. Conclusion Electrical stimulation through Russian current acted favorably in maintaining morphology of the cranial tibial muscle that was experimentally denervated, minimizing muscle atrophy.
RESUMO Objetivo Investigar se a estimulação elétrica pela corrente russa é capaz de manter a morfologia do músculo tibial cranial de ratos desnervados experimentalmente. Métodos Foram utilizados 36 ratos Wistar, distribuídos em quatro grupos: Grupo Controle Inicial, Grupo Controle Final, Grupo Experimental Desnervado Tratado, Grupo Experimental Desnervado. A eletroestimulação foi realizada com um protocolo de corrente russa aplicada três vezes por semanas, durante 45 dias. Ao final, os animais foram eutanasiados e, em seguida, foram realizadas as análises histológica e morfométrica. Os dados foram submetidos à análise estatística, com nível de significância de p<0,05. Resultados Os Grupos Experimental Desnervado e o Grupo Experimental Desnervado Tratado apresentaram área de secção transversal da fibra menor quando comparados ao Grupo Controle Final. Entretanto, constatou-se diferença significativa entre o Grupo Experimental Desnervado e o Grupo Experimental Desnervado Tratado, mostrando que a estimulação elétrica minimizou atrofia muscular. Ainda, observou-se que o Grupo Experimental Desnervado Tratado apresentou resultados semelhantes ao Grupo Controle Inicial. Conclusão A estimulação elétrica por meio da corrente russa foi favorável na manutenção da morfologia do músculo tibial cranial desnervado experimentalmente, minimizando a atrofia muscular.
Subject(s)
Animals , Male , Muscular Atrophy/prevention & control , Electric Stimulation Therapy/methods , Muscle, Skeletal/physiopathology , Muscle, Skeletal/innervation , Muscle Denervation , Tibia/innervation , Muscular Atrophy/physiopathology , Reproducibility of Results , Treatment Outcome , Rats, Wistar , Muscle, Skeletal/pathology , Anatomy, Cross-SectionalABSTRACT
BACKGROUND: Exercise intolerance is one of the main clinical symptoms of heart failure (HF) and is associated with skeletal muscle wasting due to an imbalance between proteolysis and protein synthesis. In this study, we tested whether aerobic exercise training (AET) would counteract skeletal muscle atrophy by activating IGF-I/Akt/mTOR pathway in HF mice. METHODS: Sympathetic hyperactivity induced HF mice were assigned into 8-week moderate intensity AET. Untrained wild type and HF mice were used as control. Soleus cross sectional area was evaluated by histochemistry and motor performance by rotarod. 26S proteasome activity was assessed by fluorimetric assay, and components of IGF-I/Akt/mTOR pathway or myostatin pathway by qRT-PCR or immunoblotting. A different subset of mice was used to evaluate the relative contribution of mTOR inhibition (rapamycin) or activation (leucine) on AET-induced changes in muscle mass regulation. RESULTS: AET prevented exercise intolerance and impaired motor performance in HF mice. These effects were associated with attenuation of soleus atrophy. Rapamycin treatment precluded AET effects on soleus mass in HF mice suggesting the involvement of IGF signaling pathway in this response. In fact, AET increased IGF-I Ea and IGF-I Pan mRNA levels, while it reduced myostatin and Smad2 mRNA levels in HF mice. At protein levels, AET prevented reduced expression levels of IGF-I, pAkt (at basal state), as well as, p4E-BP1 and pP70(S6K) (leucine-stimulated state) in HF mice. Additionally, AET prevented 26S proteasome hyperactivity in HF mice. CONCLUSIONS: Taken together, our data provide evidence for AET-induced activation of IGF-I/Akt/mTOR signaling pathway counteracting HF-induced muscle wasting.
