Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.221
Filter
1.
Mol Biol Rep ; 51(1): 683, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796585

ABSTRACT

BACKGROUND: Usher syndrome 1 (USH1) is the most severe subtype of Usher syndrome characterized by severe sensorineural hearing impairment, retinitis pigmentosa, and vestibular areflexia. USH1 is usually induced by variants in MYO7A, a gene that encodes the myosin-VIIa protein. Myosin-VIIA is effectively involved in intracellular molecular traffic essential for the proper function of the cochlea, the retinal photoreceptors, and the retinal pigmented epithelial cells. METHODS AND RESULTS: In this study, we report a new homozygous missense variant (NM_000260.4: c.1657 C > T p.(His553Tyr)) in MYO7A of a 28-year-old female with symptoms consistent with USH1. This variant, c.1657 C > T p.(His553Tyr) is positioned in the highly conserved myosin-VIIA motor domain. Previous studies showed that variants in this domain might disrupt the ability of the protein to bind to actin and thus cause the disorder. CONCLUSIONS: Our findings contribute to our understanding of the phenotypic and mutational spectrum of USH1 associated with autosomal recessive MYO7A variants and emphasize the important role of molecular testing in accurately diagnosing this syndrome. More advanced research is required to understand the functional effect of the identified variant and the genotype-phonotype correlations of MYO7A-related Usher syndrome 1.


Subject(s)
Homozygote , Mutation, Missense , Myosin VIIa , Usher Syndromes , Usher Syndromes/genetics , Myosin VIIa/metabolism , Myosin VIIa/genetics , Humans , Female , Mutation, Missense/genetics , Adult , Myosins/genetics , Pedigree
2.
Am J Hum Genet ; 111(6): 1184-1205, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38744284

ABSTRACT

Anoctamins are a family of Ca2+-activated proteins that may act as ion channels and/or phospholipid scramblases with limited understanding of function and disease association. Here, we identified five de novo and two inherited missense variants in ANO4 (alias TMEM16D) as a cause of fever-sensitive developmental and epileptic or epileptic encephalopathy (DEE/EE) and generalized epilepsy with febrile seizures plus (GEFS+) or temporal lobe epilepsy. In silico modeling of the ANO4 structure predicted that all identified variants lead to destabilization of the ANO4 structure. Four variants are localized close to the Ca2+ binding sites of ANO4, suggesting impaired protein function. Variant mapping to the protein topology suggests a preliminary genotype-phenotype correlation. Moreover, the observation of a heterozygous ANO4 deletion in a healthy individual suggests a dysfunctional protein as disease mechanism rather than haploinsufficiency. To test this hypothesis, we examined mutant ANO4 functional properties in a heterologous expression system by patch-clamp recordings, immunocytochemistry, and surface expression of annexin A5 as a measure of phosphatidylserine scramblase activity. All ANO4 variants showed severe loss of ion channel function and DEE/EE associated variants presented mild loss of surface expression due to impaired plasma membrane trafficking. Increased levels of Ca2+-independent annexin A5 at the cell surface suggested an increased apoptosis rate in DEE-mutant expressing cells, but no changes in Ca2+-dependent scramblase activity were observed. Co-transfection with ANO4 wild-type suggested a dominant-negative effect. In summary, we expand the genetic base for both encephalopathic sporadic and inherited fever-sensitive epilepsies and link germline variants in ANO4 to a hereditary disease.


Subject(s)
Anoctamins , Mutation, Missense , Humans , Anoctamins/genetics , Anoctamins/metabolism , Mutation, Missense/genetics , Male , Female , Epilepsy/genetics , Child , Phospholipid Transfer Proteins/genetics , Phospholipid Transfer Proteins/metabolism , Genetic Association Studies , Pedigree , Calcium/metabolism , Genes, Dominant , Child, Preschool , HEK293 Cells , Adolescent
3.
Am J Hum Genet ; 111(6): 1206-1221, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38772379

ABSTRACT

Utilizing trio whole-exome sequencing and a gene matching approach, we identified a cohort of 18 male individuals from 17 families with hemizygous variants in KCND1, including two de novo missense variants, three maternally inherited protein-truncating variants, and 12 maternally inherited missense variants. Affected subjects present with a neurodevelopmental disorder characterized by diverse neurological abnormalities, mostly delays in different developmental domains, but also distinct neuropsychiatric signs and epilepsy. Heterozygous carrier mothers are clinically unaffected. KCND1 encodes the α-subunit of Kv4.1 voltage-gated potassium channels. All variant-associated amino acid substitutions affect either the cytoplasmic N- or C-terminus of the channel protein except for two occurring in transmembrane segments 1 and 4. Kv4.1 channels were functionally characterized in the absence and presence of auxiliary ß subunits. Variant-specific alterations of biophysical channel properties were diverse and varied in magnitude. Genetic data analysis in combination with our functional assessment shows that Kv4.1 channel dysfunction is involved in the pathogenesis of an X-linked neurodevelopmental disorder frequently associated with a variable neuropsychiatric clinical phenotype.


