Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 985
Filter
1.
Nat Commun ; 15(1): 4161, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755122

ABSTRACT

Lipid biosynthesis in the pathogen Mycobacterium tuberculosis depends on biotin for posttranslational modification of key enzymes. However, the mycobacterial biotin synthetic pathway is not fully understood. Here, we show that rv1590, a gene of previously unknown function, is required by M. tuberculosis to synthesize biotin. Chemical-generic interaction experiments mapped the function of rv1590 to the conversion of dethiobiotin to biotin, which is catalyzed by biotin synthases (BioB). Biochemical studies confirmed that in contrast to BioB of Escherichia coli, BioB of M. tuberculosis requires Rv1590 (which we named "biotin synthase auxiliary protein" or BsaP), for activity. We found homologs of bsaP associated with bioB in many actinobacterial genomes, and confirmed that BioB of Mycobacterium smegmatis also requires BsaP. Structural comparisons of BsaP-associated biotin synthases with BsaP-independent biotin synthases suggest that the need for BsaP is determined by the [2Fe-2S] cluster that inserts sulfur into dethiobiotin. Our findings open new opportunities to seek BioB inhibitors to treat infections with M. tuberculosis and other pathogens.


Subject(s)
Bacterial Proteins , Biotin , Mycobacterium tuberculosis , Biotin/metabolism , Biotin/analogs & derivatives , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Sulfurtransferases/metabolism , Sulfurtransferases/genetics , Mycobacterium smegmatis/metabolism , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/enzymology , Escherichia coli/metabolism , Escherichia coli/genetics
2.
Nat Commun ; 15(1): 4065, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744895

ABSTRACT

Proteolysis-targeting chimeras (PROTACs) represent a new therapeutic modality involving selectively directing disease-causing proteins for degradation through proteolytic systems. Our ability to exploit targeted protein degradation (TPD) for antibiotic development remains nascent due to our limited understanding of which bacterial proteins are amenable to a TPD strategy. Here, we use a genetic system to model chemically-induced proximity and degradation to screen essential proteins in Mycobacterium smegmatis (Msm), a model for the human pathogen M. tuberculosis (Mtb). By integrating experimental screening of 72 protein candidates and machine learning, we find that drug-induced proximity to the bacterial ClpC1P1P2 proteolytic complex leads to the degradation of many endogenous proteins, especially those with disordered termini. Additionally, TPD of essential Msm proteins inhibits bacterial growth and potentiates the effects of existing antimicrobial compounds. Together, our results provide biological principles to select and evaluate attractive targets for future Mtb PROTAC development, as both standalone antibiotics and potentiators of existing antibiotic efficacy.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Mycobacterium smegmatis , Mycobacterium tuberculosis , Proteolysis , Proteolysis/drug effects , Mycobacterium smegmatis/drug effects , Mycobacterium smegmatis/metabolism , Mycobacterium smegmatis/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Anti-Bacterial Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/growth & development , Humans , Microbial Sensitivity Tests , Machine Learning
3.
Cell Mol Life Sci ; 81(1): 203, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698289

ABSTRACT

Nitrogen metabolism of M. tuberculosis is critical for its survival in infected host cells. M. tuberculosis has evolved sophisticated strategies to switch between de novo synthesis and uptake of various amino acids from host cells for metabolic demands. Pyridoxal phosphate-dependent histidinol phosphate aminotransferase-HspAT enzyme is critically required for histidine biosynthesis. HspAT is involved in metabolic synthesis of histidine, phenylalanine, tyrosine, tryptophan, and novobiocin. We showed that M. tuberculosis Rv2231c is a conserved enzyme with HspAT activity. Rv2231c is a monomeric globular protein that contains α-helices and ß-sheets. It is a secretory and cell wall-localized protein that regulates critical pathogenic attributes. Rv2231c enhances the survival and virulence of recombinant M. smegmatis in infected RAW264.7 macrophage cells. Rv2231c is recognized by the TLR4 innate immune receptor and modulates the host immune response by suppressing the secretion of the antibacterial pro-inflammatory cytokines TNF, IL-12, and IL-6. It also inhibits the expression of co-stimulatory molecules CD80 and CD86 along with antigen presenting molecule MHC-I on macrophage and suppresses reactive nitrogen species formation, thereby promoting M2 macrophage polarization. Recombinant M. smegmatis expressing Rv2231c inhibited apoptosis in macrophages, promoting efficient bacterial survival and proliferation, thereby increasing virulence. Our results indicate that Rv2231c is a moonlighting protein that regulates multiple functions of M. tuberculosis pathophysiology to increase its virulence. These mechanistic insights can be used to better understand the pathogenesis of M. tuberculosis and to design strategies for tuberculosis mitigation.


