Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.051
Filter
1.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 367-372, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38710520

ABSTRACT

Toll-like receptor 2 (TLR2) is a pattern recognition receptor expressed on the surface of leukocytes. Various ligands can activate or inhibit TLR2, therefore regulating the inflammation and apoptosis of immune cells. Mycobacterium tuberculosis (MTB) typically parasitizes macrophages. Further, after infecting the body, MTB can interact with TLR2 on the surface of various immune cells, including macrophages, leading to the release of cytokines that can affect the state and proliferation of MTB in the body. Additional research is needed to understand the polymorphism of TLR2 at the molecular level. Current studies indicate that the majority of TLR2 polymorphisms are not associated with susceptibility to MTB infection. This review provides an overview of the researches related to TLR2 and its ligands, the immune regulation activities of TLR2 following MTB infection, and the association of TLR2 polymorphism with susceptibility to MTB.


Subject(s)
Mycobacterium tuberculosis , Toll-Like Receptor 2 , Tuberculosis , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/immunology , Humans , Tuberculosis/immunology , Tuberculosis/microbiology , Tuberculosis/genetics , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/physiology , Polymorphism, Genetic , Animals , Genetic Predisposition to Disease
2.
Microbiology (Reading) ; 170(5)2024 May.
Article in English | MEDLINE | ID: mdl-38717801

ABSTRACT

Mycobacterium tuberculosis (Mtb) senses and adapts to host environmental cues as part of its pathogenesis. One important cue sensed by Mtb is the acidic pH of its host niche - the macrophage. Acidic pH induces widespread transcriptional and metabolic remodelling in Mtb. These adaptations to acidic pH can lead Mtb to slow its growth and promote pathogenesis and antibiotic tolerance. Mutants defective in pH-dependent adaptations exhibit reduced virulence in macrophages and animal infection models, suggesting that chemically targeting these pH-dependent pathways may have therapeutic potential. In this review, we discuss mechanisms by which Mtb regulates its growth and metabolism at acidic pH. Additionally, we consider the therapeutic potential of disrupting pH-driven adaptations in Mtb and review the growing class of compounds that exhibit pH-dependent activity or target pathways important for adaptation to acidic pH.


Subject(s)
Adaptation, Physiological , Mycobacterium tuberculosis , Tuberculosis , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/physiology , Hydrogen-Ion Concentration , Animals , Humans , Tuberculosis/microbiology , Tuberculosis/drug therapy , Macrophages/microbiology , Virulence , Gene Expression Regulation, Bacterial , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Antitubercular Agents/pharmacology
3.
Commun Biol ; 7(1): 584, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755239

ABSTRACT

B cells are important in tuberculosis (TB) immunity, but their role in the human lung is understudied. Here, we characterize B cells from lung tissue and matched blood of patients with TB and found they are decreased in the blood and increased in the lungs, consistent with recruitment to infected tissue, where they are located in granuloma associated lymphoid tissue. Flow cytometry and transcriptomics identify multiple B cell populations in the lung, including those associated with tissue resident memory, germinal centers, antibody secretion, proinflammatory atypical B cells, and regulatory B cells, some of which are expanded in TB disease. Additionally, TB lungs contain high levels of Mtb-reactive antibodies, specifically IgM, which promotes Mtb phagocytosis. Overall, these data reveal the presence of functionally diverse B cell subsets in the lungs of patients with TB and suggest several potential localized roles that may represent a target for interventions to promote immunity or mitigate immunopathology.


Subject(s)
B-Lymphocytes , Humans , B-Lymphocytes/immunology , Lung/immunology , Lung/microbiology , Lung/pathology , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/physiology , Phenotype , Tuberculosis/immunology , Tuberculosis/microbiology , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/pathology , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/genetics , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , Male , Female , Adult
4.
Elife ; 132024 May 13.
Article in English | MEDLINE | ID: mdl-38739431