Subject(s)
Neurodevelopmental Disorders , Humans , Male , Neurodevelopmental Disorders/genetics , Child , Shal Potassium Channels/genetics , Child, Preschool , Pedigree , Female , Mutation, Missense/genetics , Adolescent , Exome Sequencing , Phenotype , Adult , Infant , Genetic Diseases, X-Linked/genetics , Epilepsy/genetics , Heterozygote
4.
JCI Insight ; 9(9)2024 May 08.
Article in English | MEDLINE | ID: mdl-38716726

ABSTRACT

Childhood-onset essential hypertension (COEH) is an uncommon form of hypertension that manifests in childhood or adolescence and, in the United States, disproportionately affects children of African ancestry. The etiology of COEH is unknown, but its childhood onset, low prevalence, high heritability, and skewed ancestral demography suggest the potential to identify rare genetic variation segregating in a Mendelian manner among affected individuals and thereby implicate genes important to disease pathogenesis. However, no COEH genes have been reported to date. Here, we identify recessive segregation of rare and putatively damaging missense variation in the spectrin domain of spectrin repeat containing nuclear envelope protein 1 (SYNE1), a cardiovascular candidate gene, in 3 of 16 families with early-onset COEH without an antecedent family history. By leveraging exome sequence data from an additional 48 COEH families, 1,700 in-house trios, and publicly available data sets, we demonstrate that compound heterozygous SYNE1 variation in these COEH individuals occurred more often than expected by chance and that this class of biallelic rare variation was significantly enriched among individuals of African genetic ancestry. Using in vitro shRNA knockdown of SYNE1, we show that reduced SYNE1 expression resulted in a substantial decrease in the elasticity of smooth muscle vascular cells that could be rescued by pharmacological inhibition of the downstream RhoA/Rho-associated protein kinase pathway. These results provide insights into the molecular genetics and underlying pathophysiology of COEH and suggest a role for precision therapeutics in the future.


Subject(s)
Cytoskeletal Proteins , Essential Hypertension , Exome Sequencing , Nerve Tissue Proteins , Adolescent , Child , Female , Humans , Male , Age of Onset , Cytoskeletal Proteins/genetics , Essential Hypertension/genetics , Exome/genetics , Genetic Predisposition to Disease , Mutation, Missense/genetics , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , Pedigree , rhoA GTP-Binding Protein/genetics , United States/epidemiology , Infant, Newborn , Infant , Child, Preschool , Young Adult
5.
Genet Test Mol Biomarkers ; 28(6): 257-262, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38721948

ABSTRACT

Background: Wolfram syndrome (WFS) is an autosomal recessive disorder that often leads to diabetes, optic atrophy, and sensorineural hearing loss. The aim of this study was to determine the clinical characteristics and the genetic cause of the first two Moroccan families presenting with WFS. Methods: The clinical features of five members of two WFS families were evaluated. Whole-exome sequencing was conducted to explore the underlying genetic cause in the affected patients. Results: Two homozygous variants in the WFS1 gene were identified, each in one of the two families studied: a missense c.1329C>G variant (p.Ser443Arg) and a nonsense mutation c.1113G>A (p.Trp371Ter). These variants affected conserved amino acid residues, segregated well in the two families, and are absent from genetic databases and in controls of Moroccan origin. Bioinformatics analysis classified the two variants as pathogenic by in silico tools and molecular modeling. Conclusion: Our study identified for the first time two variants in Moroccan patients with WFS that extends the mutational spectrum associated with the disease.