Subject(s)
Heart Failure/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Physical Conditioning, Animal/physiology , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Heart Failure/therapy , Insulin-Like Growth Factor I/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscular Atrophy/prevention & control , Physical Conditioning, Animal/methods , RNA, Messenger/metabolism , Signal Transduction/physiologyABSTRACT
INTRODUCTION: In this study we investigated the effects of high-intensity resistance training (RT) on dexamethasone (DEX)-induced muscle atrophy in flexor hallucis longus (FHL), tibialis anterior (TA), and soleus (SOL) muscles. METHODS: Rats underwent either high-intensity RT or were kept sedentary. In the last 10 days they received either DEX (0.5 mg/kg/day, intraperitoneally) or saline. RESULTS: DEX reduced body weight (-21%), food intake (-28%), FHL and TA muscle mass (-20% and -18%, respectively), and increased muscle-specific ring finger 1 (MuRF-1) protein level (+37% and +45.5%). RT attenuated FHL muscle atrophy through a combination of low increase in MuRF-1 protein level (-3.5%) and significant increases in mammalian target of rapamycin (mTOR) (+63%) and p70S6K (+46% and +49% for control and DEX, respectively) protein levels. CONCLUSION: RT attenuated DEX-induced muscle atrophy through a combination of increases in mTOR and p70S6K protein levels and a low increase in MuRF-1 protein level.
Subject(s)
Dexamethasone/pharmacology , Glucocorticoids/pharmacology , Muscle, Skeletal/drug effects , Muscular Atrophy/prevention & control , Physical Conditioning, Animal/methods , Resistance Training/methods , Animals , Blotting, Western , Body Weight/drug effects , Dexamethasone/adverse effects , Feeding Behavior/drug effects , Glucocorticoids/adverse effects , Muscle Proteins/drug effects , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/metabolism , Organ Size/drug effects , Rats , Ribosomal Protein S6 Kinases, 70-kDa/drug effects , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , TOR Serine-Threonine Kinases/drug effects , TOR Serine-Threonine Kinases/metabolism , Tripartite Motif Proteins , Ubiquitin-Protein Ligases/drug effects , Ubiquitin-Protein Ligases/metabolismABSTRACT
O músculo estriado esquelético é uma entidade extremamente versátil, capaz de alterar seus padrões e características fenotípicas sob diversas condições, tais como, atividade neuromuscular, estimulação elétrica, idade, atividade hormonal e exercício físico. Sabe-se também que o balanço entre estímulos atróficos e hipertróficos controlam diretamente a massa muscular do indivíduo e estas variações implicam diretamente não apenas sobre o volume muscular, mas também conteúdo de proteínas e produção de força. Neste sentido, a atrofia muscular (perda de massa muscular) é caracterizada tanto pela diminuição na área de secção transversa das fibras musculares, como também pelo decréscimo no conteúdo de proteínas miofibrilares e consequente redução do volume muscular. Esta atrofia muscular pode ocorrer sob diversas condições clinicas e/ou patológicas, acarretando na diminuição ou perda da massa magra levando à uma consequente diminuição da atividade física, da qualidade de vida e inclusive pior resposta ao tratamento, ocasionando consequentemente aumento da mortalidade. Fica claro desta maneira, que, os métodos que visam a prevenção ou tratamento à atrofia muscular tem importante relevância clínica em muitos grupos de pacientes, além de ser um importante fator contribuinte na qualidade de vida e autonomia destes indivíduos. Com isso o estudo de determinados tratamentos que combatam a atrofia muscular torna-se de vital importância, dentre os quais, vem ganhando destaque o ßHidroxi ßMetilbutirato (HMB). Deste modo teve-se como objetivo neste trabalho verificar a efetividade do HMB em prevenir a atrofia muscular induzida por dexametasona (DEXA). Para isto, foram utilizados 32 animais da linhagem Wistar com idade de 60 dias, distribuídos nos seguintes grupos: Grupo Experimental Placebo (GEP), n=8, tratados por 10 dias consecutivos com gavagem e injeção intraperitoneal, ambas contendo apenas solução salina; Grupo Experimental Dexametasona (GED), n=8, tratados por 10 dias consecutivos