ABSTRACT

Survival of Mycobacterium tuberculosis within the host macrophages requires the bacterial virulence regulator PhoP, but the underlying reason remains unknown. 3',5'-Cyclic adenosine monophosphate (cAMP) is one of the most widely used second messengers, which impacts a wide range of cellular responses in microbial pathogens including M. tuberculosis. Herein, we hypothesized that intra-bacterial cAMP level could be controlled by PhoP since this major regulator plays a key role in bacterial responses against numerous stress conditions. A transcriptomic analysis reveals that PhoP functions as a repressor of cAMP-specific phosphodiesterase (PDE) Rv0805, which hydrolyzes cAMP. In keeping with these results, we find specific recruitment of the regulator within the promoter region of rv0805 PDE, and absence of phoP or ectopic expression of rv0805 independently accounts for elevated PDE synthesis, leading to the depletion of intra-bacterial cAMP level. Thus, genetic manipulation to inactivate PhoP-rv0805-cAMP pathway decreases cAMP level, stress tolerance, and intracellular survival of the bacillus.


Subject(s)
Bacterial Proteins , Cyclic AMP , Gene Expression Regulation, Bacterial , Mycobacterium tuberculosis , Stress, Physiological , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/physiology , Cyclic AMP/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Microbial Viability , Macrophages/microbiology , Macrophages/metabolism
5.
Nat Microbiol ; 9(4): 949-963, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38528148

ABSTRACT

A polymorphism causing deficiencies in Toll-interacting protein (TOLLIP), an inhibitory adaptor protein affecting endosomal trafficking, is associated with increased tuberculosis (TB) risk. It is, however, unclear how TOLLIP affects TB pathogenesis. Here we show that TB severity is increased in Tollip-/- mice, characterized by macrophage- and T cell-driven inflammation, foam cell formation and lipid accumulation. Tollip-/- alveolar macrophages (AM) specifically accumulated lipid and underwent necrosis. Transcriptional and protein analyses of Mycobacterium tuberculosis (Mtb)-infected, Tollip-/- AM revealed increased EIF2 signalling and downstream upregulation of the integrated stress response (ISR). These phenotypes were linked, as incubation of the Mtb lipid mycolic acid with Mtb-infected Tollip-/- AM activated the ISR and increased Mtb replication. Correspondingly, the ISR inhibitor, ISRIB, reduced Mtb numbers in AM and improved Mtb control, overcoming the inflammatory phenotype. In conclusion, targeting the ISR offers a promising target for host-directed anti-TB therapy towards improved Mtb control and reduced immunopathology.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Mice , Macrophages, Alveolar/microbiology , Tuberculosis/microbiology , Mycobacterium tuberculosis/physiology , Macrophages/microbiology , Lipids , Intracellular Signaling Peptides and Proteins/metabolism
6.
Tuberculosis (Edinb) ; 146: 102502, 2024 May.
Article in English | MEDLINE | ID: mdl-38458103

ABSTRACT

Mycobacterium tuberculosis (Mtb)-infected macrophages aggravated the development of pulmonary tuberculosis, but its detailed molecular mechanisms are still largely unknown. Here, the mouse primary peritoneal macrophages were infected with the attenuated strain of Mtb H37Ra, and we firstly verified that targeting a novel METTL3/N6-Methyladenosine (m6A)/LncRNA MALAT1/miR-125b/TLR4 axis was effective to suppress pyroptotic cell death in the Mtb-infected macrophages. Specifically, through performing Real-Time qPCR and Western Blot analysis, we validated that METTL3, LncRNA MALAT1 and TLR4 were elevated, whereas miR-125b and the anti-oxidant agents (Nrf2 and HO-1) were downregulated in Mtb-infected mouse macrophages. In addition, functional experiments confirmed that both ROS scavenger NAC and METTL3-ablation downregulated NLRP3, GSDMD-C, cleaved Caspase-1 and ASC to restrain pyroptotic cell death and decreased the expression levels of IL-1ß, IL-18, IL-6 and TNF-α to restrain inflammatory cytokines expression in Mtb-infected macrophages. Next, METTL3-ablation induced m6A-demethylation and instability in LncRNA MALAT1, and low-expressed LncRNA MALAT1 caused TLR4 downregulation through sponging miR-125b, resulting in the inactivation of NLRP3 inflammasome. Finally, silencing of METTL3-induced protective effects in Mtb-infected macrophages were all abrogated by overexpressing LncRNA MALAT1 and downregulating miR-125b. Thus, we concluded that targeting METTL3-mediated m6A modifications suppressed Mtb-induced pyroptotic cell death in mouse macrophages, and the downstream LncRNA MALAT1/miR-125b/TLR4 axis played critical role in this process.


