Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 11: 1645, 2020.
Article in English | MEDLINE | ID: mdl-32849565

ABSTRACT

Context and Objectives: Inflammation is the leading mechanism involved in both physiological and pathological rupture of fetal membranes. Our aim was to obtain a better characterization of the inflammasome-dependent inflammation processes in these tissues, with a particular focus on the nucleotide-binding oligomerization domain (NOD)-like receptor, pyrin domain containing protein 7 (NLRP7) inflammasome. Methods: The presence of NLRP7 inflammasome actors [NLRP7, apoptosis-associated speck-like protein containing a CARD domain (ASC), and caspase-1] was confirmed by reverse transcriptase-polymerase chain reaction (RT-PCR) in human amnion and choriodecidua at the three trimesters and at term. The protein concentrations were then determined by enzyme-linked immunosorbent assay in term tissues, with or without labor. The presence of Mycoplasma salivarium and Mycoplasma fermentans in human fetal membranes was investigated using a PCR approach. Human amnion epithelial cells (AECs) were treated for 4 or 20 h with fibroblast-stimulating lipopeptide-1 (FSL-1), a M. salivarium-derived ligand. Transcripts and proteins quantity was then measured by RT-quantitative PCR and Western blotting, respectively. NLRP7 and ASC colocalization was confirmed by immunofluorescence. Western blots allowed analysis of pro-caspase-1 and gasdermin D cleavage. Results: NLRP7, ASC, and caspase-1 transcripts were expressed in both sheets of human fetal membranes during all pregnancy stages, but only ASC protein expression was increased with labor. In addition, M. salivarium and M. fermentans were detected for the first time in human fetal membranes. NLRP7 and caspase-1 transcripts, as well as NLRP7, ASC, and pro-caspase-1 protein levels, were increased in FSL-1-treated AECs. The NLRP7 inflammasome assembled around the nucleus, and pro-caspase-1 and gasdermin D were cleaved into their mature forms after FSL-1 stimulation. Conclusion: Two new mycoplasmas, M. salivarium and M. fermentans, were identified in human fetal membranes, and a lipopeptide derived from M. salivarium was found to induce NLRP7 inflammasome formation in AECs.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Amnion/drug effects , Diglycerides/pharmacology , Epithelial Cells/drug effects , Inflammasomes/metabolism , Mycoplasma fermentans/metabolism , Mycoplasma salivarium/metabolism , Oligopeptides/pharmacology , Adaptor Proteins, Signal Transducing/genetics , Amnion/immunology , Amnion/metabolism , Amnion/microbiology , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/metabolism , Caspase 1/genetics , Caspase 1/metabolism , Cells, Cultured , Cesarean Section , Epithelial Cells/immunology , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Female , Host-Pathogen Interactions , Humans , Inflammasomes/genetics , Mycoplasma fermentans/isolation & purification , Mycoplasma salivarium/isolation & purification , Parturition , Pregnancy , Pregnancy Trimesters , Signal Transduction
2.
Immunology ; 161(2): 114-122, 2020 10.
Article in English | MEDLINE | ID: mdl-32592165

ABSTRACT

Interleukin-1ß (IL-1ß) plays pivotal roles in controlling bacterial infections and is produced after the processing of pro-IL-1ß by caspase-1, which is activated by the inflammasome. In addition, caspase-1 cleaves the cytosolic protein, gasdermin-D (GSDMD), whose N-terminal fragment subsequently forms a pore in the plasma membrane, leading to the pyroptic cell-death-mediated release of IL-1ß. Living cells can also release IL-1ß via GSDMD pores or other unconventional secretory pathways. However, the precise mechanisms are poorly defined. Here, we show that lipoproteins from Mycoplasma salivarium (MsLP) and Mycoplasma pneumoniae (MpLP) and an M. salivarium-derived lipopeptide (FSL-1), which are activators of the nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome, induce IL-1ß release from mouse bone-marrow-derived macrophages (BMMs) without inducing cell death. The levels of IL-1ß release induced by MsLP, MpLP and FSL-1 were more than 100 times lower than those induced by the canonical NLRP3 activator nigericin. The IL-1ß release-inducing activities of MsLP, MpLP and FSL-1 were not attenuated in BMMs from GSDMD-deficient mice. Furthermore, both active caspase-1 and cleaved GSDMD were detected in response to transfection of FSL-1 into the cytosol of BMMs, but the release of IL-1ß was unaffected by GSDMD deficiency. Meanwhile, punicalagin, a membrane-stabilizing agent, drastically down-regulated the release of IL-1ß in response to FSL-1. These results suggest that mycoplasmal lipoprotein/lipopeptide-induced IL-1ß release by living macrophages is not mediated via GSDMD but rather through changes in membrane permeability.


