Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59.844
Filter
1.
Nat Commun ; 15(1): 3755, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704385

ABSTRACT

Heparin is an important anticoagulant drug, and microbial heparin biosynthesis is a potential alternative to animal-derived heparin production. However, effectively using heparin synthesis enzymes faces challenges, especially with microbial recombinant expression of active heparan sulfate N-deacetylase/N-sulfotransferase. Here, we introduce the monosaccharide N-trifluoroacetylglucosamine into Escherichia coli K5 to facilitate sulfation modification. The Protein Repair One-Stop Service-Focused Rational Iterative Site-specific Mutagenesis (PROSS-FRISM) platform is used to enhance sulfotransferase efficiency, resulting in the engineered NST-M8 enzyme with significantly improved stability (11.32-fold) and activity (2.53-fold) compared to the wild-type N-sulfotransferase. This approach can be applied to engineering various sulfotransferases. The multienzyme cascade reaction enables the production of active heparin from bioengineered heparosan, demonstrating anti-FXa (246.09 IU/mg) and anti-FIIa (48.62 IU/mg) activities. This study offers insights into overcoming challenges in heparin synthesis and modification, paving the way for the future development of animal-free heparins using a cellular system-based semisynthetic strategy.


Subject(s)
Anticoagulants , Escherichia coli , Heparin , Sulfotransferases , Sulfotransferases/metabolism , Sulfotransferases/genetics , Heparin/metabolism , Heparin/biosynthesis , Anticoagulants/metabolism , Anticoagulants/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Metabolic Engineering/methods , Humans , Polysaccharides/metabolism , Polysaccharides/biosynthesis , Polysaccharides/chemistry , Mutagenesis, Site-Directed , Protein Engineering/methods , Disaccharides/metabolism , Disaccharides/biosynthesis , Disaccharides/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/genetics
2.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1559-1570, 2024 May 25.
Article in Chinese | MEDLINE | ID: mdl-38783816

ABSTRACT

To develop an accurate and efficient protocol for multi-fragment assembly and multi-site mutagenesis, we integrated and optimized the common multi-fragment assembly methods and validated the established method by using fructose-1,6-diphosphatase 1 (FBP1) with 4 mutant sites. The fragments containing mutations were assembled by introducing mutant sites and Bsa I recognition sequences. After digestion/ligation, the ligated fragment was amplified with the primers containing overlap region to the linearized vector. The amplified fragment was ligated to the linearized vector and the ligation product was transformed into Escherichia coli. After screening and sequencing, the recombinant plasmid with 4 mutant sites was obtained. This protocol overcame the major defects of Gibson assembly and Golden Gate assembly, serving as an efficient solution for multi-fragment assembly and multi-site mutagenesis.


Subject(s)
Escherichia coli , Fructose-Bisphosphatase , Homologous Recombination , Escherichia coli/genetics , Escherichia coli/metabolism , Fructose-Bisphosphatase/genetics , Fructose-Bisphosphatase/metabolism , Plasmids/genetics , Genetic Vectors/metabolism , DNA/genetics , Mutation , Mutagenesis, Site-Directed , Cloning, Molecular
3.
Biol Res ; 57(1): 31, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783330

ABSTRACT

BACKGROUND: Members of the ß-subfamily of connexins contain an intracellular pocket surrounded by amino acid residues from the four transmembrane helices. The presence of this pocket has not previously been investigated in members of the α-, γ-, δ-, and ε-subfamilies. We studied connexin50 (Cx50) as a representative of the α-subfamily, because its structure has been determined and mutations of Cx50 are among the most common genetic causes of congenital cataracts. METHODS: To investigate the presence and function of the intracellular pocket in Cx50 we used molecular dynamics simulation, site-directed mutagenesis, gap junction tracer intercellular transfer, and hemichannel activity detected by electrophysiology and by permeation of charged molecules. RESULTS: Employing molecular dynamics, we determined the presence of the intracellular pocket in Cx50 hemichannels and identified the amino acids participating in its formation. We utilized site-directed mutagenesis to alter a salt-bridge interaction that supports the intracellular pocket and occurs between two residues highly conserved in the connexin family, R33 and E162. Substitution of opposite charges at either position decreased formation of gap junctional plaques and cell-cell communication and modestly reduced hemichannel currents. Simultaneous charge reversal at these positions produced plaque-forming non-functional gap junction channels with highly active hemichannels. CONCLUSIONS: These results show that interactions within the intracellular pocket influence both gap junction channel and hemichannel functions. Disruption of these interactions may be responsible for diseases associated with mutations at these positions.