Subject(s)
Macrophages , MicroRNAs , Mycobacterium tuberculosis , NLR Family, Pyrin Domain-Containing 3 Protein , RNA, Long Noncoding , Animals , Mice , Adenine/analogs & derivatives , Inflammation/metabolism , Macrophages/microbiology , MicroRNAs/genetics , MicroRNAs/metabolism , Mycobacterium tuberculosis/physiology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
7.
Nat Microbiol ; 9(3): 684-697, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38413834

ABSTRACT

Although autophagy sequesters Mycobacterium tuberculosis (Mtb) in in vitro cultured macrophages, loss of autophagy in macrophages in vivo does not result in susceptibility to a standard low-dose Mtb infection until late during infection, leaving open questions regarding the protective role of autophagy during Mtb infection. Here we report that loss of autophagy in lung macrophages and dendritic cells results in acute susceptibility of mice to high-dose Mtb infection, a model mimicking active tuberculosis. Rather than observing a role for autophagy in controlling Mtb replication in macrophages, we find that autophagy suppresses macrophage responses to Mtb that otherwise result in accumulation of myeloid-derived suppressor cells and subsequent defects in T cell responses. Our finding that the pathogen-plus-susceptibility gene interaction is dependent on dose has important implications both for understanding how Mtb infections in humans lead to a spectrum of outcomes and for the potential use of autophagy modulators in clinical medicine.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Animals , Mice , T-Lymphocytes , Macrophages/microbiology , Mycobacterium tuberculosis/physiology , Autophagy
8.
Emerg Microbes Infect ; 13(1): 2322663, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38380651

ABSTRACT

The discovery of promising cytokines and clarification of their immunological mechanisms in controlling the intracellular fate of Mycobacterium tuberculosis (Mtb) are necessary to identify effective diagnostic biomarkers and therapeutic targets. To escape immune clearance, Mtb can manipulate and inhibit the normal host process of phagosome maturation. Phagosome maturation arrest by Mtb involves multiple effectors and much remains unknown about this important aspect of Mtb pathogenesis. In this study, we found that interleukin 16 (IL-16) is elevated in the serum samples of Tuberculosis (TB) patients and can serve as a specific target for treatment TB. There was a significant difference in IL-16 levels among active TB, latent TB infection (LTBI), and non-TB patients. This study first revealed that macrophages are the major source of IL-16 production in response to Mtb infection, and elucidated that IL-16 can promote Mtb intracellular survival by inhibiting phagosome maturation and suppressing the expression of Rev-erbα which can inhibit IL-10 secretion. The experiments using zebrafish larvae infected with M. marinum and mice challenged with H37Rv demonstrated that reducing IL-16 levels resulted in less severe pathology and improved survival, respectively. In conclusion, this study provided direct evidence that Mtb hijacks the host macrophages-derived interleukin 16 to enhance intracellular growth. It is suggesting the immunosuppressive role of IL-16 during Mtb infection, supporting IL-16 as a promising therapeutic target.


Subject(s)
Interleukin-16 , Mycobacterium tuberculosis , Tuberculosis , Animals , Humans , Mice , Interleukin-16/metabolism , Macrophages/microbiology , Mycobacterium tuberculosis/physiology , Phagosomes/metabolism , Phagosomes/microbiology , Tuberculosis/microbiology , Zebrafish
9.
Adv Sci (Weinh) ; 11(11): e2305592, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38192178