Subject(s)
Membrane Proteins , Mutation, Missense , Pedigree , Wolfram Syndrome , Humans , Membrane Proteins/genetics , Wolfram Syndrome/genetics , Female , Morocco , Male , Adult , Mutation, Missense/genetics , Exome Sequencing/methods , Homozygote , Codon, Nonsense/genetics , Child , Mutation , Adolescent
6.
Mol Biol Rep ; 51(1): 590, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683245

ABSTRACT

BACKGROUND: Boucher Neuhäuser Syndrome (BNS) is a rare disease with autosomal recessive inheritance defined by the classical triad; early-onset ataxia, hypogonadism and chorioretinal dystrophy. CASE PRESENTATION: We present two siblings diagnosed with BNS at midlife, identified with homozygous state of a novel PNPLA6 missense mutation. One healthy sibling and the mother were heterozygous carriers of the mutation. The proband presented with the classical triad and the other sibling presented with visual problems at first. The proband was referred to our department by a private Neurologist, in early adulthood, because of hypogonadism, cerebellar ataxia, axonal neuropathy, and chorioretinal dystrophy for further evaluation. The sibling was referred to our department for evaluation, at childhood, due to visual problems. Later, the patient displayed the triad of ataxia, hypogonadotropic hypogonadism, and chorioretinal dystrophy. The unusual medical history of the two siblings led to further examinations and eventually the diagnosis of the first BNS cases in Cyprus. WES-based ataxia in silico gene panel analysis revealed 15 genetic variants and further filtering analysis revealed the PNPLA6 c.3323G > A variant. Segregation analysis in the family with Sanger sequencing confirmed the PNPLA6 homozygous variant c.3323G > A, p.Arg1108Gln in exon 29. CONCLUSIONS: This highlights the importance of considering rare inherited causes of visual loss, spinocerebellar ataxia, or/and HH in a neurology clinic and the significant role of genetic sequencing in the diagnostic process.


Subject(s)
Acyltransferases , Cerebellar Ataxia , Hypogonadism , Retinal Dystrophies , Adult , Female , Humans , Male , Middle Aged , Acyltransferases/genetics , Cerebellar Ataxia/genetics , Hypogonadism/genetics , Mutation, Missense/genetics , Pedigree , Phospholipases/genetics , Retinal Dystrophies/genetics , Siblings , Spinocerebellar Ataxias/genetics
7.
Genet Test Mol Biomarkers ; 28(4): 151-158, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38657121

ABSTRACT

Introduction: Approximately 80% of primary hyperoxaluria cases are caused by primary hyperoxaluria type 1 (PH1, OMIM# 259900), which is characterized by pathogenic variants in the AGXT gene, resulting in deficiency of the liver-specific enzyme alanine-glyoxylate aminotransferase (AGT). This leads to increased production of oxalate, which cannot be effectively eliminated from the body, resulting in its accumulation primarily in the kidneys and other organs. Subjects and Methods: This study included 17 PH1 Egyptian patients from 12 unrelated families, recruited from the Inherited Kidney Disease Outpatient Clinic and the Dialysis Units, Cairo University Hospitals, during the period from January 2018 to December 2019, aiming to identify the pathogenic variants in the AGXT gene. Results: Six different variants were detected. These included three frameshift and three missense variants, all found in homozygosity within the respective families. The most common variant was c.121G>A;p.(Gly41Arg) detected in four families, followed by c.725dup;p.(Asp243GlyfsTer12) in three families, c.33dup;p.(Lys12Glnfs156) in two families, and c.731T >C;p.(Ile244Thr), c.33delC;p.(Lys12Argfs34), and c.568G>A;p.(Gly190Arg) detected in one family each. Conclusion: Consanguineous Egyptian families with history of renal stones or renal disease suspicious of primary hyperoxaluria should undergo AGXT genetic sequencing, specifically targeting exons 1 and 7, as variants in these two exons account for >75% of disease-causing variants in Egyptian patients with confirmed PH1.


Subject(s)
Hyperoxaluria, Primary , Transaminases , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Young Adult , Egypt , Frameshift Mutation/genetics , Homozygote , Hyperoxaluria, Primary/genetics , Mutation , Mutation, Missense/genetics , Transaminases/genetics , Transaminases/metabolism
8.
Clin Genet ; 106(1): 102-108, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38558253