Subject(s)
Connexins , Gap Junctions , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Connexins/metabolism , Connexins/genetics , Connexins/chemistry , Gap Junctions/metabolism , Gap Junctions/physiology , Humans , Animals , Mutation , Cell Communication/physiology
4.
Appl Microbiol Biotechnol ; 108(1): 338, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771321

ABSTRACT

Fucosyl-oligosaccharides (FUS) provide many health benefits to breastfed infants, but they are almost completely absent from bovine milk, which is the basis of infant formula. Therefore, there is a growing interest in the development of enzymatic transfucosylation strategies for the production of FUS. In this work, the α-L-fucosidases Fuc2358 and Fuc5372, previously isolated from the intestinal bacterial metagenome of breastfed infants, were used to synthesize fucosyllactose (FL) by transfucosylation reactions using p-nitrophenyl-α-L-fucopyranoside (pNP-Fuc) as donor and lactose as acceptor. Fuc2358 efficiently synthesized the major fucosylated human milk oligosaccharide (HMO) 2'-fucosyllactose (2'FL) with a 35% yield. Fuc2358 also produced the non-HMO FL isomer 3'-fucosyllactose (3'FL) and traces of non-reducing 1-fucosyllactose (1FL). Fuc5372 showed a lower transfucosylation activity compared to Fuc2358, producing several FL isomers, including 2'FL, 3'FL, and 1FL, with a higher proportion of 3'FL. Site-directed mutagenesis using rational design was performed to increase FUS yields in both α-L-fucosidases, based on structural models and sequence identity analysis. Mutants Fuc2358-F184H, Fuc2358-K286R, and Fuc5372-R230K showed a significantly higher ratio between 2'FL yields and hydrolyzed pNP-Fuc than their respective wild-type enzymes after 4 h of transfucosylation. The results with the Fuc2358-F184W and Fuc5372-W151F mutants showed that the residues F184 of Fuc2358 and W151 of Fuc5372 could have an effect on transfucosylation regioselectivity. Interestingly, phenylalanine increases the selectivity for α-1,2 linkages and tryptophan for α-1,3 linkages. These results give insight into the functionality of the active site amino acids in the transfucosylation activity of the GH29 α-L-fucosidases Fuc2358 and Fuc5372. KEY POINTS: Two α-L-fucosidases from infant gut bacterial microbiomes can fucosylate glycans Transfucosylation efficacy improved by tailored point-mutations in the active site F184 of Fuc2358 and W151 of Fuc5372 seem to steer transglycosylation regioselectivity.


Subject(s)
Gastrointestinal Microbiome , Metagenome , Milk, Human , Trisaccharides , alpha-L-Fucosidase , alpha-L-Fucosidase/genetics , alpha-L-Fucosidase/metabolism , Humans , Trisaccharides/metabolism , Milk, Human/chemistry , Lactose/metabolism , Oligosaccharides/metabolism , Mutagenesis, Site-Directed , Infant , Fucose/metabolism
5.
Nat Commun ; 15(1): 3711, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697966

ABSTRACT

The LAT1-4F2hc complex (SLC7A5-SLC3A2) facilitates uptake of essential amino acids, hormones and drugs. Its dysfunction is associated with many cancers and immune/neurological disorders. Here, we apply native mass spectrometry (MS)-based approaches to provide evidence of super-dimer formation (LAT1-4F2hc)2. When combined with lipidomics, and site-directed mutagenesis, we discover four endogenous phosphatidylethanolamine (PE) molecules at the interface and C-terminus of both LAT1 subunits. We find that interfacial PE binding is regulated by 4F2hc-R183 and is critical for regulation of palmitoylation on neighbouring LAT1-C187. Combining native MS with mass photometry (MP), we reveal that super-dimerization is sensitive to pH, and modulated by complex N-glycans on the 4F2hc subunit. We further validate the dynamic assemblies of LAT1-4F2hc on plasma membrane and in the lysosome. Together our results link PTM and lipid binding with regulation and localisation of the LAT1-4F2hc super-dimer.