Subject(s)
Macrophages , Mycobacterium tuberculosis , Transaminases , Mice , Mycobacterium tuberculosis/pathogenicity , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/metabolism , Animals , RAW 264.7 Cells , Virulence , Macrophages/microbiology , Macrophages/immunology , Macrophages/metabolism , Transaminases/metabolism , Transaminases/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Mycobacterium smegmatis/pathogenicity , Mycobacterium smegmatis/metabolism , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/enzymology , Cytokines/metabolism , Toll-Like Receptor 4/metabolism , Humans , Immunity, Innate , Host-Pathogen Interactions/immunology , Tuberculosis/immunology , Tuberculosis/microbiology
4.
Nat Commun ; 15(1): 3088, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600064

ABSTRACT

Transcriptional regulation is a critical adaptive mechanism that allows bacteria to respond to changing environments, yet the concept of transcriptional plasticity (TP) - the variability of gene expression in response to environmental changes - remains largely unexplored. In this study, we investigate the genome-wide TP profiles of Mycobacterium tuberculosis (Mtb) genes by analyzing 894 RNA sequencing samples derived from 73 different environmental conditions. Our data reveal that Mtb genes exhibit significant TP variation that correlates with gene function and gene essentiality. We also find that critical genetic features, such as gene length, GC content, and operon size independently impose constraints on TP, beyond trans-regulation. By extending our analysis to include two other Mycobacterium species -- M. smegmatis and M. abscessus -- we demonstrate a striking conservation of the TP landscape. This study provides a comprehensive understanding of the TP exhibited by mycobacteria genes, shedding light on this significant, yet understudied, genetic feature encoded in bacterial genomes.


Subject(s)
Mycobacterium tuberculosis , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Genome, Bacterial/genetics , Operon/genetics , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/metabolism , Gene Expression Regulation, Bacterial
5.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 4): 82-91, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38656226

ABSTRACT

The rise in antimicrobial resistance is a global health crisis and necessitates the development of novel strategies to treat infections. For example, in 2022 tuberculosis (TB) was the second leading infectious killer after COVID-19, with multi-drug-resistant strains of TB having an ∼40% fatality rate. Targeting essential biosynthetic pathways in pathogens has proven to be successful for the development of novel antimicrobial treatments. Fatty-acid synthesis (FAS) in bacteria proceeds via the type II pathway, which is substantially different from the type I pathway utilized in animals. This makes bacterial fatty-acid biosynthesis (Fab) enzymes appealing as drug targets. FabG is an essential FASII enzyme, and some bacteria, such as Mycobacterium tuberculosis, the causative agent of TB, harbor multiple homologs. FabG4 is a conserved, high-molecular-weight FabG (HMwFabG) that was first identified in M. tuberculosis and is distinct from the canonical low-molecular-weight FabG. Here, structural and functional analyses of Mycolicibacterium smegmatis FabG4, the third HMwFabG studied to date, are reported. Crystal structures of NAD+ and apo MsFabG4, along with kinetic analyses, show that MsFabG4 preferentially binds and uses NADH when reducing CoA substrates. As M. smegmatis is often used as a model organism for M. tuberculosis, these studies may aid the development of drugs to treat TB and add to the growing body of research that distinguish HMwFabGs from the archetypal low-molecular-weight FabG.


Subject(s)
Bacterial Proteins , Mycobacterium smegmatis , Mycobacterium smegmatis/metabolism , Mycobacterium smegmatis/enzymology , Mycobacterium smegmatis/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Crystallography, X-Ray , Models, Molecular , Amino Acid Sequence , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
6.
mSphere ; 9(5): e0012224, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38591887

