Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.162
Filter
1.
Rinsho Ketsueki ; 65(5): 362-374, 2024.
Article in Japanese | MEDLINE | ID: mdl-38825515

ABSTRACT

The epigenome regulates transcription of target genes through DNA methylation- or histone methylation/acetylation/phosphorylation/ubiquitination-mediated alteration of genomic function or chromatin conformation. Recent genomic studies have shown that multiple genes encoding epigenetic regulators are frequently and recurrently mutated in MDS, suggesting that epigenetic dysregulation is significantly associated with the molecular pathogenesis and clinical features of MDS. In this review, we will present our recent findings together with others, focusing on physiological molecular functions of epigenetic regulators recurrently mutated in MDS and on functional correlation between dysregulated epigenomic regulators and molecular pathogenesis/clinical features of MDS.


Subject(s)
Epigenesis, Genetic , Myelodysplastic Syndromes , Humans , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/therapy , DNA Methylation , Mutation , Histones/metabolism
2.
Front Immunol ; 15: 1403808, 2024.
Article in English | MEDLINE | ID: mdl-38840907

ABSTRACT

VEXAS syndrome is a recently described autoinflammatory syndrome caused by the somatic acquisition of UBA1 mutations in myeloid precursors and is frequently associated with hematologic malignancies, chiefly myelodysplastic syndromes. Disease presentation can mimic several rheumatologic disorders, delaying the diagnosis. We describe a case of atypical presentation resembling late-onset axial spondylarthritis, later progressing to a systemic inflammatory syndrome with chondritis, cutaneous vasculitis, and transfusion-dependent anemia, requiring high doses of steroids. Ruxolitinib was used as the first steroid-sparing strategy without response. However, azacitidine showed activity in controlling both inflammation and the mutant clone. This case raises the question of whether azacitidine's anti-inflammatory effects are dependent on or independent of clonal control. We discuss the potential relevance of molecular remission in VEXAS syndrome and highlight the importance of a multidisciplinary team for the care of such complex patients.


Subject(s)
Azacitidine , Sacroiliitis , Ubiquitin-Activating Enzymes , Humans , Azacitidine/therapeutic use , Sacroiliitis/drug therapy , Sacroiliitis/diagnosis , Sacroiliitis/genetics , Ubiquitin-Activating Enzymes/genetics , Mutation , Male , Middle Aged , Treatment Outcome , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/diagnosis
3.
Clin Lab ; 70(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38747915

ABSTRACT

BACKGROUND: As a tumor mass, a myeloid sarcoma consists of myeloid blasts and presents at an anatomical site other than the bone marrow. In about one quarter of cases, myeloid sarcoma happens without an underlying acute myeloid leukemia or other myeloid neoplasm, and it may precede or coincide with AML or form acute blastic transformation of MDSs, MPNs, or MDS/MPNs. METHODS: Herein, we described a rare case of acute myeloid leukemia with myelodysplasia-related changes (AML-MRC), with WT1 mutation and high expression of TP53 after isolated myeloid sarcoma of lymph nodes showing a higher proportion of blasts, dysplasia of both megakaryocytes and granulocytes. CONCLUSIONS: The case highlights the importance of a bone marrow examination, including morphology, immunophenotyping, cytogenetic, and molecular examination in all cases to exclude the possibility of myeloid sarcoma, especially the morphological feature of bone marrow dysplasia in the early stage before AML.


Subject(s)
Leukemia, Myeloid, Acute , Mutation , Myelodysplastic Syndromes , Sarcoma, Myeloid , Humans , Sarcoma, Myeloid/genetics , Sarcoma, Myeloid/diagnosis , Sarcoma, Myeloid/pathology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/diagnosis , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , Myelodysplastic Syndromes/diagnosis , Tumor Suppressor Protein p53/genetics , WT1 Proteins/genetics , Male , Bone Marrow/pathology , Middle Aged , Immunophenotyping
4.
Curr Oncol ; 31(5): 2353-2363, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38785456

ABSTRACT

Myelodysplastic neoplasm (MDS) is a heterogeneous group of clonal hematological disorders that originate from the hematopoietic and progenitor cells and present with cytopenias and morphologic dysplasia with a propensity to progress to bone marrow failure or acute myeloid leukemia (AML). Genetic evolution plays a critical role in the pathogenesis, progression, and clinical outcomes of MDS. This process involves the acquisition of genetic mutations in stem cells that confer a selective growth advantage, leading to clonal expansion and the eventual development of MDS. With the advent of next-generation sequencing (NGS) assays, an increasing number of molecular aberrations have been discovered in recent years. The knowledge of molecular events in MDS has led to an improved understanding of the disease process, including the evolution of the disease and prognosis, and has paved the way for targeted therapy. The 2022 World Health Organization (WHO) Classification and the International Consensus Classification (ICC) have incorporated the molecular signature into the classification system for MDS. In addition, specific germline mutations are associated with MDS development, especially in pediatrics and young adults. This article reviews the genetic abnormalities of MDS in adults with a brief review of germline predisposition syndromes.


