Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 92(21): 14398-14407, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33048531

ABSTRACT

Drosophila melanogaster, a fruit fly, is an exquisite model organism to understand neurotransmission. Dopaminergic signaling in the Drosophila mushroom body (MB) is involved in olfactory learning and memory, with different compartments controlling aversive learning (heel) vs. appetitive learning (medial tip). Here, the goal was to develop techniques to measure endogenous dopamine in compartments of the MB for the first time. We compared three stimulation methods: acetylcholine (natural stimulus), P2X2 (chemogenetics), and CsChrimson (optogenetics). Evoked dopamine release was measured with fast-scan cyclic voltammetry in isolated adult Drosophila brains. Acetylcholine stimulated the largest dopamine release (0.40 µM) followed by P2X2 (0.14 µM) and CsChrimson (0.07 µM). With the larger acetylcholine and P2X2 stimulations, there were no regional or sex differences in dopamine release. However, with CsChrimson, dopamine release was significantly higher in the heel than the medial tip, and females had more dopamine than males. Michaelis-Menten modeling of the single-light pulse revealed no significant regional differences in Km, but the heel had a significantly lower Vmax (0.12 µM/s vs. 0.19 µM/s) and higher dopamine release (0.05 µM vs. 0.03 µM). Optogenetic experiments are challenging because CsChrimson is also sensitive to blue light used to activate green fluorescent protein, and thus, light exposure during brain dissection must be minimized. These experiments expand the toolkit for measuring endogenous dopamine release in Drosophila, introducing chemogenetic and optogenetic experiments for the first time. With a variety of stimulations, different experiments will help improve our understanding of neurochemical signaling in Drosophila.


Subject(s)
Dopamine/metabolism , Drosophila melanogaster/anatomy & histology , Mushroom Bodies/metabolism , Acetylcholine/pharmacology , Animals , Dose-Response Relationship, Drug , Mushroom Bodies/drug effects , Mushroom Bodies/radiation effects , Optogenetics , Receptors, Purinergic P2X2/metabolism , Time Factors
2.
J Neurosci ; 40(7): 1427-1439, 2020 02 12.
Article in English | MEDLINE | ID: mdl-31932417

ABSTRACT

Long-term memory (LTM) is stored as functional modifications of relevant neural circuits in the brain. A large body of evidence indicates that the initial establishment of such modifications through the process known as memory consolidation requires learning-dependent transcriptional activation and de novo protein synthesis. However, it remains poorly understood how the consolidated memory is maintained for a long period in the brain, despite constant turnover of molecular substrates. Using the Drosophila courtship conditioning assay of adult males as a memory paradigm, here, we show that in Drosophila, environmental light plays a critical role in LTM maintenance. LTM is impaired when flies are kept in constant darkness (DD) during the memory maintenance phase. Because light activates the brain neurons expressing the neuropeptide pigment-dispersing factor (Pdf), we examined the possible involvement of Pdf neurons in LTM maintenance. Temporal activation of Pdf neurons compensated for the DD-dependent LTM impairment, whereas temporal knockdown of Pdf during the memory maintenance phase impaired LTM in light/dark cycles. Furthermore, we demonstrated that the transcription factor cAMP response element-binding protein (CREB) is required in the memory center, namely, the mushroom bodies (MBs), for LTM maintenance, and Pdf signaling regulates light-dependent transcription via CREB. Our results demonstrate for the first time that universally available environmental light plays a critical role in LTM maintenance by activating the evolutionarily conserved memory modulator CREB in MBs via the Pdf signaling pathway.SIGNIFICANCE STATEMENT Temporary memory can be consolidated into long-term memory (LTM) through de novo protein synthesis and functional modifications of neuronal circuits in the brain. Once established, LTM requires continual maintenance so that it is kept for an extended period against molecular turnover and cellular reorganization that may disrupt memory traces. How is LTM maintained mechanistically? Despite the critical importance of LTM maintenance, its molecular and cellular underpinnings remain elusive. This study using Drosophila is significant because it revealed for the first time in any organism that universally available environmental light plays an essential role in LTM maintenance. Interestingly, light does so by activating the evolutionarily conserved transcription factor cAMP response element-binding protein via peptidergic signaling.