Subject(s)
Adaptor Proteins, Signal Transducing , Fusion Regulatory Protein 1, Heavy Chain , Large Neutral Amino Acid-Transporter 1 , Lipoylation , Membrane Proteins , Phosphatidylethanolamines , Humans , Large Neutral Amino Acid-Transporter 1/metabolism , Large Neutral Amino Acid-Transporter 1/genetics , Phosphatidylethanolamines/metabolism , Lysosomes/metabolism , Cell Membrane/metabolism , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , HEK293 Cells , Protein Multimerization , Protein Binding , Mass Spectrometry , Mutagenesis, Site-Directed , Hydrogen-Ion Concentration
6.
J Agric Food Chem ; 72(20): 11773-11781, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38722333

ABSTRACT

Ulvan is a complex sulfated polysaccharide extracted from Ulva, and ulvan lyases can degrade ulvan through a ß-elimination mechanism to obtain oligosaccharides. In this study, a new ulvan lyase, EPL15085, which belongs to the polysaccharide lyase (PL) 28 family from Tamlana fucoidanivorans CW2-9, was characterized in detail. The optimal pH and salinity are 9.0 and 0.4 M NaCl, respectively. The Km and Vmax of recombinant EPL15085 toward ulvan are 0.80 mg·mL-1 and 11.22 µmol·min -1 mg-1·mL-1, respectively. Unexpectedly, it is very resistant to high temperatures. After treatment at 100 °C, EPL15085 maintained its ability to degrade ulvan. Molecular dynamics simulation analysis and site-directed mutagenesis analysis indicated that the strong rigidity of the disulfide bond between Cys74-Cys102 in the N-terminus is related to its thermostability. In addition, oligosaccharides with disaccharides and tetrasaccharides were the end products of EPL15085. Based on molecular docking and site-directed mutagenesis analysis, Tyr177 and Leu134 are considered to be the crucial residues for enzyme activity. In conclusion, our study identified a new PL28 family of ulvan lyases, EPL15085, with excellent heat resistance that can expand the database of ulvan lyases and provide the possibility to make full use of ulvan.


Subject(s)
Enzyme Stability , Polysaccharide-Lyases , Polysaccharides , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/chemistry , Polysaccharide-Lyases/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , Kinetics , Hot Temperature , Hydrogen-Ion Concentration , Mutagenesis, Site-Directed , Substrate Specificity , Molecular Docking Simulation , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Ulva/chemistry , Ulva/enzymology , Ulva/genetics , Molecular Dynamics Simulation
7.
Int J Biol Macromol ; 268(Pt 2): 131836, 2024 May.
Article in English | MEDLINE | ID: mdl-38692553

ABSTRACT

Multiple species of Bifidobacterium exhibit the ability to bioconvert conjugated fatty acids (CFAs), which is considered an important pathway for these strains to promote host health. However, there has been limited progress in understanding the enzymatic mechanism of CFA bioconversion by bifidobacteria, despite the increasing number of studies identifying CFA-producing strains. The protein responsible for polyunsaturated fatty acid (PUFA) isomerization in B. breve CCFM683 has recently been discovered and named BBI, providing a starting point for exploring Bifidobacterium isomerases (BIs). This study presents the sequence classification of membrane-bound isomerases from four common Bifidobacterium species that produce CFA. Heterologous expression, purification, and enzymatic studies of the typical sequences revealed that all possess a single c9, t11 isomer as the product and share common features in terms of enzymatic properties and catalytic kinetics. Using molecular docking and alanine scanning, Lys84, Tyr198, Asn202, and Leu245 located in the binding pocket were identified as critical to the catalytic activity, a finding further confirmed by site-directed mutagenesis-based screening assays. Overall, these findings provide insightful knowledge concerning the molecular mechanisms of BIs. This will open up additional opportunities for the use of bifidobacteria and CFAs in probiotic foods and precision nutrition.


Subject(s)
Bifidobacterium , Fatty Acids, Unsaturated , Bifidobacterium/enzymology , Bifidobacterium/genetics , Bifidobacterium/metabolism , Fatty Acids, Unsaturated/metabolism , Fatty Acids, Unsaturated/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Molecular Docking Simulation , Isomerism , Kinetics , Amino Acid Sequence , Mutagenesis, Site-Directed , Probiotics/metabolism
8.
J Phys Chem Lett ; 15(19): 5202-5207, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38717357

ABSTRACT

Far-red cyanobacteriochromes (CBCRs) are bilin-based photosensory proteins that promise to be novel optical agents in optogenetics and deep tissue imaging. Recent structural studies of a far-red CBCR 2551g3 have revealed a unique all-Z,syn chromophore conformation in the far-red-absorbing Pfr state. Understanding the photoswitching mechanism through bilin photoisomerization is important for developing novel biomedical applications. Here, we employ femtosecond spectroscopy and site-directed mutagenesis to systematically characterize the dynamics of wild-type 2551g3 and four critical mutants in the 15Z Pfr state. We captured local relaxations in several picoseconds and isomerization dynamics in hundreds of picoseconds. Most mutants exhibited faster local relaxation, while their twisting dynamics and photoproducts depend on specific protein-chromophore interactions around the D-ring and C-ring. These results collectively reveal a unique dynamic pattern of excited-state evolution arising from a relatively rigid protein environment, thereby elucidating the molecular mechanism of Pfr-state photoisomerization in far-red CBCRs.


