Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.371
Filter
1.
Proc Natl Acad Sci U S A ; 121(22): e2405123121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38781208

ABSTRACT

Mitochondria play a central role in muscle metabolism and function. A unique family of iron-sulfur proteins, termed CDGSH Iron Sulfur Domain-containing (CISD/NEET) proteins, support mitochondrial function in skeletal muscles. The abundance of these proteins declines during aging leading to muscle degeneration. Although the function of the outer mitochondrial CISD/NEET proteins, CISD1/mitoNEET and CISD2/NAF-1, has been defined in skeletal muscle cells, the role of the inner mitochondrial CISD protein, CISD3/MiNT, is currently unknown. Here, we show that CISD3 deficiency in mice results in muscle atrophy that shares proteomic features with Duchenne muscular dystrophy. We further reveal that CISD3 deficiency impairs the function and structure of skeletal muscles, as well as their mitochondria, and that CISD3 interacts with, and donates its [2Fe-2S] clusters to, complex I respiratory chain subunit NADH Ubiquinone Oxidoreductase Core Subunit V2 (NDUFV2). Using coevolutionary and structural computational tools, we model a CISD3-NDUFV2 complex with proximal coevolving residue interactions conducive of [2Fe-2S] cluster transfer reactions, placing the clusters of the two proteins 10 to 16 Å apart. Taken together, our findings reveal that CISD3/MiNT is important for supporting the biogenesis and function of complex I, essential for muscle maintenance and function. Interventions that target CISD3 could therefore impact different muscle degeneration syndromes, aging, and related conditions.


Subject(s)
Electron Transport Complex I , Mitochondrial Proteins , Muscle, Skeletal , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mice , Electron Transport Complex I/metabolism , Electron Transport Complex I/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondria/metabolism , Iron-Sulfur Proteins/metabolism , Iron-Sulfur Proteins/genetics , Mice, Knockout , Mitochondria, Muscle/metabolism , Humans , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Muscular Atrophy/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/genetics
2.
Sci Adv ; 10(18): eadj8042, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38691608

ABSTRACT

Overactivation of the transforming growth factor-ß (TGFß) signaling in Duchenne muscular dystrophy (DMD) is a major hallmark of disease progression, leading to fibrosis and muscle dysfunction. Here, we investigated the role of SETDB1 (SET domain, bifurcated 1), a histone lysine methyltransferase involved in muscle differentiation. Our data show that, following TGFß induction, SETDB1 accumulates in the nuclei of healthy myotubes while being already present in the nuclei of DMD myotubes where TGFß signaling is constitutively activated. Transcriptomics revealed that depletion of SETDB1 in DMD myotubes leads to down-regulation of TGFß target genes coding for secreted factors involved in extracellular matrix remodeling and inflammation. Consequently, SETDB1 silencing in DMD myotubes abrogates the deleterious effect of their secretome on myoblast differentiation by impairing myoblast pro-fibrotic response. Our findings indicate that SETDB1 potentiates the TGFß-driven fibrotic response in DMD muscles, providing an additional axis for therapeutic intervention.


Subject(s)
Histone-Lysine N-Methyltransferase , Muscle Fibers, Skeletal , Muscular Dystrophy, Duchenne , Signal Transduction , Transforming Growth Factor beta , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Transforming Growth Factor beta/metabolism , Humans , Animals , Cell Differentiation , Mice , Myoblasts/metabolism , Fibrosis , Gene Expression Regulation
3.
Dis Model Mech ; 17(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38721692

ABSTRACT

Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene, resulting in the loss of dystrophin, a large cytosolic protein that links the cytoskeleton to extracellular matrix receptors in skeletal muscle. Aside from progressive muscle damage, many patients with DMD also have neurological deficits of unknown etiology. To investigate potential mechanisms for DMD neurological deficits, we assessed postnatal oligodendrogenesis and myelination in the Dmdmdx mouse model. In the ventricular-subventricular zone (V-SVZ) stem cell niche, we found that oligodendrocyte progenitor cell (OPC) production was deficient, with reduced OPC densities and proliferation, despite a normal stem cell niche organization. In the Dmdmdx corpus callosum, a large white matter tract adjacent to the V-SVZ, we also observed reduced OPC proliferation and fewer oligodendrocytes. Transmission electron microscopy further revealed significantly thinner myelin, an increased number of abnormal myelin structures and delayed myelin compaction, with hypomyelination persisting into adulthood. Our findings reveal alterations in oligodendrocyte development and myelination that support the hypothesis that changes in diffusion tensor imaging seen in patients with DMD reflect developmental changes in myelin architecture.