ABSTRACT

Pathogenic germline variants in the FOXL2 gene are associated with Blepharophimosis, Ptosis, and Epicanthus Inversus syndrome (BPES) in humans, an autosomal dominant condition. Two forms of BPES have emerged: (i) type I (BPES-I), characterized by ocular signs and primary ovarian failure (POI), and (ii) type II (BPES-II) with no systemic associations. This study aimed to compare the distribution of FOXL2 variants in idiopathic POI/DOR (diminished ovarian reserve) and both types of BPES, and to determine the involvement of FOXL2 in non-syndromic forms of POI/DOR. We studied the whole coding region of the FOXL2 gene using next-generation sequencing in 1282 patients with non-syndromic POI/DOR. Each identified FOXL2 variant was compared to its frequency in the general population, considering ethnicity. Screening of the entire coding region of the FOXL2 gene allowed us to identify 10 different variants, including nine missense variants. Of the patients with POI/DOR, 14 (1%) carried a FOXL2 variant. Significantly, six out of nine missense variants (67%) were overrepresented in our POI/DOR cohort compared to the general or specific ethnic subgroups. Our findings strongly suggest that five rare missense variants, mainly located in the C-terminal region of FOXL2 are high-risk factors for non-syndromic POI/DOR, though FOXL2 gene implication accounts for approximately 0.54% of non-syndromic POI/DOR cases. These results support the implementation of routine genetic screening for patients with POI/DOR in clinical settings.


Subject(s)
Blepharophimosis , Forkhead Box Protein L2 , Mutation, Missense , Primary Ovarian Insufficiency , Humans , Forkhead Box Protein L2/genetics , Female , Primary Ovarian Insufficiency/genetics , Mutation, Missense/genetics , Blepharophimosis/genetics , Adult , High-Throughput Nucleotide Sequencing , Genetic Predisposition to Disease , Skin Abnormalities/genetics , Urogenital Abnormalities/genetics , Forkhead Transcription Factors/genetics , Phenotype
9.
Front Biosci (Schol Ed) ; 16(1): 1, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38538344

ABSTRACT

BACKGROUND: Hypertrophic cardiomyopathy is the most frequent autosomal dominant disease, yet due to genetic heterogeneity, incomplete penetrance, and phenotype variability, the prognosis of the disease course in pathogenic variant carriers remains an issue. Identifying common patterns among the effects of different genetic variants is important. METHODS: We investigated the cause of familial hypertrophic cardiomyopathy (HCM) in a family with two patients suffering from a particularly severe disease. Searching for the genetic variants in HCM genes was performed using different sequencing methods. RESULTS: A new missense variant, p.Leu714Arg, was identified in exon 19 of the beta-myosin heavy chain gene (MYH7). The mutation was found in a region that encodes the 'converter domain' in the globular myosin head. This domain is essential for the conformational change of myosin during ATP cleavage and contraction cycle. Most reports on different mutations in this region describe severe phenotypic consequences. The two patients with the p.Leu714Arg mutation had heart failure early in life and died from HCM complications. CONCLUSIONS: This case presents a new likely pathogenic variant in MYH7 and supports the hypothesis that myosin converter mutations constitute a subclass of HCM mutations with a poor prognosis for the patient.


Subject(s)
Cardiomyopathy, Hypertrophic, Familial , Cardiomyopathy, Hypertrophic , Humans , Cardiac Myosins/genetics , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic, Familial/diagnostic imaging , Cardiomyopathy, Hypertrophic, Familial/genetics , Mutation , Mutation, Missense/genetics , Myosin Heavy Chains/genetics , Phenotype
10.
Am J Hum Genet ; 111(4): 791-804, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38503300

ABSTRACT

Mutations in proteasome ß-subunits or their chaperone and regulatory proteins are associated with proteasome-associated autoinflammatory disorders (PRAAS). We studied six unrelated infants with three de novo heterozygous missense variants in PSMB10, encoding the proteasome ß2i-subunit. Individuals presented with T-B-NK± severe combined immunodeficiency (SCID) and clinical features suggestive of Omenn syndrome, including diarrhea, alopecia, and desquamating erythematous rash. Remaining T cells had limited T cell receptor repertoires, a skewed memory phenotype, and an elevated CD4/CD8 ratio. Bone marrow examination indicated severely impaired B cell maturation with limited V(D)J recombination. All infants received an allogeneic stem cell transplant and exhibited a variety of severe inflammatory complications thereafter, with 2 peri-transplant and 2 delayed deaths. The single long-term transplant survivor showed evidence for genetic rescue through revertant mosaicism overlapping the affected PSMB10 locus. The identified variants (c.166G>C [p.Asp56His] and c.601G>A/c.601G>C [p.Gly201Arg]) were predicted in silico to profoundly disrupt 20S immunoproteasome structure through impaired ß-ring/ß-ring interaction. Our identification of PSMB10 mutations as a cause of SCID-Omenn syndrome reinforces the connection between PRAAS-related diseases and SCID.