ABSTRACT

Antibiotic resistance in Mycobacterium tuberculosis exclusively originates from chromosomal mutations, either during normal DNA replication or under stress, when the expression of error-prone DNA polymerases increases to repair damaged DNA. To bypass DNA lesions and catalyze error-prone DNA synthesis, translesion polymerases must be able to access the DNA, temporarily replacing the high-fidelity replicative polymerase. The mechanisms that govern polymerase exchange are not well understood, especially in mycobacteria. Here, using a suite of quantitative fluorescence imaging techniques, we discover that in Mycobacterium smegmatis, as in other bacterial species, the replicative polymerase, DnaE1, exchanges at a timescale much faster than that of DNA replication. Interestingly, this fast exchange rate depends on an actinobacteria-specific nucleoid-associated protein (NAP), Lsr2. In cells missing lsr2, DnaE1 exchanges less frequently, and the chromosome is replicated more faithfully. Additionally, in conditions that damage DNA, cells lacking lsr2 load the complex needed to bypass DNA lesions less effectively and, consistently, replicate with higher fidelity but exhibit growth defects. Together, our results show that Lsr2 promotes dynamic flexibility of the mycobacterial replisome, which is critical for robust cell growth and lesion repair in conditions that damage DNA. IMPORTANCE: Unlike many other pathogens, Mycobacterium tuberculosis has limited ability for horizontal gene transfer, a major mechanism for developing antibiotic resistance. Thus, the mechanisms that facilitate chromosomal mutagenesis are of particular importance in mycobacteria. Here, we show that Lsr2, a nucleoid-associated protein, has a novel role in DNA replication and mutagenesis in the model mycobacterium Mycobacterium smegmatis. We find that Lsr2 promotes the fast exchange rate of the replicative DNA polymerase, DnaE1, at the replication fork and is important for the effective loading of the DnaE2-ImuA'-ImuB translesion complex. Without lsr2, M. smegmatis replicates its chromosome more faithfully and acquires resistance to rifampin at a lower rate, but at the cost of impaired survival to DNA damaging agents. Together, our work establishes Lsr2 as a potential factor in the emergence of mycobacterial antibiotic resistance.


Subject(s)
Bacterial Proteins , DNA Replication , DNA-Directed DNA Polymerase , Drug Resistance, Bacterial , Mycobacterium smegmatis , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/drug effects , Mycobacterium smegmatis/metabolism , Mycobacterium smegmatis/enzymology , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Antigens, Bacterial
7.
J Proteomics ; 300: 105177, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38631426

ABSTRACT

Tuberculosis (TB) is a serious cause of infectious death worldwide. Recent studies have reported that about 30% of the Mtb proteome was modified post-translationally, indicating that their functions are essential for drug resistance, mycobacterial survival, and pathogenicity. Among them, lysine acetylation, reversibly regulated by acetyltransferase and deacetylase, has important roles involved in energy metabolism, cellular adaptation, and protein interactions. However, the substrate and biological functions of these two important regulatory enzymes remain unclear. Herein, we utilized the non-pathogenic M. smegmatis strain as a model and systematically investigated the dynamic proteome changes in response to the overexpressing of MsKat/MsCobB in mycobacteria. A total of 4179 proteins and 1236 acetylated sites were identified in our data. Further analysis of the dynamic changes involved in proteome and acetylome showed that MsKat/MsCobB played a regulatory role in various metabolic pathways and nucleic acid processes. After that, the quantitative mass spectrometric method was utilized and proved that the AMP-dependent synthetase, Citrate synthase, ATP-dependent specificity component of the Clp protease, and ATP-dependent DNA/RNA helicases were identified to be the substrates of MsKat. Overall, our study provided an important resource underlying the substrates and functions of the acetylation regulatory enzymes in mycobacteria. SIGNIFICANCE: In this study, we systematically analyzed the dynamic molecular changes in response to the MsKat/MsCobB overexpression in mycobacteria at proteome and lysine acetylation level by using a TMT-based quantitative proteomic approach. Pathways related with glycolysis, degradation of branched chain amino acids, phosphotransferase system were affected after disturbance of the two regulates enzymes involved in lysine acetylation. We also proved that AMP-dependent synthetase Clp protease, ATP-dependent DNA/RNA helicases and citrate synthase was the substrate of MsKat according to our proteomic data and biological validation. Together, our study underlined the substrates and functions of the acetylation regulatory enzymes in mycobacteria.


Subject(s)
Bacterial Proteins , Lysine Acetyltransferases , Mycobacterium smegmatis , Mycobacterium smegmatis/enzymology , Mycobacterium smegmatis/metabolism , Bacterial Proteins/metabolism , Lysine Acetyltransferases/metabolism , Acetylation , Proteome/metabolism , Substrate Specificity , Lysine/metabolism
8.
J Biol Chem ; 300(5): 107287, 2024 May.
Article in English | MEDLINE | ID: mdl-38636658

ABSTRACT

Mycobacterial genomes encode multiple adenylyl cyclases and cAMP effector proteins, underscoring the diverse ways these bacteria utilize cAMP. We identified universal stress proteins, Rv1636 and MSMEG_3811 in Mycobacterium tuberculosis and Mycobacterium smegmatis, respectively, as abundantly expressed, novel cAMP-binding proteins. Rv1636 is secreted via the SecA2 secretion system in M. tuberculosis but is not directly responsible for the efflux of cAMP from the cell. In slow-growing mycobacteria, intrabacterial concentrations of Rv1636 were equivalent to the concentrations of cAMP present in the cell. In contrast, levels of intrabacterial MSMEG_3811 in M. smegmatis were lower than that of cAMP and therefore, overexpression of Rv1636 increased levels of "bound" cAMP. While msmeg_3811 could be readily deleted from the genome of M. smegmatis, we found that the rv1636 gene is essential for the viability of M. tuberculosis and is dependent on the cAMP-binding ability of Rv1636. Therefore, Rv1636 may function to regulate cAMP signaling by direct sequestration of the second messenger. This is the first evidence of a "sponge" for any second messenger in bacterial signaling that would allow mycobacterial cells to regulate the available intrabacterial "free" pool of cAMP.