Subject(s)
Mice, Inbred mdx , Muscular Dystrophy, Duchenne , Myelin Sheath , Oligodendroglia , Animals , Myelin Sheath/metabolism , Oligodendroglia/metabolism , Oligodendroglia/pathology , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/genetics , Cell Proliferation , Dystrophin/metabolism , Dystrophin/deficiency , Dystrophin/genetics , Corpus Callosum/pathology , Corpus Callosum/metabolism , Mice, Inbred C57BL , Mice , Oligodendrocyte Precursor Cells/metabolism , Oligodendrocyte Precursor Cells/pathology , Lateral Ventricles/pathology , Lateral Ventricles/metabolism , Disease Models, Animal , Cell Differentiation , Male
4.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731986

ABSTRACT

Circadian clock and clock-controlled output pathways exert temporal control in diverse aspects of skeletal muscle physiology, including the maintenance of muscle mass, structure, function, and metabolism. They have emerged as significant players in understanding muscle disease etiology and potential therapeutic avenues, particularly in Duchenne muscular dystrophy (DMD). This review examines the intricate interplay between circadian rhythms and muscle physiology, highlighting how disruptions of circadian regulation may contribute to muscle pathophysiology and the specific mechanisms linking circadian clock dysregulation with DMD. Moreover, we discuss recent advancements in chronobiological research that have shed light on the circadian control of muscle function and its relevance to DMD. Understanding clock output pathways involved in muscle mass and function offers novel insights into the pathogenesis of DMD and unveils promising avenues for therapeutic interventions. We further explore potential chronotherapeutic strategies targeting the circadian clock to ameliorate muscle degeneration which may inform drug development efforts for muscular dystrophy.


Subject(s)
Circadian Clocks , Muscle, Skeletal , Muscular Dystrophy, Duchenne , Muscular Dystrophy, Duchenne/therapy , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/physiopathology , Humans , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Circadian Rhythm
5.
Dis Model Mech ; 17(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38770680

ABSTRACT

Absence of dystrophin results in muscular weakness, chronic inflammation and cardiomyopathy in Duchenne muscular dystrophy (DMD). Pharmacological corticosteroids are the DMD standard of care; however, they have harsh side effects and unclear molecular benefits. It is uncertain whether signaling by physiological corticosteroids and their receptors plays a modifying role in the natural etiology of DMD. Here, we knocked out the glucocorticoid receptor (GR, encoded by Nr3c1) specifically in myofibers and cardiomyocytes within wild-type and mdx52 mice to dissect its role in muscular dystrophy. Double-knockout mice showed significantly worse phenotypes than mdx52 littermate controls in measures of grip strength, hang time, inflammatory pathology and gene expression. In the heart, GR deletion acted additively with dystrophin loss to exacerbate cardiomyopathy, resulting in enlarged hearts, pathological gene expression and systolic dysfunction, consistent with imbalanced mineralocorticoid signaling. The results show that physiological GR functions provide a protective role during muscular dystrophy, directly contrasting its degenerative role in other disease states. These data provide new insights into corticosteroids in disease pathophysiology and establish a new model to investigate cell-autonomous roles of nuclear receptors and mechanisms of pharmacological corticosteroids.


Subject(s)
Dystrophin , Mice, Inbred mdx , Mice, Knockout , Receptors, Glucocorticoid , Animals , Receptors, Glucocorticoid/metabolism , Dystrophin/metabolism , Dystrophin/genetics , Dystrophin/deficiency , Myocardium/pathology , Myocardium/metabolism , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocytes, Cardiac/drug effects , Mice , Cardiomyopathies/pathology , Cardiomyopathies/metabolism , Mice, Inbred C57BL , Muscular Dystrophy, Animal/pathology , Muscular Dystrophy, Animal/metabolism , Phenotype , Systole/drug effects
6.
JCI Insight ; 9(9)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564291