Subject(s)
Severe Combined Immunodeficiency , Infant , Humans , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/metabolism , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Mutation/genetics , T-Lymphocytes/metabolism , Mutation, Missense/genetics
11.
Orphanet J Rare Dis ; 19(1): 123, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38486238

ABSTRACT

BACKGROUND: Pathogenic missense variants in the dystrophin (DMD) gene are rarely reported in dystrophinopathies. Most DMD missense variants are of uncertain significance and their pathogenicity interpretation remains complicated. We aimed to investigate whether DMD missense variants would cause aberrant splicing and re-interpret their pathogenicity based on mRNA and protein studies. METHODS: Nine unrelated patients who had an elevated serum creatine kinase level with or without muscle weakness were enrolled. They underwent a detailed clinical, imaging, and pathological assessment. Routine genetic testing and muscle-derived mRNA and protein studies of dystrophin and sarcoglycan genes were performed in them. RESULTS: Three of the 9 patients presented with a Duchenne muscular dystrophy (DMD) phenotype and the remaining 6 patients had a suspected diagnosis of Becker muscular dystrophy (BMD) or sarcoglycanopathy based on their clinical and pathological characteristics. Routine genetic testing detected only 9 predicted DMD missense variants in them, of which 6 were novel and interpreted as uncertain significance. Muscle-derived mRNA studies of sarcoglycan genes didn't reveal any aberrant transcripts in them. Dystrophin mRNA studies confirmed that 3 predicted DMD missense variants (c.2380G > C, c.4977C > G, and c.5444A > G) were in fact splicing and frameshift variants due to aberrant splicing. The 9 DMD variants were re-interpreted as pathogenic or likely pathogenic based on mRNA and protein studies. Therefore, 3 patients with DMD splicing variants and 6 patients with confirmed DMD missense variants were diagnosed with DMD and BMD, respectively. CONCLUSION: Our study highlights the importance of muscle biopsy and aberrant splicing for clinical and genetic interpretation of uncertain DMD missense variants.


Subject(s)
Dystrophin , Muscular Dystrophy, Duchenne , Humans , Dystrophin/genetics , Muscular Dystrophy, Duchenne/genetics , Mutation, Missense/genetics , RNA, Messenger/genetics , Sarcoglycans/genetics
12.
Nat Commun ; 15(1): 2483, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509065

ABSTRACT

Missense variants are the most common type of coding genetic variants. Their functional assessment is fundamental for defining any implication in human diseases and may also uncover genes that are essential for human organ development. Here, we apply CRISPR-Cas9 gene editing on human iPSCs to study a heterozygous missense variant in GLI2 identified in two siblings with early-onset and insulin-dependent diabetes of unknown cause. GLI2 is a primary mediator of the Hedgehog pathway, which regulates pancreatic ß-cell development in mice. However, neither mutations in GLI2 nor Hedgehog dysregulation have been reported as cause or predisposition to diabetes. We establish and study a set of isogenic iPSC lines harbouring the missense variant for their ability to differentiate into pancreatic ß-like cells. Interestingly, iPSCs carrying the missense variant show altered GLI2 transcriptional activity and impaired differentiation of pancreatic progenitors into endocrine cells. RNASeq and network analyses unveil a crosstalk between Hedgehog and WNT pathways, with the dysregulation of non-canonical WNT signaling in pancreatic progenitors carrying the GLI2 missense variant. Collectively, our findings underscore an essential role for GLI2 in human endocrine development and identify a gene variant that may lead to diabetes.


Subject(s)
Diabetes Mellitus , Islets of Langerhans , Humans , Mice , Animals , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Zinc Finger Protein Gli2/genetics , Mutation, Missense/genetics , Islets of Langerhans/metabolism , Kruppel-Like Transcription Factors/metabolism , Nuclear Proteins/metabolism
13.
Mov Disord ; 39(5): 897-905, 2024 May.
Article in English | MEDLINE | ID: mdl-38436103