Subject(s)
Bacterial Proteins , Cyclic AMP , Mycobacterium smegmatis , Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/genetics , Cyclic AMP/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Mycobacterium smegmatis/metabolism , Mycobacterium smegmatis/genetics , Protein Binding , Microbial Viability , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics
9.
Microb Pathog ; 191: 106657, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38649100

ABSTRACT

Staphylococcus aureus is a major human pathogen that can cause infections that range from superficial skin and mucosal infections to life threatening disseminated infections. S. aureus can attach to medical devices and host tissues and form biofilms that allow the bacteria to evade the host immune system and provide protection from antimicrobial agents. To counter host-generated oxidative and nitrosative stress mechanisms that are part of the normal host responses to invading pathogens, S. aureus utilizes low molecular weight (LMW) thiols, such as bacillithiol (BSH). Additionally, S. aureus synthesizes its own nitric oxide (NO), which combined with its downstream metabolites may also protect the bacteria against specific host responses. We have previously shown that LMW thiols are required for biofilm formation in Mycobacterium smegmatis and Pseudomonas aeruginosa. Here, we show that the S. aureus bshC mutant strain, which is defective in the last step of the BSH pathway and lacks BSH, is impaired in biofilm formation. We also identify a possible S-nitrosobacillithiol reductase (BSNOR), similar in sequence to an S-nitrosomycothiol reductase found in M. smegmatis and show that the putative S. aureus bsnoR mutant strain has reduced levels of BSH and decreased biofilm formation. Our studies also show that NO plays an important role in biofilm formation and that acidified sodium nitrite severely reduces biofilm thickness. These studies provide insight into the roles of oxidative and nitrosative stress mechanisms on biofilm formation and indicate that BSH and NO are key players in normal biofilm formation in S. aureus.


Subject(s)
Biofilms , Cysteine , Glucosamine , Nitric Oxide , Staphylococcus aureus , Biofilms/growth & development , Staphylococcus aureus/physiology , Staphylococcus aureus/genetics , Glucosamine/analogs & derivatives , Glucosamine/metabolism , Cysteine/analogs & derivatives , Cysteine/metabolism , Nitric Oxide/metabolism , Sodium Nitrite/pharmacology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/physiology , Mycobacterium smegmatis/metabolism , Mutation , Humans , Oxidoreductases/metabolism , Oxidoreductases/genetics , Sulfhydryl Compounds/metabolism , Oxidative Stress
10.
Sci Rep ; 14(1): 9141, 2024 04 21.
Article in English | MEDLINE | ID: mdl-38644371

ABSTRACT

Tuberculosis remains a large health threat, despite the availability of the tuberculosis vaccine, BCG. As BCG efficacy gradually decreases from adolescence, BCG-Prime and antigen-booster may be an efficient strategy to confer vaccine efficacy. Mycobacterial DNA-binding protein 1 (MDP1, namely Rv2986c, hupB or HU) is a major Mycobacterium tuberculosis protein that induces vaccine-efficacy by co-administration with CpG DNA. To produce MDP1 for booster-vaccine use, we have created recombinant MDP1 produced in both Escherichia coli (eMDP1) and Mycolicibacterium smegmatis (mMDP1), an avirulent rapid-growing mycobacteria. We tested their immunogenicity by checking interferon (IFN)-gamma production by stimulated peripheral blood cells derived from BCG-vaccinated individuals. Similar to native M. tuberculosis MDP1, we observed that most lysin resides in the C-terminal half of mMDP1 are highly methylated. In contrast, eMDP1 had less post-translational modifications and IFN-gamma stimulation. mMDP1 stimulated the highest amount of IFN-gamma production among the examined native M. tuberculosis proteins including immunodominant MPT32 and Antigen 85 complex. MDP1-mediated IFN-gamma production was more strongly enhanced when combined with a new type of CpG DNA G9.1 than any other tested CpG DNAs. Taken together, these results suggest that the combination of mMDP1 and G9.1 possess high potential use for human booster vaccine against tuberculosis.