ABSTRACT

Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease associated with cardiomyopathy. DMD cardiomyopathy is characterized by abnormal intracellular Ca2+ homeostasis and mitochondrial dysfunction. We used dystrophin and utrophin double-knockout (mdx:utrn-/-) mice in a sarcolipin (SLN) heterozygous-knockout (sln+/-) background to examine the effect of SLN reduction on mitochondrial function in the dystrophic myocardium. Germline reduction of SLN expression in mdx:utrn-/- mice improved cardiac sarco/endoplasmic reticulum (SR) Ca2+ cycling, reduced cardiac fibrosis, and improved cardiac function. At the cellular level, reducing SLN expression prevented mitochondrial Ca2+ overload, reduced mitochondrial membrane potential loss, and improved mitochondrial function. Transmission electron microscopy of myocardial tissues and proteomic analysis of mitochondria-associated membranes showed that reducing SLN expression improved mitochondrial structure and SR-mitochondria interactions in dystrophic cardiomyocytes. These findings indicate that SLN upregulation plays a substantial role in the pathogenesis of cardiomyopathy and that reducing SLN expression has clinical implications in the treatment of DMD cardiomyopathy.


Subject(s)
Cardiomyopathies , Dystrophin , Mice, Inbred mdx , Mice, Knockout , Muscle Proteins , Muscular Dystrophy, Duchenne , Proteolipids , Utrophin , Animals , Male , Mice , Calcium/metabolism , Cardiomyopathies/metabolism , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Disease Models, Animal , Dystrophin/genetics , Dystrophin/metabolism , Mitochondria, Heart/metabolism , Mitochondria, Heart/ultrastructure , Mitochondria, Heart/genetics , Muscle Proteins/metabolism , Muscle Proteins/genetics , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Proteolipids/metabolism , Proteolipids/genetics , Utrophin/genetics , Utrophin/metabolism
7.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38673859

ABSTRACT

The dynamic relationship between heart failure and cancer poses a dual challenge. While cardiac remodeling can promote cancer growth and metastasis, tumor development can ameliorate cardiac dysfunction and suppress fibrosis. However, the precise mechanism through which cancer influences the heart and fibrosis is yet to be uncovered. To further explore the interaction between heart failure and cancer, we used the MDX mouse model, which suffers from cardiac fibrosis and cardiac dysfunction. A previous study from our lab demonstrated that tumor growth improves cardiac dysfunction and dampens fibrosis in the heart and diaphragm muscles of MDX mice. We used breast Polyoma middle T (PyMT) and Lewis lung carcinoma (LLC) cancer cell lines that developed into large tumors. To explore whether the aggressiveness of the cancer cell line is crucial for the beneficial phenotype, we employed a PyMT breast cancer cell line lacking integrin ß1, representing a less aggressive cell line compared to the original PyMT cells. In addition, we examined immortalized and primary MEF cells. The injection of integrin ß1 KO PyMT cancer cells and Mouse Embryo Fibroblasts cells (MEF) resulted in the improvement of cardiac function and decreased fibrosis in the heart, diaphragm, and skeletal muscles of MDX mice. Collectively, our data demonstrate that the cancer line aggressiveness as well as primary MEF cells are sufficient to impose the beneficial phenotype. These discoveries present potential novel clinical therapeutic approaches with beneficial outcome for patients with fibrotic diseases and cardiac dysfunction that do not require tumor growth.


Subject(s)
Disease Models, Animal , Fibrosis , Mice, Inbred mdx , Muscular Dystrophy, Duchenne , Animals , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/metabolism , Mice , Cell Line, Tumor , Mice, Inbred C57BL , Female , Myocardium/pathology , Myocardium/metabolism , Integrin beta1/metabolism , Integrin beta1/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , Humans
8.
Physiol Rep ; 12(8): e16004, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658324

ABSTRACT

Duchenne muscular dystrophy (DMD) is an X-linked recessive myopathy due to mutations in the dystrophin gene. Diaphragmatic weakness in DMD causes hypoventilation and elevated afterload on the right ventricle (RV). Thus, RV dysfunction in DMD develops early in disease progression. Herein, we deliver a 30-min sustained RV preload/afterload challenge to isolated hearts of wild-type (Wt) and dystrophic (Dmdmdx-4Cv) mice at both young (2-6 month) and middle-age (8-12 month) to test the hypothesis that the dystrophic RV is susceptible to dysfunction with elevated load. Young dystrophic hearts exhibited greater pressure development than wild type under baseline (Langendorff) conditions, but following RV challenge exhibited similar contractile function as wild type. Following the RV challenge, young dystrophic hearts had an increased incidence of premature ventricular contractions (PVCs) compared to wild type. Hearts of middle-aged wild-type and dystrophic mice had similar contractile function during baseline conditions. After RV challenge, hearts of middle-aged dystrophic mice had severe RV dysfunction and arrhythmias, including ventricular tachycardia. Following the RV load challenge, dystrophic hearts had greater lactate dehydrogenase (LDH) release than wild-type mice indicative of damage. Our data indicate age-dependent changes in RV function with load in dystrophin deficiency, highlighting the need to avoid sustained RV load to forestall dysfunction and arrhythmia.