Subject(s)
Bacterial Proteins , Isomerism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cyanobacteria/metabolism , Cyanobacteria/chemistry , Mutagenesis, Site-Directed , Photoreceptors, Microbial/chemistry , Photoreceptors, Microbial/metabolism , Bile Pigments/chemistry , Bile Pigments/metabolism
9.
Appl Microbiol Biotechnol ; 108(1): 323, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713233

ABSTRACT

Ergot alkaloids (EAs) are a diverse group of indole alkaloids known for their complex structures, significant pharmacological effects, and toxicity to plants. The biosynthesis of these compounds begins with chanoclavine-I aldehyde (CC aldehyde, 2), an important intermediate produced by the enzyme EasDaf or its counterpart FgaDH from chanoclavine-I (CC, 1). However, how CC aldehyde 2 is converted to chanoclavine-I acid (CC acid, 3), first isolated from Ipomoea violacea several decades ago, is still unclear. In this study, we provide in vitro biochemical evidence showing that EasDaf not only converts CC 1 to CC aldehyde 2 but also directly transforms CC 1 into CC acid 3 through two sequential oxidations. Molecular docking and site-directed mutagenesis experiments confirmed the crucial role of two amino acids, Y166 and S153, within the active site, which suggests that Y166 acts as a general base for hydride transfer, while S153 facilitates proton transfer, thereby increasing the acidity of the reaction. KEY POINTS: • EAs possess complicated skeletons and are widely used in several clinical diseases • EasDaf belongs to the short-chain dehydrogenases/reductases (SDRs) and converted CC or CC aldehyde to CC acid • The catalytic mechanism of EasDaf for dehydrogenation was analyzed by molecular docking and site mutations.


Subject(s)
Aldehydes , Ergot Alkaloids , Aldehydes/metabolism , Aldehydes/chemistry , Catalytic Domain , Ergot Alkaloids/biosynthesis , Ergot Alkaloids/chemistry , Ergot Alkaloids/metabolism , Molecular Docking Simulation , Mutagenesis, Site-Directed , Oxidation-Reduction , Oxidoreductases/metabolism , Oxidoreductases/genetics , Oxidoreductases/chemistry
10.
J Biotechnol ; 389: 86-93, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38718874

ABSTRACT

l-Carnosine (l-Car), an endogenous dipeptide presents in muscle and brain tissues of various vertebrates, has a wide range of application values. The enzymatic preparation of l-Car is a promising synthetic method because it avoids the protection and deprotection steps. In the present study, a dipeptidase gene (CpPepD) from Clostridium perfringens with high l-Car synthetic activity was cloned and characterized. In an effort to improve the performance of this enzyme, we carried out site saturation mutagenesis using CpPepD as the template. By the o-phthalaldehyde (OPA)-derived high throughput screening method, mutant A171S was obtained with 2.2-fold enhanced synthetic activity. The enzymatic properties of CpPepD and mutant A171S were investigated. Under the optimized conditions, 63.94 mM (14.46 g L-1) or 67.02 mM (15.16 g L-1) l-Car was produced at the substrate concentrations of 6 M ß-Ala and 0.2 M l-His using wild-type or mutant A171S enzyme, respectively. Although the mutation enhanced the enzyme activity, the reaction equilibrium was barely affected.


Subject(s)
Carnosine , Clostridium perfringens , Dipeptidases , Clostridium perfringens/enzymology , Clostridium perfringens/genetics , Carnosine/metabolism , Carnosine/chemistry , Carnosine/analogs & derivatives , Dipeptidases/genetics , Dipeptidases/metabolism , Dipeptidases/chemistry , Protein Engineering/methods , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Mutagenesis, Site-Directed
11.
Arch Biochem Biophys ; 756: 110023, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705227