Subject(s)
BCG Vaccine , Bacterial Proteins , DNA-Binding Proteins , Interferon-gamma , Mycobacterium tuberculosis , Protein Processing, Post-Translational , Humans , Interferon-gamma/metabolism , Bacterial Proteins/immunology , BCG Vaccine/immunology , DNA-Binding Proteins/immunology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Mycobacterium tuberculosis/immunology , Recombinant Proteins/immunology , Oligodeoxyribonucleotides/pharmacology , Tuberculosis/prevention & control , Tuberculosis/immunology , CpG Islands , Mycobacterium smegmatis/immunology , Mycobacterium smegmatis/metabolism , Escherichia coli/metabolism , Escherichia coli/genetics , Female
11.
ACS Sens ; 9(3): 1359-1371, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38449100

ABSTRACT

N-Acetyl modification, a chemical modification commonly found on biomacromolecules, plays a crucial role in the regulation of cell activities and is related to a variety of diseases. However, due to the instability of N-acetyl modification, accurate and rapid identification of N-acetyl modification with a low measurement cost is still technically challenging. Here, based on hydroxylamine deacetylation and nanopore single molecule chemistry, a universal sensing strategy for N-acetyl modification has been developed. Acetohydroxamic acid (AHA), which is produced by the hydroxylamine deacetylation reaction and serves as a reporter for N-acetylation identification, is specifically sensed by a phenylboronic acid (PBA)-modified Mycobacterium smegmatis porin A (MspA). With this strategy, N-acetyl modifications on RNA, DNA, proteins, and glycans were identified, demonstrating its generality. Specifically, histones can be treated with hydroxylamine deacetylation, from which the generated AHA can represent the amount of N-acetyl modification detected by a nanopore sensor. The unique event features of AHA also demonstrate the robustness of sensing against other interfering analytes in the environment.


Subject(s)
Nanopores , Hydroxylamine/metabolism , Acetylation , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/metabolism , Hydroxylamines
12.
Protein Sci ; 33(3): e4912, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38358254

ABSTRACT

Outer membrane proteins perform essential functions in uptake and secretion processes in bacteria. MspA is an octameric channel protein in the outer membrane of Mycobacterium smegmatis and is structurally distinct from any other known outer membrane protein. MspA is the founding member of a family with more than 3000 homologs and is one of the most widely used proteins in nanotechnological applications due to its advantageous pore structure and extraordinary stability. While a conserved C-terminal signal sequence is essential for folding and protein assembly in the outer membrane of Gram-negative bacteria, the molecular determinants of these processes are unknown for MspA. In this study, we show that mutation and deletion of methionine 183 in the highly conserved C-terminus of MspA and mutation of the conserved tryptophan 40 lead to a complete loss of protein in heat extracts of M. smegmatis. Swapping these residues partially restores the heat stability of MspA indicating that methionine 183 and tryptophan 40 form a conserved sulfur-π electron interaction, which stabilizes the MspA monomer. Flow cytometry showed that all MspA mutants are surface-accessible demonstrating that oligomerization and membrane integration in M. smegmatis are not affected. Thus, the conserved C-terminus of MspA is essential for its thermal stability, but it is not required for protein assembly in its native membrane, indicating that this process is mediated by a mechanism distinct from that in Gram-negative bacteria. These findings will benefit the rational design of MspA-like pores to tailor their properties in current and future applications.


Subject(s)
Mycobacterium , Tryptophan , Tryptophan/metabolism , Porins/chemistry , Porins/genetics , Porins/metabolism , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/metabolism , Methionine/metabolism
13.
Sci Adv ; 10(6): eadh9812, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38335296

ABSTRACT

D29 mycobacteriophage encodes LysA endolysin, which mediates mycobacterial host cell lysis by targeting its peptidoglycan layer, thus projecting itself as a potential therapeutic. However, the regulatory mechanism of LysA during the phage lytic cycle remains ill defined. Here, we show that during D29 lytic cycle, structural and functional regulation of LysA not only orchestrates host cell lysis but also is critical for maintaining phage-host population dynamics by governing various phases of lytic cycle. We report that LysA exists in two conformations, of which only one is active, and the protein undergoes a host peptidoglycan-dependent conformational switch to become active for carrying out endogenous host cell lysis. D29 maintains a pool of inactive LysA, allowing complete assembly of phage progeny, thus helping avoid premature host lysis. In addition, we show that the switch reverses after lysis, thus preventing exogenous targeting of bystanders, which otherwise negatively affects phage propagation in the environment.