Subject(s)
Arrhythmias, Cardiac , Dystrophin , Myocardial Contraction , Animals , Male , Dystrophin/genetics , Dystrophin/deficiency , Mice , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/genetics , Ventricular Dysfunction, Right/physiopathology , Ventricular Dysfunction, Right/genetics , Ventricular Dysfunction, Right/metabolism , Muscular Dystrophy, Duchenne/physiopathology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/complications , Muscular Dystrophy, Duchenne/metabolism , Mice, Inbred mdx , Mice, Inbred C57BL
9.
Cells ; 13(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38667332

ABSTRACT

A deficiency in the shortest dystrophin-gene product, Dp71, is a pivotal aggravating factor for intellectual disabilities in Duchenne muscular dystrophy (DMD). Recent advances in preclinical research have achieved some success in compensating both muscle and brain dysfunctions associated with DMD, notably using exon skipping strategies. However, this has not been studied for distal mutations in the DMD gene leading to Dp71 loss. In this study, we aimed to restore brain Dp71 expression in the Dp71-null transgenic mouse using an adeno-associated virus (AAV) administrated either by intracardiac injections at P4 (ICP4) or by bilateral intracerebroventricular (ICV) injections in adults. ICP4 delivery of the AAV9-Dp71 vector enabled the expression of 2 to 14% of brain Dp71, while ICV delivery enabled the overexpression of Dp71 in the hippocampus and cortex of adult mice, with anecdotal expression in the cerebellum. The restoration of Dp71 was mostly located in the glial endfeet that surround capillaries, and it was associated with partial localization of Dp71-associated proteins, α1-syntrophin and AQP4 water channels, suggesting proper restoration of a scaffold of proteins involved in blood-brain barrier function and water homeostasis. However, this did not result in significant improvements in behavioral disturbances displayed by Dp71-null mice. The potential and limitations of this AAV-mediated strategy are discussed. This proof-of-concept study identifies key molecular markers to estimate the efficiencies of Dp71 rescue strategies and opens new avenues for enhancing gene therapy targeting cognitive disorders associated with a subgroup of severely affected DMD patients.


Subject(s)
Brain , Dependovirus , Dystrophin , Membrane Proteins , Muscle Proteins , Animals , Male , Mice , Aquaporin 4/metabolism , Aquaporin 4/genetics , Behavior, Animal , Brain/metabolism , Brain/pathology , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Dependovirus/genetics , Dependovirus/metabolism , Disease Models, Animal , Dystrophin/metabolism , Dystrophin/genetics , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Mice, Inbred C57BL , Mice, Knockout , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/therapy , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology
10.
Skelet Muscle ; 14(1): 8, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671506

ABSTRACT

BACKGROUND: Duchenne muscular dystrophy (DMD) is associated with impaired muscle regeneration, progressive muscle weakness, damage, and wasting. While the cause of DMD is an X-linked loss of function mutation in the gene encoding dystrophin, the exact mechanisms that perpetuate the disease progression are unknown. Our laboratory has demonstrated that pannexin 1 (Panx1 in rodents; PANX1 in humans) is critical for the development, strength, and regeneration of male skeletal muscle. In normal skeletal muscle, Panx1 is part of a multiprotein complex with dystrophin. We and others have previously shown that Panx1 levels and channel activity are dysregulated in various mouse models of DMD. METHODS: We utilized myoblast cell lines derived from DMD patients to assess PANX1 expression and function. To investigate how Panx1 dysregulation contributes to DMD, we generated a dystrophic (mdx) mouse model that lacks Panx1 (Panx1-/-/mdx). In depth characterization of this model included histological analysis, as well as locomotor, and physiological tests such as muscle force and grip strength assessments. RESULTS: Here, we demonstrate that PANX1 levels and channel function are reduced in patient-derived DMD myoblast cell lines. Panx1-/-/mdx mice have a significantly reduced lifespan, and decreased body weight due to lean mass loss. Their tibialis anterior were more affected than their soleus muscles and displayed reduced mass, myofiber loss, increased centrally nucleated myofibers, and a lower number of muscle stem cells compared to that of Panx1+/+/mdx mice. These detrimental effects were associated with muscle and locomotor functional impairments. In vitro, PANX1 overexpression in patient-derived DMD myoblasts improved their differentiation and fusion. CONCLUSIONS: Collectively, our findings suggest that PANX1/Panx1 dysregulation in DMD exacerbates several aspects of the disease. Moreover, our results suggest a potential therapeutic benefit to increasing PANX1 levels in dystrophic muscles.