ABSTRACT

Myeloperoxidase is a critical component of the antibacterial arsenal of neutrophils, whereby it consumes H2O2 as an oxidant to convert halogen and pseudohalogen anions into cytotoxic hypohalous acids. Following phagocytosis by neutrophils, the human pathogen Staphylococcus aureus secretes a potent myeloperoxidase inhibitory protein, called SPIN, as part of its immune evasion repertoire. The matured S. aureus SPIN polypeptide consists of only 73 residues yet contains two functional domains: whereas the 60 residue C-terminal helical bundle domain is responsible for MPO binding, the 13 residue N-terminal domain is required to inhibit MPO. Previous studies have informed understanding of the SPIN N-terminal domain, but comparatively little is known about the helical domain insofar as the contribution of individual residues is concerned. To address this limitation, we carried out a residue-level structure/function investigation on the helical bundle domain of S. aureus SPIN. Using sequence conservation and existing structures of SPIN bound to human MPO as a guide, we selected residues L49, E50, H51, E52, Y55, and Y75 for interrogation by site-directed mutagenesis. We found that loss of L49 or E52 reduced SPIN activity by roughly an order of magnitude, but that loss of Y55 or H51 caused progressively greater loss of inhibitory potency. Direct binding studies by SPR showed that loss of inhibitory potency in these SPIN mutants resulted from a diminished initial interaction between the inhibitor and MPO. Together, our studies provide new insights into the structure/function relationships of SPIN and identify positions Y55 and H51 as critical determinants of SPIN function.


Subject(s)
Peroxidase , Staphylococcus aureus , Staphylococcus aureus/enzymology , Humans , Peroxidase/chemistry , Peroxidase/metabolism , Peroxidase/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Protein Domains , Amino Acid Sequence , Mutagenesis, Site-Directed , Models, Molecular , Protein Conformation, alpha-Helical
12.
Virology ; 595: 110091, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38718446

ABSTRACT

Preliminary investigations have demonstrated that the cysteines located at the C-terminus of HEV ORF2 protein exhibits disulfide bonding capability during virus-like particles (VLPs) assembly. However, the effect and mechanism underlying the pairing of disulfide bonds formed by C627, C630, and C638 remains unclear. The p222 protein encompasses C-terminus and serves as a representative of HEV ORF2 to investigate the specific impacts of C627, C630, and C638. The three cysteines were subjected to site-directed mutagenesis and expressed in prokaryotes; Both the mutated proteins and p222 underwent polymerization except for p222A; Surprisingly, only p222 was observed as abundant spherical particles under transmission electron microscope (TEM); Stability and immunogenicity of the p222 exhibited higher than other mutated proteins; LC/MS/MS analysis identified four disulfide bonds in the p222. The novel findings suggest that the three cysteines contribute to structural and functional properties of ORF2 protein, highlighting the indispensability of each cysteine.


Subject(s)
Cysteine , Hepatitis E virus , Viral Proteins , Cysteine/chemistry , Cysteine/metabolism , Hepatitis E virus/genetics , Hepatitis E virus/chemistry , Viral Proteins/genetics , Viral Proteins/chemistry , Viral Proteins/metabolism , Mutagenesis, Site-Directed , Disulfides/chemistry , Disulfides/metabolism , Animals , Humans
13.
Nat Commun ; 15(1): 4588, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816433

ABSTRACT

Lycibarbarspermidines are unusual phenolamide glycosides characterized by a dicaffeoylspermidine core with multiple glycosyl substitutions, and serve as a major class of bioactive ingredients in the wolfberry. So far, little is known about the enzymatic basis of the glycosylation of phenolamides including dicaffeoylspermidine. Here, we identify five lycibarbarspermidine glycosyltransferases, LbUGT1-5, which are the first phenolamide-type glycosyltransferases and catalyze regioselective glycosylation of dicaffeoylspermidines to form structurally diverse lycibarbarspermidines in wolfberry. Notably, LbUGT3 acts as a distinctive enzyme that catalyzes a tandem sugar transfer to the ortho-dihydroxy group on the caffeoyl moiety to form the unusual ortho-diglucosylated product, while LbUGT1 accurately discriminates caffeoyl and dihydrocaffeoyl groups to catalyze a site-selective sugar transfer. Crystal structure analysis of the complexes of LbUGT1 and LbUGT3 with UDP, combined with molecular dynamics simulations, revealed the structural basis of the difference in glycosylation selectivity between LbUGT1 and LbUGT3. Site-directed mutagenesis illuminates a conserved tyrosine residue (Y389 in LbUGT1 and Y390 in LbUGT3) in PSPG box that plays a crucial role in regulating the regioselectivity of LbUGT1 and LbUGT3. Our study thus sheds light on the enzymatic underpinnings of the chemical diversity of lycibarbarspermidines in wolfberry, and expands the repertoire of glycosyltransferases in nature.