Subject(s)
Drosophila melanogaster/radiation effects , Light , Memory Consolidation/radiation effects , Memory, Long-Term/radiation effects , Animals , Circadian Rhythm , Conditioning, Classical , Courtship , Cyclic AMP Response Element-Binding Protein/physiology , Darkness , Drosophila Proteins/biosynthesis , Drosophila Proteins/genetics , Drosophila Proteins/physiology , Drosophila melanogaster/physiology , Gene Expression Regulation/radiation effects , Genes, Reporter , Male , Memory Consolidation/physiology , Mushroom Bodies/cytology , Mushroom Bodies/physiology , Mushroom Bodies/radiation effects , Neurons/physiology , Neurons/radiation effects , Neuropeptides/biosynthesis , Neuropeptides/genetics , Neuropeptides/physiology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Receptors, G-Protein-Coupled/physiology , Sleep Deprivation , Transcription, Genetic/physiology
3.
Elife ; 3: e04580, 2014 Dec 23.
Article in English | MEDLINE | ID: mdl-25535794

ABSTRACT

Animals discriminate stimuli, learn their predictive value and use this knowledge to modify their behavior. In Drosophila, the mushroom body (MB) plays a key role in these processes. Sensory stimuli are sparsely represented by ∼2000 Kenyon cells, which converge onto 34 output neurons (MBONs) of 21 types. We studied the role of MBONs in several associative learning tasks and in sleep regulation, revealing the extent to which information flow is segregated into distinct channels and suggesting possible roles for the multi-layered MBON network. We also show that optogenetic activation of MBONs can, depending on cell type, induce repulsion or attraction in flies. The behavioral effects of MBON perturbation are combinatorial, suggesting that the MBON ensemble collectively represents valence. We propose that local, stimulus-specific dopaminergic modulation selectively alters the balance within the MBON network for those stimuli. Our results suggest that valence encoded by the MBON ensemble biases memory-based action selection.


Subject(s)
Choice Behavior , Drosophila melanogaster/cytology , Drosophila melanogaster/physiology , Memory , Mushroom Bodies/cytology , Mushroom Bodies/innervation , Neurons/physiology , Animals , Appetitive Behavior/radiation effects , Association Learning/radiation effects , Avoidance Learning/radiation effects , Behavior, Animal/radiation effects , Choice Behavior/radiation effects , Light , Memory/radiation effects , Models, Neurological , Mushroom Bodies/radiation effects , Neurons/radiation effects , Odorants , Sleep/radiation effects , Time Factors , Vision, Ocular
4.
Dev Neurobiol ; 74(11): 1141-53, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24890265

ABSTRACT

Honeybees show a remarkable behavioral plasticity at the transition from nursing inside the hive to foraging for nectar and/or pollen outside. This plasticity is important for age-related division of labor in honeybee colonies. The behavioral transition is associated with significant volume and synaptic changes in the mushroom bodies (MBs), brain centers for sensory integration, learning, and memory. We tested whether precocious sensory exposure to light leads to changes in the density of synaptic complexes [microglomeruli (MG)] in the MBs. The results show that exposure to light pulses over 3 days induces a significant decrease in the MG density in visual subregions (collar) of the MB. Earlier studies had shown that foragers have increased levels of juvenile hormone (JH) co-occurring with a decrease of vitellogenin (Vg). Previous work further established that RNAi-mediated knockdown of vg and ultraspiracle (usp) induced an upregulation of JH levels, which can lead to precocious foraging. By disturbing both Vg and JH pathways using gene knockdown of vg and usp, we tested whether the changes in the hormonal system directly affect MG densities. Our study shows that MG numbers remained unchanged when Vg and JH pathways were perturbed, suggesting no direct hormonal influences on MG densities. However, mass spectrometry detection of JH revealed that precocious light exposure triggered an increase in JH levels in the hemolymph (HL) of young bees. This suggests a dual effect following light exposure via direct effects on MG reorganization in the MB calyx and a possible positive feedback on HL JH levels.