ABSTRACT

Despite its importance, the functional heterogeneity surrounding the dynamics of interactions between mycobacterium tuberculosis and human immune cells in determining host immune strength and tuberculosis (TB) outcomes, remains far from understood. This work now describes the development of a new technological platform to elucidate the immune function differences in individuals with TB, integrating single-cell RNA sequencing and cell surface antibody sequencing to provide both genomic and phenotypic information from the same samples. Single-cell analysis of 23 990 peripheral blood mononuclear cells from a new cohort of primary TB patients and healthy controls enables to not only show four distinct immune phenotypes (TB, myeloid, and natural killer (NK) cells), but also determine the dynamic changes in cell population abundance, gene expression, developmental trajectory, transcriptomic regulation, and cell-cell signaling. In doing so, TB-related changes in immune cell functions demonstrate that the immune response is mediated through host T cells, myeloid cells, and NK cells, with TB patients showing decreased naive, cytotoxicity, and memory functions of T cells, rather than their immunoregulatory function. The platform also has the potential to identify new targets for immunotherapeutic treatment strategies to restore T cells from dysfunctional or exhausted states.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Leukocytes, Mononuclear , Mycobacterium tuberculosis/physiology , T-Lymphocytes , Killer Cells, Natural
11.
Front Cell Infect Microbiol ; 13: 1266884, 2023.
Article in English | MEDLINE | ID: mdl-38029268

ABSTRACT

Tuberculosis (TB), attributed to the Mycobacterium tuberculosis complex, is one of the most serious zoonotic diseases worldwide. Nevertheless, the host mechanisms preferentially leveraged by Mycobacterium remain unclear. After infection, both Mycobacterium tuberculosis (MTB) and Mycobacterium bovis (MB) bacteria exhibit intimate interactions with host alveolar macrophages; however, the specific mechanisms underlying these macrophage responses remain ambiguous. In our study, we performed a comparative proteomic analysis of bovine alveolar macrophages (BAMs) infected with MTB or MB to elucidate the differential responses of BAMs to each pathogen at the protein level. Our findings revealed heightened TB infection susceptibility of BAMs that had been previously infected with MTB or MB. Moreover, we observed that both types of mycobacteria triggered significant changes in BAM energy metabolism. A variety of proteins and signalling pathways associated with autophagy and inflammation-related progression were highly activated in BAMs following MB infection. Additionally, proteins linked to energy metabolism were highly expressed in BAMs following MTB infection. In summary, we propose that BAMs may resist MTB and MB infections via different mechanisms. Our findings provide critical insights into TB pathogenesis, unveiling potential biomarkers to facilitate more effective TB treatment strategies. Additionally, our data lend support to the hypothesis that MTB may be transmitted via cross-species infection.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Animals , Cattle , Mycobacterium tuberculosis/physiology , Macrophages, Alveolar/microbiology , Proteome , Proteomics , Tuberculosis/veterinary
12.
Cell ; 186(23): 4994-4995, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37949055

ABSTRACT

Mechanobiology explores how cells sense and respond to mechanical cues and how mechanics guide cell function, physiology, and disease. In this issue of Cell, Thacker and colleagues reveal how the tuberculosis-causing pathogen exploits the mechanical behavior of cord-like structures to promote infection, impacting immune response, antibiotic susceptibility, and treatment strategies.


Subject(s)
Biomechanical Phenomena , Mycobacterium tuberculosis , Humans , Biophysics , Tuberculosis/microbiology , Mycobacterium tuberculosis/physiology
13.
Expert Rev Anti Infect Ther ; 21(12): 1355-1364, 2023.
Article in English | MEDLINE | ID: mdl-37970631

ABSTRACT

INTRODUCTION: Tuberculosis (TB) is a chronic infectious disease caused by mycobacterium tuberculosis (Mtb) that poses a major threat to human health. AREAS COVERED: Herein, we aim to review the alteration of the microbiota in gut and respiratory during TB development, the potential function and mechanisms of microbiota in the pathogenesis of Mtb infection, and the impact of antibiotic treatment on the microbiota. In addition, we discuss the potential new paradigm for the use of microbiota-based treatments such as probiotics and prebiotics in the treatment of TB. EXPERT OPINION: Studies have shown that trillions of micro-organisms live in the human gut and respiratory tract, acting as gatekeepers in maintaining immune homeostasis and respiratory physiology and playing a beneficial or hostile role in the development of TB. Anti-TB antibiotics may cause microecological imbalances in the gut and respiratory tract, and microbiome-based therapeutics may be a promising strategy for TB treatment. Appropriate probiotics and prebiotics supplementation, along with antimycobacterial treatment, will improve the therapeutic effect of TB treatment and protect the gut and respiratory microbiota from dysbiosis.