Subject(s)
Glycosyltransferases , Lycium , Glycosyltransferases/metabolism , Glycosyltransferases/chemistry , Glycosyltransferases/genetics , Glycosylation , Lycium/enzymology , Lycium/metabolism , Lycium/chemistry , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/chemistry , Glycosides/metabolism , Glycosides/chemistry , Crystallography, X-Ray , Piperidines/metabolism , Piperidines/chemistry , Substrate Specificity
14.
Sci Rep ; 14(1): 12184, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806597

ABSTRACT

Catalytic antibodies possess a dual function that enables both antigen recognition and degradation. However, their time-consuming preparation is a significant drawback. This study developed a new method for quickly converting mice monoclonal antibodies into catalytic antibodies using site-directed mutagenesis. Three mice type monoclonal antibodies targeting hemagglutinin molecule of influenza A virus could be transformed into the catalytic antibodies by deleting Pro95 in CDR-3 of the light chain. No catalytic activity was observed for monoclonal antibodies and light chains. In contrast, the Pro95-deleted light chains exhibited a catalytic activity to cleave the antigenic peptide including the portion of conserved region of hemagglutinin molecule. The affinity of the Pro95-deleted light chains to the antigen increased approximately 100-fold compared to the wild-type light chains. In the mutants, three residues (Asp1, Ser92, and His93) come closer to the appropriate position to create the catalytic site and contributing to the enhancement of both catalytic function and immunoreactivity. Notably, the Pro95-deleted catalytic light chains could suppress influenza virus infection in vitro assay, whereas the parent antibody and the light chain did not. This strategy offers a rapid and efficient way to create catalytic antibodies from existing antibodies, accelerating the development for various applications in diagnostic and therapeutic applications.


Subject(s)
Antibodies, Catalytic , Antibodies, Monoclonal , Animals , Mice , Antibodies, Monoclonal/immunology , Antibodies, Catalytic/metabolism , Antibodies, Catalytic/immunology , Antibodies, Catalytic/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Mutagenesis, Site-Directed , Influenza A virus/immunology , Catalytic Domain , Humans , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology , Immunoglobulin Light Chains/metabolism , Antibodies, Viral/immunology , Mice, Inbred BALB C
15.
Molecules ; 29(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38731521

ABSTRACT

Lactate dehydrogenase A (LDHA) primarily catalyzes the conversion between lactic acid and pyruvate, serving as a key enzyme in the aerobic glycolysis pathway of sugar in tumor cells. LDHA plays a crucial role in the occurrence, development, progression, invasion, metastasis, angiogenesis, and immune escape of tumors. Consequently, LDHA not only serves as a biomarker for tumor diagnosis and prognosis but also represents an ideal target for tumor therapy. Although LDHA inhibitors show great therapeutic potential, their development has proven to be challenging. In the development of LDHA inhibitors, the key active sites of LDHA are emphasized. Nevertheless, there is a relative lack of research on the amino acid residues around the active center of LDHA. Therefore, in this study, we investigated the amino acid residues around the active center of LDHA. Through structure comparison analysis, five key amino acid residues (Ala30, Met41, Lys131, Gln233, and Ala259) were identified. Subsequently, the effects of these five residues on the enzymatic properties of LDHA were investigated using site-directed mutagenesis. The results revealed that the catalytic activities of the five mutants varied to different degrees in both the reaction from lactic acid to pyruvate and pyruvate to lactic acid. Notably, the catalytic activities of LDHAM41G and LDHAK131I were improved, particularly in the case of LDHAK131I. The results of the molecular dynamics analysis of LDHAK131I explained the reasons for this phenomenon. Additionally, the optimum temperature of LDHAM41G and LDHAQ233M increased from 35 °C to 40 °C, whereas in the reverse reaction, the optimum temperature of LDHAM41G and LDHAK131I decreased from 70 °C to 60 °C. These findings indicate that Ala30, Met41, Lys131, Gln233, and Ala259 exert diverse effects on the catalytic activity and optimum temperature of LHDA. Therefore, these amino acid residues, in addition to the key catalytic site of the active center, play a crucial role. Considering these residues in the design and screening of LDHA inhibitors may lead to the development of more effective inhibitors.