Subject(s)
Myelodysplastic Syndromes , Humans , Myelodysplastic Syndromes/genetics , Mutation , High-Throughput Nucleotide Sequencing/methods
5.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731802

ABSTRACT

5-azacytidine (AZA), a representative DNA-demethylating drug, has been widely used to treat myelodysplastic syndromes (MDS). However, it remains unclear whether AZA's DNA demethylation of any specific gene is correlated with clinical responses to AZA. In this study, we investigated genes that could contribute to the development of evidence-based epigenetic therapeutics with AZA. A DNA microarray identified that AZA specifically upregulated the expression of 438 genes in AZA-sensitive MDS-L cells but not in AZA-resistant counterpart MDS-L/CDA cells. Of these 438 genes, the ALOX12 gene was hypermethylated in MDS-L cells but not in MDS-L/CDA cells. In addition, we further found that (1) the ALOX12 gene was hypermethylated in patients with MDS compared to healthy controls; (2) MDS classes with excess blasts showed a relatively lower expression of ALOX12 than other classes; (3) a lower expression of ALOX12 correlated with higher bone marrow blasts and a shorter survival in patients with MDS; and (4) an increased ALOX12 expression after AZA treatment was associated with a favorable response to AZA treatment. Taking these factors together, an enhanced expression of the ALOX12 gene may predict favorable therapeutic responses to AZA therapy in MDS.


Subject(s)
Arachidonate 12-Lipoxygenase , Azacitidine , DNA Methylation , Myelodysplastic Syndromes , Humans , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/drug therapy , Azacitidine/therapeutic use , Azacitidine/pharmacology , Male , Female , DNA Methylation/drug effects , Aged , Arachidonate 12-Lipoxygenase/genetics , Arachidonate 12-Lipoxygenase/metabolism , Middle Aged , Aged, 80 and over , Adult
6.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731939

ABSTRACT

Myelodysplastic syndrome/neoplasm (MDS) comprises a group of heterogeneous hematopoietic disorders that present with genetic mutations and/or cytogenetic changes and, in the advanced stage, exhibit wide-ranging gene hypermethylation. Patients with higher-risk MDS are typically treated with repeated cycles of hypomethylating agents, such as azacitidine. However, some patients fail to respond to this therapy, and fewer than 50% show hematologic improvement. In this context, we focused on the potential use of epigenetic data in clinical management to aid in diagnostic and therapeutic decision-making. First, we used the F-36P MDS cell line to establish an azacitidine-resistant F-36P cell line. We performed expression profiling of azacitidine-resistant and parental F-36P cells and used biological and bioinformatics approaches to analyze candidate azacitidine-resistance-related genes and pathways. Eighty candidate genes were identified and found to encode proteins previously linked to cancer, chronic myeloid leukemia, and transcriptional misregulation in cancer. Interestingly, 24 of the candidate genes had promoter methylation patterns that were inversely correlated with azacitidine resistance, suggesting that DNA methylation status may contribute to azacitidine resistance. In particular, the DNA methylation status and/or mRNA expression levels of the four genes (AMER1, HSPA2, NCX1, and TNFRSF10C) may contribute to the clinical effects of azacitidine in MDS. Our study provides information on azacitidine resistance diagnostic genes in MDS patients, which can be of great help in monitoring the effectiveness of treatment in progressing azacitidine treatment for newly diagnosed MDS patients.