Subject(s)
Bacteriophages , Endopeptidases , Mycobacteriophages , Mycobacteriophages/metabolism , Bacteriophages/metabolism , Mycobacterium smegmatis/metabolism , Peptidoglycan/metabolism
14.
Nucleic Acids Res ; 52(8): 4604-4626, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38348908

ABSTRACT

Bacteria have evolved structured RNAs that can associate with RNA polymerase (RNAP). Two of them have been known so far-6S RNA and Ms1 RNA but it is unclear if any other types of RNAs binding to RNAP exist in bacteria. To identify all RNAs interacting with RNAP and the primary σ factors, we have established and performed native RIP-seq in Bacillus subtilis, Corynebacterium glutamicum, Streptomyces coelicolor, Mycobacterium smegmatis and the pathogenic Mycobacterium tuberculosis. Besides known 6S RNAs in B. subtilis and Ms1 in M. smegmatis, we detected MTS2823, a homologue of Ms1, on RNAP in M. tuberculosis. In C. glutamicum, we discovered novel types of structured RNAs that associate with RNAP. Furthermore, we identified other species-specific RNAs including full-length mRNAs, revealing a previously unknown landscape of RNAs interacting with the bacterial transcription machinery.


Subject(s)
Bacterial Proteins , DNA-Directed RNA Polymerases , RNA, Bacterial , Sigma Factor , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/genetics , Gene Expression Regulation, Bacterial , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/metabolism , Mycobacterium smegmatis/enzymology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Nucleic Acid Conformation , RNA, Bacterial/metabolism , RNA, Bacterial/genetics , RNA, Untranslated , Sigma Factor/metabolism , Sigma Factor/genetics , Streptomyces coelicolor/genetics , Streptomyces coelicolor/metabolism , Transcription, Genetic
15.
Appl Environ Microbiol ; 90(2): e0203923, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38259108

ABSTRACT

The build-up of formaldehyde, a highly reactive molecule is cytotoxic and must be eliminated for the organism's survival. Formaldehyde detoxification system is found in nearly all organisms including both pathogenic and non-pathogenic mycobacteria. MscR, a formaldehyde dehydrogenase from Mycobacterium smegmatis (Msm), is an indispensable part of this system and forms a bicistronic operon with its downstream uncharacterized gene, fmh. We here show that Fmh, a putative metallo-beta-lactamase, is essential in tolerating higher amounts of formaldehyde when co-overexpressed with mscR in vivo. Our NMR studies indicate that MscR, along with Fmh, enhances formate production through a mycothiol (MSH)-dependent pathway, emphasizing the importance of Fmh in detoxifying formaldehyde. Although another aldehyde dehydrogenase, MSMEG_1543, induces upon formaldehyde addition, it is not involved in its detoxification. We also show that the expression of the mscR operon is constitutive and remains unchanged upon formaldehyde addition, as displayed by the promoter activity of PmscR and by the transcript and protein levels of MscR. Furthermore, we establish the role of a thiol-responsive sigma factor SigH in formaldehyde detoxification. We show that SigH, and not SigE, is crucial for formaldehyde detoxification, even though it does not directly regulate mscR operon expression. In addition, sensitivity to formaldehyde in sigH-knockout could be alleviated by overexpression of mscR. Taken together, our data demonstrate the importance of MSH-dependent pathways in detoxifying formaldehyde in a mycobacterial system. An absence of such MSH-dependent proteins in eukaryotes and its complete conservation in M. tuberculosis, the causative agent of tuberculosis, further unravel new drug targets for this pathogen.IMPORTANCEExtensive research has been done on formaldehyde detoxification in different bacteria. However, our current understanding of the mechanisms underlying this process in mycobacteria remains exceedingly little. We previously showed that MscR, a formaldehyde dehydrogenase from Mycobacterium smegmatis, plays a pivotal role in this detoxification pathway. Here, we present a potential S-formyl-mycothiol hydrolase named Fmh, thought to be a metallo-beta-lactamase, which functions along with mycothiol (MSH) and MscR to enhance formate production within this detoxification pathway. Co-expression of Fmh with MscR significantly enhances the efficiency of formaldehyde detoxification in M. smegmatis. Our experiments establish that Fmh catalyzes the final step of this detoxification pathway. Although an alternative sigma factor SigH was found to be involved in formaldehyde detoxification, it did not directly regulate the expression of mscR. Since formaldehyde detoxification is essential for bacterial survival, we envisage this process to be a potential drug target for M. tuberculosis eradication.