Subject(s)
Catalytic Domain , Enzyme Inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Amino Acids/chemistry , Amino Acids/metabolism , L-Lactate Dehydrogenase/antagonists & inhibitors , L-Lactate Dehydrogenase/metabolism , L-Lactate Dehydrogenase/chemistry , Lactate Dehydrogenase 5/metabolism , Lactate Dehydrogenase 5/antagonists & inhibitors , Lactate Dehydrogenase 5/chemistry , Pyruvic Acid/metabolism , Pyruvic Acid/chemistry , Mutagenesis, Site-Directed , Molecular Dynamics Simulation
16.
Int J Biol Macromol ; 269(Pt 1): 132083, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705327

ABSTRACT

Arginine deiminase (ADI) has garnered significant interest because of its ability to objectively eradicate cancer cells and produce L-citrulline. To meet the production demands, this study focused on enhancing the enzyme activity and thermal stability of ADI. In this study, 24 ADI mutants were obtained through computer aid site-specific mutation in the ADI of Enterobacter faecalis. Notably, the specific enzyme activities of F44W, N163P, E220I, E220L, N318E, A336G, T340I, and N382F increased, reaching 1.33-2.53 times that of the original enzyme. This study confirmed that site-specific mutations are critical for optimizing enzyme function. Additionally, the F44W, N163P, E220I, T340I, and A336G mutants demonstrated good thermal stability. The optimal pH for mutant F44W increased to 8, whereas mutants E220I, I244V, A336G, T340I, and N328F maintained an optimal pH of 7.5. Conversely, the M109L, N163P, E220L, I244L, and N318E mutants shad an optimal pH of 7. This study revealed that mutant enzymes with increased activity were more likely to contain mutation sites situated near the four loops associated with catalytic residues, whereas mutations at the dimer junction sites had a higher tendency to enhance enzyme stability. These findings contribute to the development of ADI industrial applications and its modifications.


Subject(s)
Enzyme Stability , Hydrolases , Hydrolases/chemistry , Hydrolases/genetics , Hydrolases/metabolism , Hydrogen-Ion Concentration , Mutation , Kinetics , Protein Engineering/methods , Biocatalysis , Mutagenesis, Site-Directed , Models, Molecular , Temperature
17.
Biochemistry ; 63(11): 1445-1459, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38779817

ABSTRACT

OxaD is a flavin-dependent monooxygenase (FMO) responsible for catalyzing the oxidation of an indole nitrogen atom, resulting in the formation of a nitrone. Nitrones serve as versatile intermediates in complex syntheses, including challenging reactions like cycloadditions. Traditional organic synthesis methods often yield limited results and involve environmentally harmful chemicals. Therefore, the enzymatic synthesis of nitrone-containing compounds holds promise for more sustainable industrial processes. In this study, we explored the catalytic mechanism of OxaD using a combination of steady-state and rapid-reaction kinetics, site-directed mutagenesis, spectroscopy, and structural modeling. Our investigations showed that OxaD catalyzes two oxidations of the indole nitrogen of roquefortine C, ultimately yielding roquefortine L. The reductive-half reaction analysis indicated that OxaD rapidly undergoes reduction and follows a "cautious" flavin reduction mechanism by requiring substrate binding before reduction can take place. This characteristic places OxaD in class A of the FMO family, a classification supported by a structural model featuring a single Rossmann nucleotide binding domain and a glutathione reductase fold. Furthermore, our spectroscopic analysis unveiled both enzyme-substrate and enzyme-intermediate complexes. Our analysis of the oxidative-half reaction suggests that the flavin dehydration step is the slow step in the catalytic cycle. Finally, through mutagenesis of the conserved D63 residue, we demonstrated its role in flavin motion and product oxygenation. Based on our findings, we propose a catalytic mechanism for OxaD and provide insights into the active site architecture within class A FMOs.


Subject(s)
Mixed Function Oxygenases , Nitrogen Oxides , Oxidation-Reduction , Nitrogen Oxides/metabolism , Nitrogen Oxides/chemistry , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/genetics , Kinetics , Mutagenesis, Site-Directed , Flavins/metabolism , Flavins/chemistry , Models, Molecular , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Oxygenases
18.
Protein Sci ; 33(6): e5036, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38801230

ABSTRACT

Reactive intermediate deaminase A (RidA) is a highly conserved enzyme that catalyzes the hydrolysis of 2-imino acids to the corresponding 2-keto acids and ammonia. RidA thus prevents the accumulation of such potentially harmful compounds in the cell, as exemplified by its role in the degradation of 2-aminoacrylate, formed during the metabolism of cysteine and serine, catalyzing the conversion of its stable 2-iminopyruvate tautomer into pyruvate. Capra hircus (goat) RidA (ChRidA) was the first mammalian RidA to be isolated and described. It has the typical homotrimeric fold of the Rid superfamily, characterized by remarkably high thermal stability, with three active sites located at the interface between adjacent subunits. ChRidA exhibits a broad substrate specificity with a preference for 2-iminopyruvate and other 2-imino acids derived from amino acids with non-polar non-bulky side chains. Here we report a biophysical and biochemical characterization of eight ChRidA variants obtained by site-directed mutagenesis to gain insight into the role of specific residues in protein stability and catalytic activity. Each mutant was produced in Escherichia coli cells, purified and characterized in terms of quaternary structure, thermal stability and substrate specificity. The results are rationalized in the context of the high-resolution structures obtained by x-ray crystallography.