Subject(s)
Connexins , Mice, Inbred mdx , Muscle, Skeletal , Muscular Dystrophy, Duchenne , Nerve Tissue Proteins , Animals , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/physiopathology , Connexins/genetics , Connexins/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Male , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Humans , Mice , Myoblasts/metabolism , Cell Line , Muscle Strength , Disease Models, Animal , Mice, Inbred C57BL , Mice, Knockout
11.
PLoS One ; 19(3): e0300006, 2024.
Article in English | MEDLINE | ID: mdl-38498472

ABSTRACT

PURPOSE: Considering the difficulties and challenges in Duchenne muscular dystrophy (DMD) treatment, such as the adverse effects of glucocorticoids, which are the main medical prescription used by dystrophic patients, new treatment concepts for dystrophic therapy are very necessary. Thus, in this study, we explore the effects of photobiomodulation (PBM; a non-invasive therapy) and Idebenone (IDE) treatment (a potent antioxidant), applied alone or in association, in dystrophic muscle cells and the quadriceps muscle, with special focus on autophagy and regenerative pathways. METHODS: For the in vitro studies, the dystrophic primary muscle cells received 0.5J LEDT and 0.06µM IDE; and for the in vivo studies, the dystrophic quadriceps muscle received 3J LEDT and the mdx mice were treated with 200mg/kg IDE. RESULTS: LEDT and IDE treatment modulate autophagy by increasing autophagy markers (SQSTM1/p62, Beclin and Parkin) and signaling pathways (AMPK and TGF-ß). Concomitantly, the treatments prevented muscle degeneration by reducing the number of IgG-positive fibers and the fibers with a central nucleus; decreasing the fibrotic area; up-regulating the myogenin and MCH-slow levels; and down-regulating the MyoD and MHC-fast levels. CONCLUSION: These results suggest that LEDT and IDE treatments enhance autophagy and prevented muscle degeneration in the dystrophic muscle of the experimental model. These findings illustrate the potential efficacy of LEDT and IDE treatment as an alternative therapy focused on muscle recovery in the dystrophic patient.


Subject(s)
Muscle, Skeletal , Muscular Dystrophy, Duchenne , Ubiquinone/analogs & derivatives , Animals , Mice , Humans , Muscle, Skeletal/metabolism , Mice, Inbred mdx , AMP-Activated Protein Kinases/metabolism , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/metabolism , Autophagy , Disease Models, Animal
12.
Nat Commun ; 15(1): 1950, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38431640

ABSTRACT

In muscular dystrophies, muscle fibers loose integrity and die, causing significant suffering and premature death. Strikingly, the extraocular muscles (EOMs) are spared, functioning well despite the disease progression. Although EOMs have been shown to differ from body musculature, the mechanisms underlying this inherent resistance to muscle dystrophies remain unknown. Here, we demonstrate important differences in gene expression as a response to muscle dystrophies between the EOMs and trunk muscles in zebrafish via transcriptomic profiling. We show that the LIM-protein Fhl2 is increased in response to the knockout of desmin, plectin and obscurin, cytoskeletal proteins whose knockout causes different muscle dystrophies, and contributes to disease protection of the EOMs. Moreover, we show that ectopic expression of fhl2b can partially rescue the muscle phenotype in the zebrafish Duchenne muscular dystrophy model sapje, significantly improving their survival. Therefore, Fhl2 is a protective agent and a candidate target gene for therapy of muscular dystrophies.


Subject(s)
LIM Domain Proteins , Muscle Proteins , Muscular Dystrophy, Duchenne , Oculomotor Muscles , Animals , Cytoskeletal Proteins/metabolism , Dystrophin/genetics , Ectopic Gene Expression , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Oculomotor Muscles/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Muscle Proteins/metabolism , LIM Domain Proteins/metabolism
13.
JCI Insight ; 9(8)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38530354