Subject(s)
Cysteine , Glycopeptides , Inositol , Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/metabolism , Sigma Factor/genetics , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Formaldehyde/metabolism , beta-Lactamases/metabolism , Formates/metabolism , Bacterial Proteins/metabolism
16.
Biochim Biophys Acta Biomembr ; 1866(3): 184270, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38211647

ABSTRACT

Transition of Mycolicibacterium smegmatis (Msm) and Mycobacterium tuberculosis to dormancy in vitro is accompanied by an accumulation of free methylated forms of porphyrins (tetramethyl coproporphyrin - TMC) localized in the cell wall of dormant bacteria. A study of the fluorescence anisotropy of BODIPY based fluorescent probes on individual cell level using confocal microscope revealed significant changes in this parameter for BODIPY FL C16 from 0.05 to 0.22 for vegetative and dormant Msm cells correspondingly. Similarly, the increase of TMC concentration in vegetative Msm cells grown in the presence of 5-aminolevulinic acid (a known inducer of porphyrin synthesis) resulted in an increase of BODIPY FL C16 anisotropy. These changes in TMC concentration and membrane fluidity were accompanied by an inhibition of the activity of the respiratory chain measured by oxygen consumption and a reduction of the DCPIP redox acceptor. During the first 8 h of the reactivation of the dormant Msm cells, the porphyrin content and probe fluorescent anisotropy returned to the level for vegetative bacteria. We suggested that upon transition to dormancy, an accumulation of TMC in membranes leads to a decrease in membrane fluidity, resulting in an inhibition of the respiratory chain activity. However, direct interactions of TMC with membrane bound enzymes cannot also be excluded. This, in turn, may result in the down regulation of many metabolic energy-dependent reactions as a part of mechanisms accompanying the transition to a hypometabolic state of mycobacteria.


Subject(s)
Boron Compounds , Porphyrins , Electron Transport , Membrane Fluidity , Palmitic Acids/metabolism , Mycobacterium smegmatis/metabolism
17.
Microbiol Spectr ; 12(3): e0251523, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38289931

ABSTRACT

Tuberculosis, a lung disease caused by Mycobacterium tuberculosis (Mtb), remains a major global health problem ranking as the second leading cause of death from a single infectious agent. One of the major factors contributing toward Mtb's success as a pathogen is its unique cell wall and its ability to counteract various arms of the host's immune response. A recent genome-scale study profiled a list of candidate genes that are predicted to be essential for Mtb survival of host-mediated responses. One candidate was FtsEX, a protein complex composed of an ATP-binding domain, FtsE, and a transmembrane domain, FtsX. FtsEX functions through interaction with a periplasmic hydrolase, RipC. Homologs of FtsEX exist in other bacteria and have been linked with playing a key role in regulating peptidoglycan hydrolysis during cell elongation and division. Here, we report on Mycobacterium smegmatis, FtsE, FtsX, and RipC and their protective roles in stressful conditions. We demonstrate that the individual genes of FtsEX complex and RipC are not essential for survival in normal growth conditions but conditionally essential in low-salt media and antibiotic-treated media. Growth defects in these conditions were characterized by short and bulgy cells as well as elongated filamentous cells. Our results suggest that FtsE, FtsX, and RipC are required for both normal cell elongation and division and ultimately for survival in stressful conditions. IMPORTANCE: Mycobacterial cell growth and division are coordinated with regulated peptidoglycan hydrolysis. Understanding cell wall gene complexes that govern normal cell division and elongation will aid in the development of tools to disarm the ability of mycobacteria to survive immune-like and antibiotic stresses. We combined genetic analyses and scanning electron microscopy to analyze morphological changes of mycobacterial FtsEX and RipC mutants in stressful conditions. We demonstrate that FtsE, FtsX, FtsEX, and RipC are conditionally required for the survival of Mycobacterium smegmatis during rifampicin treatment and in low-salt conditions. Growth defects in these conditions were characterized by short and bulgy cells as well as elongated filamentous cells. We also show that the FtsEX-RipC interaction is essential for the survival of M. smegmatis in rifampicin. Our results suggest that FtsE, FtsX, and RipC are required for normal cell wall regulation and ultimately for survival in stressful conditions.


Subject(s)
Bacterial Proteins , Cell Cycle Proteins , Cell Cycle Proteins/metabolism , Bacterial Proteins/metabolism , Rifampin/pharmacology , Peptidoglycan/metabolism , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/metabolism , Osmolar Concentration , Anti-Bacterial Agents
18.
Vet Microbiol ; 288: 109922, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38086162