Subject(s)
Microbiota , Mycobacterium tuberculosis , Probiotics , Tuberculosis, Pulmonary , Tuberculosis , Humans , Tuberculosis, Pulmonary/drug therapy , Tuberculosis/drug therapy , Lung/microbiology , Mycobacterium tuberculosis/physiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Probiotics/therapeutic use , Prebiotics , Dysbiosis/microbiology
14.
mSystems ; 8(5): e0073023, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37787569

ABSTRACT

The interaction between Mycobacterium tuberculosis, the agent of tuberculosis (TB), and its host cell, the macrophage, is multifaceted, dynamic, and involves multiple molecular partners. A better understanding of this interaction could help researchers manipulate the immune system in order to design host-targeted immunotherapies and/or develop a novel vaccine protecting better adults against TB. Jani and coworkers studied the role of the macrophage receptor TLR2 in the response to M. tuberculosis using single-cell technologies (C. Jani, S. L. Solomon, J. M. Peters, and S. C. Pringle, et al., mSystems, https://doi.org/10.1128/msystems.00052-23, 2023). This work addresses the multiple challenges associated with such studies and shows how informative single-cell analysis can be for the study of heterogeneous and complex host-pathogen interactions.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Adult , Humans , Mycobacterium tuberculosis/physiology , Toll-Like Receptor 2/genetics , Tuberculosis/immunology , Macrophages/immunology
15.
Cell ; 186(23): 5135-5150.e28, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37865090

ABSTRACT

Mycobacterium tuberculosis (Mtb) cultured axenically without detergent forms biofilm-like cords, a clinical identifier of virulence. In lung-on-chip (LoC) and mouse models, cords in alveolar cells contribute to suppression of innate immune signaling via nuclear compression. Thereafter, extracellular cords cause contact-dependent phagocyte death but grow intercellularly between epithelial cells. The absence of these mechanopathological mechanisms explains the greater proportion of alveolar lesions with increased immune infiltration and dissemination defects in cording-deficient Mtb infections. Compression of Mtb lipid monolayers induces a phase transition that enables mechanical energy storage. Agent-based simulations demonstrate that the increased energy storage capacity is sufficient for the formation of cords that maintain structural integrity despite mechanical perturbation. Bacteria in cords remain translationally active despite antibiotic exposure and regrow rapidly upon cessation of treatment. This study provides a conceptual framework for the biophysics and function in tuberculosis infection and therapy of cord architectures independent of mechanisms ascribed to single bacteria.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Mice , Biofilms , Lung/microbiology , Lung/pathology , Mycobacterium tuberculosis/physiology , Tuberculosis/microbiology , Tuberculosis/pathology , Virulence , Biomechanical Phenomena
16.
Infect Immun ; 91(10): e0020123, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37754680

ABSTRACT

Hematopoietic stem and progenitor cells (HSPCs) play a vital role in the host response to infection through the rapid and robust production of mature immune cells. These HSPC responses can be influenced, directly and indirectly, by pathogens as well. Infection with Mycobacterium tuberculosis (Mtb) can drive lymphopoiesis through modulation of type I interferon (IFN) signaling. We have previously found that the presence of a drug resistance (DR)-conferring mutation in Mtb drives altered host-pathogen interactions and heightened type I IFN production in vitro. But the impacts of this DR mutation on in vivo host responses to Mtb infection, particularly the hematopoietic compartment, remain unexplored. Using a mouse model, we show that, while drug-sensitive Mtb infection induces expansion of HSPC subsets and a skew toward lymphopoiesis, DR Mtb infection fails to induce an expansion of these subsets and an accumulation of mature granulocytes in the bone marrow. Using single-cell RNA sequencing, we show that the HSCs from DR Mtb-infected mice fail to upregulate pathways related to cytokine signaling across all profiled HSC subsets. Collectively, our studies report a novel finding of a chronic infection that fails to induce a potent hematopoietic response that can be further investigated to understand pathogen-host interaction at the level of hematopoiesis.