Subject(s)
Gene Expression Regulation, Developmental/radiation effects , Juvenile Hormones/metabolism , Light , Mushroom Bodies/anatomy & histology , Mushroom Bodies/radiation effects , Nerve Net/radiation effects , Actins/metabolism , Age Factors , Analysis of Variance , Animals , Bees , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Fasting/physiology , Gene Expression Regulation, Developmental/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mass Spectrometry , Phalloidine/metabolism , RNA Interference/physiology , Transduction, Genetic , Vitellogenins/genetics , Vitellogenins/metabolism
5.
PLoS One ; 5(5): e10652, 2010 May 14.
Article in English | MEDLINE | ID: mdl-20498842

ABSTRACT

BACKGROUND: In vertebrates, Ran-Binding Protein in the Microtubule Organizing Center (RanBPM) appears to function as a scaffolding protein in a variety of signal transduction pathways. In Drosophila, RanBPM is implicated in the regulation of germ line stem cell (GSC) niche organization in the ovary. Here, we addressed the role of RanBPM in nervous system function in the context of Drosophila larval behavior. METHODOLOGY/PRINCIPAL FINDINGS: We report that in Drosophila, RanBPM is required for larval feeding, light-induced changes in locomotion, and viability. RanBPM is highly expressed in the Kenyon cells of the larval mushroom body (MB), a structure well studied for its role in associative learning in Drosophila and other insects. RanBPM mutants do not display major disruption in nervous system morphology besides reduced proliferation. Expression of the RanBPM gene in the Kenyon cells is sufficient to rescue all behavioral phenotypes. Through genetic epistasis experiments, we demonstrate that RanBPM participates with the Drosophila orthologue of the Fragile X Mental Retardation Protein (FMRP) in the development of neuromuscular junction (NMJ). CONCLUSIONS/SIGNIFICANCE: We demonstrate that the RanBPM gene functions in the MB neurons for larval behavior. Our results suggest a role for this gene in an FMRP-dependent process. Taken together our findings point to a novel role for the MB in larval behavior.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Behavior, Animal/physiology , Cytoskeletal Proteins/genetics , Drosophila melanogaster/genetics , Mushroom Bodies/metabolism , Nuclear Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Behavior, Animal/radiation effects , Cell Differentiation/radiation effects , Cell Proliferation/radiation effects , Cytoskeletal Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/radiation effects , Feeding Behavior/radiation effects , Fragile X Mental Retardation Protein/metabolism , Larva/radiation effects , Light , Locomotion/radiation effects , Mushroom Bodies/cytology , Mushroom Bodies/radiation effects , Mutation/genetics , Neuromuscular Junction/cytology , Neuromuscular Junction/metabolism , Neuromuscular Junction/radiation effects , Neurons/cytology , Neurons/metabolism , Neurons/radiation effects , Nuclear Proteins/metabolism , Phenotype , Protein Isoforms/metabolism
6.
J Neurosci ; 23(28): 9289-96, 2003 Oct 15.
Article in English | MEDLINE | ID: mdl-14561855

ABSTRACT

Although adult neurogenesis has now been demonstrated in many different species, the functional role of newborn neurons still remains unclear. In the house cricket, a cluster of neuroblasts, located in the main associative center of the insect brain, keeps producing new interneurons throughout the animal's life. Here we address the functional significance of adult neurogenesis by specific suppression of neuroblast proliferation using gamma irradiation of the insect's head and by examining the impact on the insect's learning ability. Forty gray irradiation performed on the first day of adult life massively suppressed neuroblasts and their progeny without inducing any noticeable side effect. We developed a new operant conditioning paradigm especially designed for crickets: the "escape paradigm." Using olfactory cues, visual cues, or both, crickets had to choose between two holes, one allowing them to escape and the other leading to a trap. Crickets lacking adult neurogenesis exhibited delayed learning when olfactory cues alone were used. Furthermore, retention 24 hr after conditioning was strongly impaired in irradiated crickets. By contrast, when visual cues instead of olfactory ones were provided, performance of irradiated insects was only slightly affected; when both olfactory and visual cues were present, their performance was not different from that of controls. From these results, it can be postulated that newborn neurons participate in the processing of olfactory information required for complex operant conditioning.


Subject(s)
Gryllidae/physiology , Learning/physiology , Memory/physiology , Neurons/physiology , Smell/physiology , Animals , Behavior, Animal/physiology , Behavior, Animal/radiation effects , Conditioning, Operant/physiology , Cues , Dose-Response Relationship, Radiation , Gamma Rays , Ganglia, Invertebrate/cytology , Ganglia, Invertebrate/physiology , Ganglia, Invertebrate/radiation effects , Learning/radiation effects , Memory/radiation effects , Motor Activity/radiation effects , Mushroom Bodies/cytology , Mushroom Bodies/radiation effects , Neurons/radiation effects , Photic Stimulation , Retention, Psychology/radiation effects , Smell/radiation effects , Stimulation, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL
...