ABSTRACT

Skeletal muscle wasting results from numerous pathological conditions affecting both the musculoskeletal and nervous systems. A unifying feature of these pathologies is the upregulation of members of the E3 ubiquitin ligase family, resulting in increased proteolytic degradation of target proteins. Despite the critical role of E3 ubiquitin ligases in regulating muscle mass, the specific proteins they target for degradation and the mechanisms by which they regulate skeletal muscle homeostasis remain ill-defined. Here, using zebrafish loss-of-function models combined with in vivo cell biology and proteomic approaches, we reveal a role of atrogin-1 in regulating the levels of the endoplasmic reticulum chaperone BiP. Loss of atrogin-1 resulted in an accumulation of BiP, leading to impaired mitochondrial dynamics and a subsequent loss in muscle fiber integrity. We further implicated a disruption in atrogin-1-mediated BiP regulation in the pathogenesis of Duchenne muscular dystrophy. We revealed that BiP was not only upregulated in Duchenne muscular dystrophy, but its inhibition using pharmacological strategies, or by upregulating atrogin-1, significantly ameliorated pathology in a zebrafish model of Duchenne muscular dystrophy. Collectively, our data implicate atrogin-1 and BiP in the pathogenesis of Duchenne muscular dystrophy and highlight atrogin-1's essential role in maintaining muscle homeostasis.


Subject(s)
Disease Models, Animal , Endoplasmic Reticulum Chaperone BiP , Homeostasis , Muscle Proteins , Muscle, Skeletal , Muscular Dystrophy, Duchenne , SKP Cullin F-Box Protein Ligases , Zebrafish , Animals , SKP Cullin F-Box Protein Ligases/metabolism , SKP Cullin F-Box Protein Ligases/genetics , Muscle Proteins/metabolism , Muscle Proteins/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/genetics , Humans , Endoplasmic Reticulum Chaperone BiP/metabolism , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Endoplasmic Reticulum/metabolism , Mitochondrial Dynamics
14.
Exp Mol Med ; 56(4): 904-921, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38556548

ABSTRACT

Sarcopenia, the progressive decline in skeletal muscle mass and function, is observed in various conditions, including cancer and aging. The complex molecular biology of sarcopenia has posed challenges for the development of FDA-approved medications, which have mainly focused on dietary supplementation. Targeting a single gene may not be sufficient to address the broad range of processes involved in muscle loss. This study analyzed the gene expression signatures associated with cancer formation and 5-FU chemotherapy-induced muscle wasting. Our findings suggest that dimenhydrinate, a combination of 8-chlorotheophylline and diphenhydramine, is a potential therapeutic for sarcopenia. In vitro experiments demonstrated that dimenhydrinate promotes muscle progenitor cell proliferation through the phosphorylation of Nrf2 by 8-chlorotheophylline and promotes myotube formation through diphenhydramine-induced autophagy. Furthermore, in various in vivo sarcopenia models, dimenhydrinate induced rapid muscle tissue regeneration. It improved muscle regeneration in animals with Duchenne muscular dystrophy (DMD) and facilitated muscle and fat recovery in animals with chemotherapy-induced sarcopenia. As an FDA-approved drug, dimenhydrinate could be applied for sarcopenia treatment after a relatively short development period, providing hope for individuals suffering from this debilitating condition.


Subject(s)
Autophagy , Transcriptome , Animals , Autophagy/drug effects , Mice , Humans , Protein Biosynthesis/drug effects , Disease Models, Animal , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Gene Expression Profiling , Sarcopenia/drug therapy , Sarcopenia/metabolism , Sarcopenia/pathology , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology
15.
Ann N Y Acad Sci ; 1534(1): 130-144, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38517756

ABSTRACT

Myogenesis is essential for skeletal muscle formation, growth, and regeneration and can be altered in Duchenne muscular dystrophy (DMD), an X-linked disorder due to the absence of the cytoskeletal protein dystrophin. Ion channels play a pivotal role in muscle differentiation and interact with the dystrophin complex. To investigate ion channel involvement in myogenesis in dystrophic settings, we performed electrophysiological characterization of two immortalized mouse cell lines, wild-type (WT) H2K-2B4 and the dystrophic (DYS) H2K-SF1, and measured gene expression of differentiation markers and ion channels. Inward and outward currents/density increased as differentiation progressed in both WT and DYS cells. However, day-11 DYS cells showed higher (27%) inward current density with an increased expression ratio of Scn5a/Scn4a and decreased (48%) barium-sensitive outward current compared to WT. Furthermore, day-11 DYS cells showed more positive resting membrane potential (+10 mV) and lower membrane capacitance (50%) compared to WT. DYS cells also had reduced Myog and Myf5 expression at days 6 and 11. Overall, ion channel profile and myogenesis appeared altered in DYS cells. These results are a first step in validating ion channels as potential drug targets to ameliorate muscle degeneration in DMD settings and as differentiation biomarkers in innovative platforms.