ABSTRACT

BACKGROUND: Although the group of paroxysmal kinesigenic dyskinesia (PKD) genes is expanding, the molecular cause remains elusive in more than 50% of cases. OBJECTIVE: The aim is to identify the missing genetic causes of PKD. METHODS: Phenotypic characterization, whole exome sequencing and association test were performed among 53 PKD cases. RESULTS: We identified four causative variants in KCNJ10, already associated with EAST syndrome (epilepsy, cerebellar ataxia, sensorineural hearing impairment and renal tubulopathy). Homozygous p.(Ile209Thr) variant was found in two brothers from a single autosomal recessive PKD family, whereas heterozygous p.(Cys294Tyr) and p.(Thr178Ile) variants were found in six patients from two autosomal dominant PKD families. Heterozygous p.(Arg180His) variant was identified in one additional sporadic PKD case. Compared to the Genome Aggregation Database v2.1.1, our PKD cohort was significantly enriched in both rare heterozygous (odds ratio, 21.6; P = 9.7 × 10-8) and rare homozygous (odds ratio, 2047; P = 1.65 × 10-6) missense variants in KCNJ10. CONCLUSIONS: We demonstrated that both rare monoallelic and biallelic missense variants in KCNJ10 are associated with PKD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Mutation, Missense , Potassium Channels, Inwardly Rectifying , Humans , Male , Mutation, Missense/genetics , Female , Potassium Channels, Inwardly Rectifying/genetics , Adult , Adolescent , Child , Dystonia/genetics , Young Adult , Pedigree , Middle Aged , Exome Sequencing , Child, Preschool
14.
Eur J Clin Invest ; 54(6): e14191, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38440843

ABSTRACT

BACKGROUND: Genetic diagnosis of inborn errors of immunity (IEI) is complex due to the large number of genes involved and their molecular features. Missense variants have been reported as the most common cause of IEI. However, the frequency of copy number variants (CNVs) may be underestimated since their detection requires specific quantitative techniques. At this point, the use of Next Generation Sequencing (NGS) is acquiring relevance. METHODS: In this article, we present our experience in the genetic diagnosis of IEI based on three diagnostic algorithms that allowed the detection of single nucleotide variants (SNVs) and CNVs. Following this approximation, 703 index cases were evaluated between 2014 and 2021. Sanger sequencing, MLPA, CGH array, breakpoint spanning PCR or a customized NGS-based multigene-targeted panel were performed. RESULTS: A genetic diagnosis was reached in 142 of the 703 index cases (20%), 19 of them presented deletions as causal variants. Deletions were also detected in 5 affected relatives and 16 healthy carriers during the family studies. Additionally, we compile, characterize and present all the CNVs detected by our diagnostic algorithms, representing the largest cohort of deletions related to IEI to date. Furthermore, three bioinformatic tools (LACONv, XHMM, VarSeq™) based on NGS data were evaluated. VarSeq™ was the most sensitive and specific bioinformatic tool; detecting 21/23 (91%) deletions located in captured regions. CONCLUSION: Based on our results, we propose a strategy to guide the molecular diagnosis that can be followed by expert and non-expert centres in the field of IEI.


Subject(s)
DNA Copy Number Variations , High-Throughput Nucleotide Sequencing , Humans , DNA Copy Number Variations/genetics , Algorithms , Male , Female , Polymorphism, Single Nucleotide , Child , Mutation, Missense/genetics
15.
Clin Genet ; 106(1): 37-46, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38424693

ABSTRACT

Genetic missense variants in TNNI3K, encoding troponin-I interacting kinase, have been associated with dilated cardiomyopathy (DCM) and observed in families with supraventricular tachycardias (SVT). Previously, a family harboring the TNNI3K-c.1615A > G (p.Thr539Ala) variant presented with congenital junctional ectopic tachycardia (CJET), an arrhythmia that arises from the atrioventricular (AV) node and His bundle. However, this was a relatively small four-generational family with limited genetic testing (N = 3). We here describe a multigenerational family with CJET harboring a novel ultra-rare TNNI3K variant: TNNI3K-c.1729C > T (p.Leu577Phe). Of all 18 variant carriers, 13 individuals presented with CJET, resulting in a genetic penetrance of 72%. In addition, CJET is reported in another small family harboring TNNI3K-c.2225C > T (p.Pro742Leu). Similar to the previously published CJET family, both TNNI3K variants demonstrate a substantial reduction of kinase activity. Our study contributes novel evidence supporting the involvement of TNNI3K genetic variants as significant contributors to CJET, shedding light on potential mechanisms underlying this cardiac arrhythmia.