Subject(s)
Bacterial Infections , Mycobacterium tuberculosis , Tuberculosis , Humans , Bone Marrow , Hematopoietic Stem Cells , Mycobacterium tuberculosis/physiology , Hematopoiesis/physiology , Bacterial Infections/metabolism , Bone Marrow Cells
17.
Front Cell Infect Microbiol ; 13: 1218583, 2023.
Article in English | MEDLINE | ID: mdl-37560320

ABSTRACT

Tuberculosis (TB) is a widespread infectious disease caused by Mycobacterium tuberculosis (M. tb), which has been a significant burden for a long time. Post-translational modifications (PTMs) are essential for protein function in both eukaryotic and prokaryotic cells. This review focuses on the contribution of protein acetylation to the function of M. tb and its infected macrophages. The acetylation of M. tb proteins plays a critical role in virulence, drug resistance, regulation of metabolism, and host anti-TB immune response. Similarly, the PTMs of host proteins induced by M. tb are crucial for the development, treatment, and prevention of diseases. Host protein acetylation induced by M. tb is significant in regulating host immunity against TB, which substantially affects the disease's development. The review summarizes the functions and mechanisms of M. tb acetyltransferase in virulence and drug resistance. It also discusses the role and mechanism of M. tb in regulating host protein acetylation and immune response regulation. Furthermore, the current scenario of isoniazid usage in M. tb therapy treatment is examined. Overall, this review provides valuable information that can serve as a preliminary basis for studying pathogenic research, developing new drugs, exploring in-depth drug resistance mechanisms, and providing precise treatment for TB.


Subject(s)
Mycobacterium tuberculosis , Protein Processing, Post-Translational , Tuberculosis , Humans , Acetylation , Acetyltransferases , Mycobacterium tuberculosis/physiology , Tuberculosis/microbiology , Macrophages/microbiology
18.
Front Immunol ; 14: 1233630, 2023.
Article in English | MEDLINE | ID: mdl-37583694

ABSTRACT

Rapid emergence of antibiotic resistance in tuberculosis has left us with limited resources to treat and manage multi drug resistant (MDR) cases of tuberculosis, prompting the development of novel therapeutics. Mycobacterium tuberculosis (MTB) perturbs the host protective pathways for its survival, therefore host directed therapeutic (HDT) interventions offer an attractive alternative strategy. Curcumin (CMN), the principle curcuminoid from Curcuma longa is known to have anti-TB activity against MDR strains of MTB in macrophages. We discovered that treatment of CMN induced autophagy in uninfected and MTB infected macrophages which was evident by conversion of LC3-I to LC3-II and degradation of p62. Inhibition of autophagy by a pharmacological inhibitor 3-MA resulted in significant inhibition of intracellular killing activity of CMN, suggesting the involvement of autophagy in intracellular clearance of MTB. Moreover, annexin v-FITC/PI staining data suggested induction of apoptosis in uninfected and MTB infected macrophages post CMN treatment. This finding was further corroborated by up-regulated expression of pro-apoptotic proteins, Bax, cleaved caspase-3 and PARP and diminished expression of anti-apoptotic protein Bcl-2 as evaluated by immunoblotting. Using GFP-MTB H37Rv and Lysotracker Red staining we demonstrated co-localization of GFP-MTB H37Rv containing phagosome to lysosome after CMN treatment, indicating enhanced phagosome lysosome fusion. Due to poor bioavailability of CMN, its clinical use is limited, therefore to overcome this issue, CMN was encapsulated in Poly(lactic-co-glycolic) acid (PLGA) shell, resulting in polymeric CMN nano particles (ISCurNP). Flow cytometric evaluation suggested >99% uptake of ISCurNP after 3h of treatment. In BALB/c mice, oral dose of ISCurNP resulted in 6.7-fold increase in the bioavailability compared to free CMN. Moreover, ISCurNP treatment resulted in significant decrease in the intracellular survival of MTB H37Rv through induction of autophagy. Adjunct action of ISCurNP and CMN in combination with isoniazid (INH) revealed >99% decrease in intracellular survival of MTB in macrophage as compared to ISCurNP, CMN or INH alone. In conclusion, our findings suggest the role of ISCurNP as novel host directed formulation to combat both sensitive and MDR strains of MTB by induction of autophagy.