Subject(s)
Bacterial Proteins/metabolism , Interleukin-1beta/metabolism , Lipoproteins/metabolism , Macrophages/immunology , Mycoplasma Infections/immunology , Mycoplasma pneumoniae/metabolism , Mycoplasma salivarium/metabolism , Neoplasm Proteins/metabolism , Peptides/metabolism , Animals , Cell Membrane Permeability , Cells, Cultured , Hydrolyzable Tannins/metabolism , Intracellular Signaling Peptides and Proteins , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neoplasm Proteins/genetics , Phosphate-Binding Proteins
4.
Arch Oral Biol ; 58(10): 1378-84, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23735812

ABSTRACT

OBJECTIVE: Mycoplasma salivarium is a human oral potential pathogen that preferentially resides in dental plaques and gingival sulci. It has been suggested that this organism may play an etiological role in inflammatory processes in the oral cavity. The aim of this work was to determine whether M. salivarium possesses a potent oxidant scavenging capacity (OSC). DESIGN: The OSC of M. salivarium was quantified by a highly sensitive luminal-dependent chemiluminescence assay in the presence of cocktails that induced a constant flux of luminescence resulting from the generation of peroxide, hydroxyl radical (cocktail A) and NO, superoxide and peroxynitrites (cocktail B). RESULTS: M. salivarium markedly reduced oxidative stress by scavenging both free reactive oxygen and nitrogen species. The OSC of M. salivarium was much higher than that of other Mycoplasma species. Most of M. salivarium OSC was confined to the cytosolic fraction and was markedly increased in the presence of tannic acid, red blood cells or mucin. The cytosolic OSC of M. salivarium was heat stable and not affected by sodium azide or prolonged proteolysis. However, it was markedly decreased upon dialysis, suggesting that the major reducing activity is not enzymatic but rather, a low molecular weight compound(s). CONCLUSIONS: The ability of M. salivarium to scavenge oxidants may play a role in the survival and pathogenicity of this microorganism. The enhanced OSC of M. salivarium in the presence of tannic acid, red blood cells or mucin might have a significant importance to assess complex interactions with polyphenols from nutrients, salivary proteins and red blood cells extravasated from injured capillaries during infection and inflammation in oral tissues.


Subject(s)
Free Radical Scavengers/metabolism , Mycoplasma salivarium/metabolism , Humans , Luminescence , Mouth/metabolism , Mouth/microbiology , Oxidative Stress , Tannins/pharmacology
5.
J Immunol ; 171(7): 3675-83, 2003 Oct 01.
Article in English | MEDLINE | ID: mdl-14500665

ABSTRACT

S-(2,3-bispalmitoyloxypropyl)Cys-Gly-Asp-Pro-Lys-His-Pro-Lys-Ser-Phe (FSL-1) derived from Mycoplasma salivarium stimulated NF-kappaB reporter activity in human embryonic kidney 293 (HEK293) cells transfected with Toll-like receptor 2 (TLR2) or cotransfected with TLR2 and TLR6, but not in HEK293 cells transfected with TLR6, in a dose-dependent manner. The activity was significantly higher in HEK293 cells transfected with both TLR2 and TLR6 than in HEK293 cells transfected with only TLR2. The deletion mutant TLR2(DeltaS40-I64) (a TLR2 mutant with a deletion of the region of Ser(40) to Ile(64)) failed to activate NF-kappaB in response to FSL-1. The deletion mutant TLR2(DeltaC30-S39) induced NF-kappaB reporter activity, but the level of activity was significantly reduced compared with that induced by wild-type TLR2. A TLR2 point mutant with a substitution of Glu(178) to Ala (TLR2(E178A)), TLR2(E180A), TLR2(E190A), and TLR2(L132E) induced NF-kappaB activation when stimulated with FSL-1, M. salivarium lipoproteins, and Staphylococcus aureus peptidoglycans, but TLR2(L107E), TLR2(L112E) (a TLR2 point mutant with a substitution of Leu(112) to Glu), and TLR2(L115E) failed to induce NF-kappaB activation, suggesting that these residues are essential for their signaling. Flow cytometric analysis demonstrated that TLR2(L115E), TLR2(L112E), and TLR2(DeltaS40-I64) were expressed on the cell surface of the transfectants as wild-type TLR2 and TLR2(E190A) were. In addition, these mutants, except for TLR2(E180A), functioned as dominant negative form of TLR2. This study strongly suggested that the extracellular region of Ser(40)-Ile(64) and leucine residues at positions 107, 112, and 115 in a leucine-rich repeat motif of TLR2 are involved in the recognition of mycoplasmal diacylated lipoproteins and lipopeptides and in the recognition of S. aureus peptidoglycans.


Subject(s)
Bacterial Proteins/metabolism , Leucine/metabolism , Lipoproteins/metabolism , Membrane Glycoproteins/physiology , Peptidoglycan/metabolism , Receptors, Cell Surface/physiology , Repetitive Sequences, Amino Acid , Staphylococcus aureus/metabolism , Acylation , Amino Acid Motifs/genetics , Amino Acid Sequence , Cell Line , Cell Line, Tumor , Diglycerides/metabolism , Gene Deletion , Humans , Leucine/genetics , Membrane Glycoproteins/biosynthesis , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Molecular Sequence Data , Mycoplasma salivarium/metabolism , NF-kappa B/metabolism , Oligopeptides/metabolism , Point Mutation , Receptors, Cell Surface/biosynthesis , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Repetitive Sequences, Amino Acid/genetics , Toll-Like Receptor 2 , Toll-Like Receptor 6 , Toll-Like Receptors , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...