com gavagem contendo solução salina e injeção intraperitoneal contendo dexametasona; Grupo Experimental HMB (GEH), n=8, tratados por 10 dias consecutivos com gavagem contendo HMB e injeção intraperitoneal contendo solução salina; e Grupo Experimental Dexametasona + HMB (GEDH), n=8, tratados por 10 dias consecutivos com gavagem contendo HMB e injeção intraperitoneal contendo DEXA. Os animais foram acondicionados em caixas coletivas com 4 animais por caixa, com comida e agua à vontade em sala climatizada com temperatura de 22o e respeitando o ciclo de 12 horas claro/escuro. Finalizados os dez dias de tratamento, os animais foram eutanasiados para a coleta do material. Após as análises, as médias dos grupos para peso corpóreo dos animais, peso muscular e os valores da morfometria foram todos submetidos ao teste One-Way ANOVA, seguidos do Teste de Tukey, sendo o valor considerado estatisticamente significante de p<0,05. Ao final pôde-se concluir que, no delineamento experimental aqui aplicado, o HMB não foi capaz de atenuar ou prevenir a perda de peso corporal induzida pela DEXA, sendo que o efeito anticatabólico esperado pelo HMB não repercutiu no musculo EDL, contudo foi capaz de prevenir a atrofia no musculo sóleo.(AU)
The skeletal muscle is an extremely versatile entity, able to change their patterns and phenotypic characteristics under various conditions such as neuromuscular activity, electrical stimulation, age, hormonal activity and exercise. It is also known that the balance between atrophic and hypertrophic stimuli directly control the muscle mass of the individual and these changes directly affect not only on muscle volume, but also protein content and production strength. In this sense, muscle atrophy (loss of muscle mass) characterized by both, the decrease in cross-sectional area of muscle fibers, but also by decreasing the content of myofibrillar proteins and consequent reduction in muscle volume. This muscle atrophy may occur in various pathological conditions, resulting in decrease or loss of lean body mass leading to a consequent reduction in physical function, quality of life and even worse response to treatment, thus leading to increased mortality. It is clear in that way that the methods aimed at preventing or treating muscle atrophy has important clinical relevance in many groups of patients, as well as being a major contributing factor in the quality of life and autonomy of individuals. Thus, the study of certain treatments that combat muscle atrophy become of vital importance, among which highlight is winning the ß-hydroxy-ß-methylbutyrate (HMB). Thus, it is aimed in this study to assess the effectiveness of HMB to prevent muscle atrophy induced by dexamethasone (DEXA). For this, we used 32 Wistar animals aged 60 days, distributed in the following groups: experimental group Placebo (GEP), n = 8, treated for 10 consecutive days with gavage and intraperitoneal injection, both containing only saline. Experimental group Dexamethasone (GED), n = 8, treated for 10 consecutive days with gavage containing saline and intraperitoneal injection containing dexamethasone. Experimental group HMB (GEH), n = 8, treated for 10 consecutive days with gavage containing HMB and intraperitoneal injection containing saline solution and Experimental Group Dexamethasone + HMB (GEDH), n = 8, treated for 10 consecutive days with gavage containing HMB and intraperitoneal injection containing DEXA. The animals were placed in collective boxes with 4 animals per cage with food and water at will in a room with 22o temperature and respecting the light / dark 12-hour cycle. Completed the ten days of treatment, the animals were euthanized to collect the material. After the analysis, the mean body weight to groups of animals, muscle weight and values of morphometry were all subjected to one-way ANOVA followed by Tukey test, with the amount considered statistically significant at p <0.05. At the end, it could be concluded that the experimental design applied here, the HMB was not able to mitigate or prevent the loss of body weight induced by DEXA, and the anti-catabolic effect expected by HMB not reflected in the EDL muscle, but was able to prevent atrophy in the soleus muscle.(AU)