Subject(s)
Pedigree , Protein Serine-Threonine Kinases , Tachycardia, Ectopic Junctional , Humans , Female , Male , Adult , Tachycardia, Ectopic Junctional/genetics , Tachycardia, Ectopic Junctional/physiopathology , Protein Serine-Threonine Kinases/genetics , Middle Aged , Genetic Predisposition to Disease , Mutation, Missense/genetics , Adolescent , Child , Young Adult
16.
Am J Med Genet A ; 194(7): e63579, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38436550

ABSTRACT

Due to the majority of currently available genome data deriving from individuals of European ancestry, the clinical interpretation of genomic variants in individuals from diverse ethnic backgrounds remains a major diagnostic challenge. Here, we investigated the genetic cause of a complex neurodevelopmental phenotype in two Palestinian siblings. Whole exome sequencing identified a homozygous missense TECPR2 variant (Chr14(GRCh38):g.102425085G>A; NM_014844.5:c.745G>A, p.(Gly249Arg)) absent in gnomAD, segregating appropriately with the inheritance pattern in the family. Variant assessment with in silico pathogenicity prediction and protein modeling tools alongside population database frequencies led to classification as a variant of uncertain significance. As pathogenic TECPR2 variants are associated with hereditary sensory and autonomic neuropathy with intellectual disability, we reviewed previously published candidate TECPR2 missense variants to clarify clinical outcomes and variant classification using current approved guidelines, classifying a number of published variants as of uncertain significance. This work highlights genomic healthcare inequalities and the challenges in interpreting rare genetic variants in populations underrepresented in genomic databases. It also improves understanding of the clinical and genetic spectrum of TECPR2-related neuropathy and contributes to addressing genomic data disparity and inequalities of the genomic architecture in Palestinian populations.


Subject(s)
Exome Sequencing , Hereditary Sensory and Autonomic Neuropathies , Mutation, Missense , Pedigree , Siblings , Humans , Male , Female , Mutation, Missense/genetics , Hereditary Sensory and Autonomic Neuropathies/genetics , Hereditary Sensory and Autonomic Neuropathies/pathology , Hereditary Sensory and Autonomic Neuropathies/diagnosis , Phenotype , Child , Arabs/genetics , Genetic Predisposition to Disease , Homozygote
17.
Am J Med Genet A ; 194(7): e63585, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38459620

ABSTRACT

Germline gain of function variations in the AKT3 gene cause brain overgrowth syndrome with megalencephaly and diffuse bilateral cortical malformations. Here we report a child with megalencephaly, who is a carrier of a novel heterozygous missense variant in the AKT3 gene NM_005465.7:c.964G>T,p.Asp322Tyr. The phenotype of this patient is associated with pituitary deficiencies diagnosed at 2 years of age: growth hormone (GH) deficiency responsible for growth delay and central hypothyroidism. After 6 months of GH treatment, intracranial hypertension was noted, confirmed by the observation of papilledema and increased intracranial pressure, requiring the initiation of acetazolamide treatment and the discontinuation of GH treatment. This is the second reported patient described with megalencephaly and AKT3 gene variant associated with GH deficiency . Other endocrine disorders have also been reported in few cases with hypothyroidism and hypoglycemia. Pituitary deficiency may be a part of the of megalencephaly phenotype secondary to germline variant in the AKT3 gene. Special attention should be paid to growth in these patients and search for endocrine deficiency is necessary in case of growth retardation or hypoglycemia.


Subject(s)
Germ-Line Mutation , Megalencephaly , Mutation, Missense , Proto-Oncogene Proteins c-akt , Humans , Megalencephaly/genetics , Megalencephaly/pathology , Mutation, Missense/genetics , Proto-Oncogene Proteins c-akt/genetics , Germ-Line Mutation/genetics , Male , Child, Preschool , Phenotype , Hypothyroidism/genetics , Hypothyroidism/pathology , Hypothyroidism/complications , Female , Human Growth Hormone/deficiency , Human Growth Hormone/genetics
18.
Genet Med ; 26(6): 101119, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38465576