Subject(s)
Muscular Dystrophy, Duchenne , Animals , Mice , Muscular Dystrophy, Duchenne/metabolism , Dystrophin/metabolism , Muscle, Skeletal/metabolism , Biomarkers/metabolism , Ion Channels/metabolism , Muscle Development
16.
Sci Transl Med ; 16(739): eabn8529, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507466

ABSTRACT

Impaired skeletal muscle stem cell (MuSC) function has long been suspected to contribute to the pathogenesis of muscular dystrophy (MD). Here, we showed that defects in the endothelial cell (EC) compartment of the vascular stem cell niche in mouse models of Duchenne MD, laminin α2-related MD, and collagen VI-related myopathy were associated with inefficient mobilization of MuSCs after tissue damage. Using chemoinformatic analysis, we identified the 13-amino acid form of the peptide hormone apelin (AP-13) as a candidate for systemic stimulation of skeletal muscle ECs. Systemic administration of AP-13 using osmotic pumps generated a pro-proliferative EC-rich niche that supported MuSC function through angiocrine factors and markedly improved tissue regeneration and muscle strength in all three dystrophic mouse models. Moreover, EC-specific knockout of the apelin receptor led to regenerative defects that phenocopied key pathological features of MD, including vascular defects, fibrosis, muscle fiber necrosis, impaired MuSC function, and reduced force generation. Together, these studies provide in vivo proof of concept that enhancing endogenous skeletal muscle repair by targeting the vascular niche is a viable therapeutic avenue for MD and characterized AP-13 as a candidate for further study for the systemic treatment of MuSC dysfunction.


Subject(s)
Muscular Dystrophy, Duchenne , Stem Cell Niche , Mice , Animals , Apelin/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/metabolism , Signal Transduction
17.
Stem Cell Res ; 76: 103343, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428348

ABSTRACT

Duchenne muscular dystrophy (DMD) is a fatal X-linked recessive disorder, which is caused mostly by frame-disrupting, out-of-frame variation in the dystrophin (DMD) gene. Loss-of- function mutations are the most common type of mutation in DMD, accounting for approximately 60-90% of all DMD variations. In this study, we used adenine base editing to generate a human embryonic stem cell line with splice-site mutations to mimic exon deletion variants in clinical Duchenne muscular dystrophy patients. This cell line has differentiation potential and a normal karyotypic.


Subject(s)
Human Embryonic Stem Cells , Muscular Dystrophy, Duchenne , Humans , Dystrophin/genetics , Dystrophin/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Gene Editing , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Human Embryonic Stem Cells/metabolism , Exons/genetics , Cell Line , Mutation/genetics
18.
Adv Ther ; 41(4): 1338-1350, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38376743

ABSTRACT

Duchenne muscular dystrophy (DMD) is one of the most prevalent X-linked inherited neuromuscular disorders, with an estimated incidence between 1 in 3500 and 5000 live male births. The median life expectancy at birth is around 30 years due to a rapid and severe disease progression. Currently, there is no cure for DMD, and the standard of care is mainly palliative therapy and glucocorticoids to mitigate symptoms and improve quality of life. Recent advances in phosphorodiamidate morpholino antisense oligonucleotide (PMO) technology has proven optimistic in providing a disease-modifying therapy rather than a palliative treatment option through correcting the primary genetic defect of DMD by exon skipping. However, as a result of the high variance in mutations of the dystrophin gene causing DMD, it has been challenging to tailor an effective therapy in most patients. Viltolarsen is effective in 8% of patients and accurately skips exon 53, reestablishing the reading frame and producing a functional form of dystrophin and milder disease phenotype. Results of recently concluded preclinical and clinical trials show significantly increased dystrophin protein expression, no severe adverse effects, and stabilization of motor function. In summary, viltolarsen has provided hope for those working toward giving patients a safe and viable treatment option for managing DMD. This review summarizes an overview of the presentation, pathophysiology, genetics, and current treatment guidelines of DMD, pharmacological profile of viltolarsen, and a summary of the safety and efficacy with additional insights using recent clinical trial data.