Subject(s)
Curcumin , Mycobacterium tuberculosis , Tuberculosis , Animals , Mice , Mycobacterium tuberculosis/physiology , Isoniazid/pharmacology , Curcumin/pharmacology , Macrophages/metabolism , Tuberculosis/microbiology , Autophagy
19.
Int Rev Cell Mol Biol ; 377: 87-119, 2023.
Article in English | MEDLINE | ID: mdl-37268352

ABSTRACT

The ability of Mycobacterium tuberculosis (M. tb) to hijack host mitochondria and control host immune signaling is the key to its successful infection. Infection of M. tb causes distinct changes in mitochondrial morphology, metabolism, disruption of innate signaling, and cell fate. The alterations in mitochondria are intricately linked to the immunometabolism of host immune cells such as macrophages, dendritic cells, and T cells. Different immune cells are tuned to diverse immunometabolic states that decide their immune response. These changes could be attributed to the several proteins targeted to host mitochondria by M. tb. Bioinformatic analyses and experimental evidence revealed the potential localization of secreted mycobacterial proteins in host mitochondria. Given the central role of mitochondria in the host metabolism, innate signaling, and cell fate, its manipulation by M. tb renders it susceptible to infection. Restoring mitochondrial health can override M. tb-mediated manipulation and thus clear infection. Several reviews are available on the role of different immune cells in tuberculosis infection and M. tb evasion of immune responses; in the present chapter, we discuss the mitochondrial functional alterations in the innate immune signaling of various immune cells driven by differential mitochondrial immunometabolism during M. tb infection and the role of M. tb proteins, which are directly targeted to the host mitochondria and compromise its innate signaling system. Further studies would help in uncovering the molecular mechanisms of M. tb-directed proteins in host mitochondria to conceptualize both host- directed and pathogen- directed interventions in TB disease management.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Tuberculosis/metabolism , Tuberculosis/microbiology , Mycobacterium tuberculosis/physiology , Macrophages , Signal Transduction , Mitochondria/metabolism
20.
PLoS Biol ; 21(6): e3002159, 2023 06.
Article in English | MEDLINE | ID: mdl-37319285

ABSTRACT

The immune response to Mycobacterium tuberculosis infection determines tuberculosis disease outcomes, yet we have an incomplete understanding of what immune factors contribute to a protective immune response. Neutrophilic inflammation has been associated with poor disease prognosis in humans and in animal models during M. tuberculosis infection and, therefore, must be tightly regulated. ATG5 is an essential autophagy protein that is required in innate immune cells to control neutrophil-dominated inflammation and promote survival during M. tuberculosis infection; however, the mechanistic basis for how ATG5 regulates neutrophil recruitment is unknown. To interrogate what innate immune cells require ATG5 to control neutrophil recruitment during M. tuberculosis infection, we used different mouse strains that conditionally delete Atg5 in specific cell types. We found that ATG5 is required in CD11c+ cells (lung macrophages and dendritic cells) to control the production of proinflammatory cytokines and chemokines during M. tuberculosis infection, which would otherwise promote neutrophil recruitment. This role for ATG5 is autophagy dependent, but independent of mitophagy, LC3-associated phagocytosis, and inflammasome activation, which are the most well-characterized ways that autophagy proteins regulate inflammation. In addition to the increased proinflammatory cytokine production from macrophages during M. tuberculosis infection, loss of ATG5 in innate immune cells also results in an early induction of TH17 responses. Despite prior published in vitro cell culture experiments supporting a role for autophagy in controlling M. tuberculosis replication in macrophages, the effects of autophagy on inflammatory responses occur without changes in M. tuberculosis burden in macrophages. These findings reveal new roles for autophagy proteins in lung resident macrophages and dendritic cells that are required to suppress inflammatory responses that are associated with poor control of M. tuberculosis infection.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Mice , Humans , Neutrophil Infiltration , Macrophages/physiology , Tuberculosis/microbiology , Autophagy , Mycobacterium tuberculosis/physiology , Inflammation
SELECTION OF CITATIONS
SEARCH DETAIL
...