ABSTRACT

Mycobacterial PE_PGRS family proteins play key roles in pathogen-host interaction. However, the function of most PE_PGRS proteins remains unknown. In this study, we characterized the role of PE12 of Mycobacterium bovis (M. bovis) on bacterial growth, bacterial survival, and host cell apoptosis. Transcriptome sequencing of infected THP-1 cells was also performed. Compared to Ms_Vec, we found that M. bovis PE12 did not alter the colony morphology of M. smegmatis. The survival of Ms_PE12 was obviously higher than that of Ms_Vec. Furthermore, PE12 significantly suppressed the apoptosis of THP-1 induced by M. smegmatis infection. Transcriptome analysis results showed that there were 70 downregulated genes in the Ms_PE12 infection group in comparison with the Ms_Vec infection group, and these differentially expressed genes were enriched in 240 downregulated GO terms and 6 KEGG pathways. The downregulated expression genes are involved in cell adhesion, phagocytosis, apoptosis, inflammatory response, glycolysis and transmembrane transporter activity. Taken together, our study reveals that PE12 can suppress apoptosis and inhibit proinflammatory cytokine response. We propose that PE12 is related to macrophage phagocytosis and apoptosis, providing useful information to the pathogenic mechanisms of M. bovis.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Animals , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Macrophages/microbiology , Cytokines/metabolism , Apoptosis , Phagocytosis , Mycobacterium tuberculosis/genetics
19.
J Biomol Struct Dyn ; 42(4): 2043-2057, 2024.
Article in English | MEDLINE | ID: mdl-38093709

ABSTRACT

Mycobacterium tuberculosis RecA (MtRecA), a protein involved in DNA repair, homologous recombination and SOS pathway, contributes to the development of multidrug resistance. ATP binding-site in RecA has been a drug target to disable RecA dependent DNA repair. For the first time, experiments have shown the existence and binding of c-di-AMP to a novel allosteric site in the C-terminal-Domain (CTD) of Mycobacterium smegmatis RecA (MsRecA), a close homolog of MtRecA. In addition, it was observed that the c-di-AMP was not binding to Escherichia coli RecA (EcRecA). This article analyses the possible interactions of the three RecA homologs with the various c-di-AMP conformations to gain insights into the structural basis of the natural preference of c-di-AMP to MsRecA and not to EcRecA, using the structural biology tools. The comparative analysis, based on amino acid composition, homology, motifs, residue types, docking, molecular dynamics simulations and binding free energy calculations, indeed, conclusively indicates strong binding of c-di-AMP to MsRecA. Having very similar results as MsRecA, it is highly plausible for c-di-AMP to strongly bind MtRecA as well. These insights from the in-silico studies adds a new therapeutic approach against TB through design and development of novel allosteric inhibitors for the first time against MtRecA.Communicated by Ramaswamy H. Sarma.


Subject(s)
Dinucleoside Phosphates , Mycobacterium smegmatis , Mycobacterium tuberculosis , Binding Sites , Mycobacterium smegmatis/metabolism , Mycobacterium tuberculosis/genetics , Allosteric Site , Rec A Recombinases/chemistry , Bacterial Proteins/chemistry
20.
Glycobiology ; 34(2)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38039077

ABSTRACT

Phosphatidyl-myo-inositol mannosides (PIMs), Lipomannan (LM), and Lipoarabinomannan (LAM) are essential components of the cell envelopes of mycobacteria. At the beginning of the biosynthesis of these compounds, phosphatidylinositol (PI) is mannosylated and acylated by various enzymes to produce Ac1/2PIM4, which is used to synthesize either Ac1/2PIM6 or LM/LAM. The protein PimE, a membrane-bound glycosyltransferase (GT-C), catalyzes the addition of a mannose group to Ac1PIM4 to produce Ac1PIM5, using polyprenolphosphate mannose (PPM) as the mannose donor. PimE-deleted Mycobacterium smegmatis (Msmeg) showed structural deformity and increased antibiotic and copper sensitivity. Despite knowing that the mutation D58A caused inactivity in Msmeg, how PimE catalyzes the transfer of mannose from PPM to Ac1/2PIM4 remains unknown. In this study, analyzing the AlphaFold structure of PimE revealed the presence of a tunnel through the D58 residue with two differently charged gates. Molecular docking suggested PPM binds to the hydrophobic tunnel gate, whereas Ac1PIM4 binds to the positively charged tunnel gate. Molecular dynamics (MD) simulations further demonstrated the critical roles of the residues N55, F87, L89, Y163, Q165, K197, L198, R251, F277, W324, H326, and I375 in binding PPM and Ac1PIM4. The mutation D58A caused a faster release of PPM from the catalytic tunnel, explaining the loss of PimE activity. Along with a hypothetical mechanism of mannose transfer by PimE, we also observe the presence of tunnels through a negatively charged aspartate or glutamate with two differently-charged gates among most GT-C enzymes. Common hydrophobic gates of GT-C enzymes probably harbor sugar donors, whereas, differently-charged tunnel gates accommodate various sugar-acceptors.


Subject(s)
Molecular Dynamics Simulation , Mycobacterium , Mannose/chemistry , Molecular Docking Simulation , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/metabolism , Lipopolysaccharides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...