Subject(s)
Muscular Dystrophy, Duchenne , Infant, Newborn , Humans , Male , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Dystrophin/genetics , Dystrophin/metabolism , Quality of Life , Oligonucleotides/therapeutic use
19.
Cardiovasc Res ; 120(7): 723-734, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38395031

ABSTRACT

AIMS: The microtubule (MT) network plays a major role in the transport of the cardiac sodium channel Nav1.5 to the membrane, where the latter associates with interacting proteins such as dystrophin. Alterations in MT dynamics are known to impact on ion channel trafficking. Duchenne muscular dystrophy (DMD), caused by dystrophin deficiency, is associated with an increase in MT detyrosination, decreased sodium current (INa), and arrhythmias. Parthenolide (PTL), a compound that decreases MT detyrosination, has shown beneficial effects on cardiac function in DMD. We here investigated its impact on INa and Nav1.5 subcellular distribution. METHODS AND RESULTS: Ventricular cardiomyocytes (CMs) from wild-type (WT) and mdx (DMD) mice were incubated with either 10 µM PTL, 20 µM EpoY, or dimethylsulfoxide (DMSO) for 3-5 h, followed by patch-clamp analysis to assess INa and action potential (AP) characteristics in addition to immunofluorescence and stochastic optical reconstruction microscopy (STORM) to investigate MT detyrosination and Nav1.5 cluster size and density, respectively. In accordance with previous studies, we observed increased MT detyrosination, decreased INa and reduced AP upstroke velocity (Vmax) in mdx CMs compared to WT. PTL decreased MT detyrosination and significantly increased INa magnitude (without affecting INa gating properties) and AP Vmax in mdx CMs, but had no effect in WT CMs. Moreover, STORM analysis showed that in mdx CMs, Nav1.5 clusters were decreased not only in the grooves of the lateral membrane (LM; where dystrophin is localized) but also at the LM crests. PTL restored Nav1.5 clusters at the LM crests (but not at the grooves), indicating a dystrophin-independent trafficking route to this subcellular domain. Interestingly, Nav1.5 cluster density was also reduced at the intercalated disc (ID) region of mdx CMs, which was restored to WT levels by PTL. Treatment of mdx CMs with EpoY, a specific MT detyrosination inhibitor, also increased INa density, while decreasing the amount of detyrosinated MTs, confirming a direct mechanistic link. CONCLUSION: Attenuating MT detyrosination in mdx CMs restored INa and enhanced Nav1.5 localization at the LM crest and ID. Hence, the reduced whole-cell INa density characteristic of mdx CMs is not only the consequence of the lack of dystrophin within the LM grooves but is also due to reduced Nav1.5 at the LM crest and ID secondary to increased baseline MT detyrosination. Overall, our findings identify MT detyrosination as a potential therapeutic target for modulating INa and subcellular Nav1.5 distribution in pathophysiological conditions.


Subject(s)
Action Potentials , Disease Models, Animal , Mice, Inbred mdx , Microtubules , Muscular Dystrophy, Duchenne , Myocytes, Cardiac , NAV1.5 Voltage-Gated Sodium Channel , Animals , NAV1.5 Voltage-Gated Sodium Channel/metabolism , NAV1.5 Voltage-Gated Sodium Channel/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Action Potentials/drug effects , Microtubules/metabolism , Microtubules/drug effects , Microtubules/pathology , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Tubulin Modulators/pharmacology , Mice, Inbred C57BL , Cells, Cultured , Sesquiterpenes/pharmacology , Sesquiterpenes/metabolism , Male , Sodium/metabolism
20.
Trends Mol Med ; 30(3): 278-294, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38408879

ABSTRACT

Earlier evidence that targeting the balance between histone acetyltransferases (HATs) and deacetylases (HDACs), through exposure to HDAC inhibitors (HDACis), could enhance skeletal myogenesis, prompted interest in using HDACis to promote muscle regeneration. Further identification of constitutive HDAC activation in dystrophin-deficient muscles, caused by dysregulated nitric oxide (NO) signaling, provided the rationale for HDACi-based therapeutic interventions for Duchenne muscular dystrophy (DMD). In this review, we describe the molecular, preclinical, and clinical evidence supporting the efficacy of HDACis in countering disease progression by targeting pathogenic networks of gene expression in multiple muscle-resident cell types of patients with DMD. Given that givinostat is paving the way for HDACi-based interventions in DMD, next-generation HDACis with optimized therapeutic profiles and efficacy could be also explored for synergistic combinations with other therapeutic strategies.


Subject(s)
Muscular Dystrophy, Duchenne , Mice , Animals , Humans , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Muscle, Skeletal/metabolism , Mice, Inbred mdx , Dystrophin/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...