Subject(s)
Enzyme Stability , Mutagenesis, Site-Directed , Animals , Substrate Specificity , Models, Molecular , Catalytic Domain
19.
World J Microbiol Biotechnol ; 40(7): 216, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38802708

ABSTRACT

Poor thermostability reduces the industrial application value of κ-carrageenase. In this study, the PoPMuSiC algorithm combined with site-directed mutagenesis was applied to improve the thermostability of the alkaline κ-carrageenase from Pseudoalteromonas porphyrae. The mutant E154A with improved thermal stability was successfully obtained using this strategy after screening seven rationally designed mutants. Compared with the wild-type κ-carrageenase (WT), E154A improved the activity by 29.4% and the residual activity by 51.6% after treatment at 50 °C for 30 min. The melting temperature (Tm) values determined by circular dichroism were 66.4 °C and 64.6 °C for E154A and WT, respectively. Molecular dynamics simulation analysis of κ-carrageenase showed that the flexibility decreased within the finger regions (including F1, F2, F3, F5 and F6) and the flexibility improved in the catalytic pocket area of the mutant E154A. The catalytic tunnel dynamic simulation analysis revealed that E154A led to enlarged catalytic tunnel volume and increased rigidity of the enzyme-substrate complex. The increasing rigidity within the finger regions and more flexible catalytic pocket of P. porphyrae κ-carrageenase might be a significant factor for improvement of the thermostability of the mutant κ-carrageenase E154A. The proposed rational design strategy could be applied to improve the enzyme kinetic stability of other industrial enzymes. Moreover, the hydrolysates of κ-carrageenan digested by the mutant E154A demonstrated increased scavenging activities against hydroxyl (OH) radicals and 2,2'-azinobis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) radicals compared with the undigested κ-carrageenan.


Subject(s)
Catalytic Domain , Enzyme Stability , Glycoside Hydrolases , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Pseudoalteromonas , Glycoside Hydrolases/genetics , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Pseudoalteromonas/enzymology , Pseudoalteromonas/genetics , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Kinetics , Temperature , Circular Dichroism , Protein Conformation , Carrageenan/metabolism
20.
Nat Commun ; 15(1): 3623, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684703

ABSTRACT

Solanaceous plants produce tropane alkaloids (TAs) via esterification of 3α- and 3ß-tropanol. Although littorine synthase is revealed to be responsible for 3α-tropanol esterification that leads to hyoscyamine biosynthesis, the genes associated with 3ß-tropanol esterification are unknown. Here, we report that a BAHD acyltransferase from Atropa belladonna, 3ß-tigloyloxytropane synthase (TS), catalyzes 3ß-tropanol and tigloyl-CoA to form 3ß-tigloyloxytropane, the key intermediate in calystegine biosynthesis and a potential drug for treating neurodegenerative disease. Unlike other cytosolic-localized BAHD acyltransferases, TS is localized to mitochondria. The catalytic mechanism of TS is revealed through molecular docking and site-directed mutagenesis. Subsequently, 3ß-tigloyloxytropane is synthesized in tobacco. A bacterial CoA ligase (PcICS) is found to synthesize tigloyl-CoA, an acyl donor for 3ß-tigloyloxytropane biosynthesis. By expressing TS mutant and PcICS, engineered Escherichia coli synthesizes 3ß-tigloyloxytropane from tiglic acid and 3ß-tropanol. This study helps to characterize the enzymology and chemodiversity of TAs and provides an approach for producing 3ß-tigloyloxytropane.


Subject(s)
Acyltransferases , Mitochondria , Tropanes , Acyltransferases/metabolism , Acyltransferases/genetics , Mitochondria/metabolism , Mitochondria/enzymology , Tropanes/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Molecular Docking Simulation , Plant Proteins/metabolism , Plant Proteins/genetics , Mutagenesis, Site-Directed
SELECTION OF CITATIONS
SEARCH DETAIL
...