ABSTRACT

PURPOSE: Fem1 homolog B (FEM1B) acts as a substrate recognition subunit for ubiquitin ligase complexes belonging to the CULLIN 2-based E3 family. Several biological functions have been proposed for FEM1B, including a structurally resolved function as a sensor for redox cell status by controlling mitochondrial activity, but its implication in human disease remains elusive. METHODS: To understand the involvement of FEM1B in human disease, we made use of Matchmaker exchange platforms to identify individuals with de novo variants in FEM1B and performed their clinical evaluation. We performed functional validation using primary neuronal cultures and in utero electroporation assays, as well as experiments on patient's cells. RESULTS: Five individuals with a recurrent de novo missense variant in FEM1B were identified: NM_015322.5:c.377G>A NP_056137.1:p.(Arg126Gln) (FEM1BR126Q). Affected individuals shared a severe neurodevelopmental disorder with behavioral phenotypes and a variable set of malformations, including brain anomalies, clubfeet, skeletal abnormalities, and facial dysmorphism. Overexpression of the FEM1BR126Q variant but not FEM1B wild-type protein, during mouse brain development, resulted in delayed neuronal migration of the target cells. In addition, the individuals' cells exhibited signs of oxidative stress and induction of type I interferon signaling. CONCLUSION: Overall, our data indicate that p.(Arg126Gln) induces aberrant FEM1B activation, resulting in a gain-of-function mechanism associated with a severe syndromic developmental disorder in humans.


Subject(s)
Mutation, Missense , Neurodevelopmental Disorders , Ubiquitin-Protein Ligases , Humans , Mutation, Missense/genetics , Female , Mice , Male , Animals , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Ubiquitin-Protein Ligases/genetics , Child , Child, Preschool , Phenotype , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Neurons/metabolism , Neurons/pathology , Infant
19.
Sci Adv ; 10(6): eadj5661, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38335297

ABSTRACT

Hypoxia-inducible factor pathway genes are linked to adaptation in both human and nonhuman highland species. EPAS1, a notable target of hypoxia adaptation, is associated with relatively lower hemoglobin concentration in Tibetans. We provide evidence for an association between an adaptive EPAS1 variant (rs570553380) and the same phenotype of relatively low hematocrit in Andean highlanders. This Andean-specific missense variant is present at a modest frequency in Andeans and absent in other human populations and vertebrate species except the coelacanth. CRISPR-base-edited human cells with this variant exhibit shifts in hypoxia-regulated gene expression, while metabolomic analyses reveal both genotype and phenotype associations and validation in a lowland population. Although this genocopy of relatively lower hematocrit in Andean highlanders parallels well-replicated findings in Tibetans, it likely involves distinct pathway responses based on a protein-coding versus noncoding variants, respectively. These findings illuminate how unique variants at EPAS1 contribute to the same phenotype in Tibetans and a subset of Andean highlanders despite distinct evolutionary trajectories.


Subject(s)
Adaptation, Physiological , Altitude , Hematocrit , South American People , Humans , Adaptation, Physiological/genetics , Adaptation, Physiological/physiology , East Asian People , Hypoxia/genetics , Hypoxia/metabolism , Mutation, Missense/genetics , South American People/genetics
20.
Am J Hum Genet ; 111(3): 487-508, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38325380

ABSTRACT

Pathogenic variants in multiple genes on the X chromosome have been implicated in syndromic and non-syndromic intellectual disability disorders. ZFX on Xp22.11 encodes a transcription factor that has been linked to diverse processes including oncogenesis and development, but germline variants have not been characterized in association with disease. Here, we present clinical and molecular characterization of 18 individuals with germline ZFX variants. Exome or genome sequencing revealed 11 variants in 18 subjects (14 males and 4 females) from 16 unrelated families. Four missense variants were identified in 11 subjects, with seven truncation variants in the remaining individuals. Clinical findings included developmental delay/intellectual disability, behavioral abnormalities, hypotonia, and congenital anomalies. Overlapping and recurrent facial features were identified in all subjects, including thickening and medial broadening of eyebrows, variations in the shape of the face, external eye abnormalities, smooth and/or long philtrum, and ear abnormalities. Hyperparathyroidism was found in four families with missense variants, and enrichment of different tumor types was observed. In molecular studies, DNA-binding domain variants elicited differential expression of a small set of target genes relative to wild-type ZFX in cultured cells, suggesting a gain or loss of transcriptional activity. Additionally, a zebrafish model of ZFX loss displayed an altered behavioral phenotype, providing additional evidence for the functional significance of ZFX. Our clinical and experimental data support that variants in ZFX are associated with an X-linked intellectual disability syndrome characterized by a recurrent facial gestalt, neurocognitive and behavioral abnormalities, and an increased risk for congenital anomalies and hyperparathyroidism.


Subject(s)
Hyperparathyroidism , Intellectual Disability , Neurodevelopmental Disorders , Male , Female , Animals , Humans , Intellectual Disability/pathology , Zebrafish/genetics , Mutation, Missense/genetics , Transcription Factors/genetics , Phenotype , Neurodevelopmental Disorders/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...