Subject(s)
Azacitidine , DNA Methylation , Myelodysplastic Syndromes , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , DNA Methylation/drug effects , Humans , Azacitidine/pharmacology , Azacitidine/therapeutic use , Gene Expression Profiling/methods , Antimetabolites, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/therapeutic use , Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic/drug effects , Promoter Regions, Genetic
9.
Leukemia ; 38(6): 1334-1341, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714876

ABSTRACT

We investigated data from 180 consecutive patients with myelodysplastic/myeloproliferative neoplasms with SF3B1 mutation and thrombocytosis (MDS/MPN-SF3B1-T) who were diagnosed according to the 2022 World Health Organization (WHO) classification of myeloid neoplasms to identify covariates associated with survival. At a median follow-up of 48 months (95% confidence interval [CI] 35-61 months), the median survival was 69 months (95% CI 59-79 months). Patients with bone marrow ring sideroblasts (RS) < 15% had shorter median overall survival (OS) than did those with bone marrow RS ≥ 15% (41 months [95% CI 32-50 months] versus 76 months [95% CI 59-93 months]; P < 0.001). According to the univariable analyses of OS, age ≥ 65 years (P < 0.001), hemoglobin concentration (Hb) < 80 g/L (P = 0.090), platelet count (PLT) ≥ 800 × 10E + 9/L (P = 0.087), bone marrow RS < 15% (P < 0.001), the Revised International Prognostic Scoring System (IPSS-R) cytogenetic category intermediate/poor/very poor (P = 0.005), SETBP1 mutation (P = 0.061) and SRSF2 mutation (P < 0.001) were associated with poor survival. Based on variables selected from univariable analyses, two separate survival prediction models, a clinical survival model, and a clinical-molecular survival model, were developed using multivariable analyses with the minimum value of the Akaike information criterion (AIC) to specifically predict outcomes in patients with MDS/MPN-SF3B1-T according to the 2022 WHO classification.


Subject(s)
Mutation , Myelodysplastic-Myeloproliferative Diseases , Phosphoproteins , RNA Splicing Factors , Thrombocytosis , Humans , RNA Splicing Factors/genetics , Male , Female , Thrombocytosis/genetics , Aged , Phosphoproteins/genetics , Middle Aged , Myelodysplastic-Myeloproliferative Diseases/genetics , Myelodysplastic-Myeloproliferative Diseases/mortality , Myelodysplastic-Myeloproliferative Diseases/pathology , Prognosis , Aged, 80 and over , Adult , Survival Rate , Follow-Up Studies , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/mortality , Myelodysplastic Syndromes/pathology , Serine-Arginine Splicing Factors/genetics
12.
Clin Lab Med ; 44(2): 339-353, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821648

ABSTRACT

Despite the apparent complexity of the molecular genetic underpinnings of myeloid neoplasms, most myeloid mutational profiles can be understood within a simple framework. Somatic mutations accumulate in hematopoietic stem cells with aging and toxic insults, termed clonal hematopoiesis. These "old stem cells" mutations, predominantly in the epigenetic and RNA spliceosome pathways, act as "founding" driver mutations leading to a clonal myeloid neoplasm when sufficient in number and clone size. Subsequent mutations can create the genetic flavor of the myeloid neoplasm ("backseat" drivers) due to their enrichment in certain entities or act as progression events ("aggressive" drivers) during clonal evolution.


Subject(s)
Myelodysplastic Syndromes , Myeloproliferative Disorders , Humans , Mutation , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/pathology , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Myeloproliferative Disorders/diagnosis , Myeloproliferative Disorders/metabolism
13.
Am Soc Clin Oncol Educ Book ; 44(3): e432650, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38768424

ABSTRACT

TP53 mutations are found in 5%-10% of de novo myelodysplastic syndrome (MDS) and AML cases. By contrast, in therapy related MDS and AML, mutations in TP53 are found in up to 30%-40% of patients. The majority of inactivating mutations observed in MDS and AML are missense mutations localized in a few prevalent hotspots. TP53 missense mutations together with truncating mutations or chromosomal loss of TP53 determine a loss-of-function effect on normal p53 function. Clonal expansion of TP53-mutant clones is observed under the selection pressure of chemotherapy or MDM2 inhibitor therapy. TP53-mutant clones are resistant to current chemotherapy, and when responses to treatment have been observed, they have correlated poorly with overall survival. The most heavily investigated and targeted agent for patients with TP53-mutant MDS and AML has been APR-246 (eprenetapopt) a p53 reactivator, in combination with azacitidine, but also in triplets with venetoclax. Despite positive results in phase II trials, a phase III trial did not confirm superior response or improved survival. Other agents, like magrolimab (anti-CD47 antibody), failed to demonstrate improved activity in TP53-mutant MDS and AML. Agents whose activity is not dependent on a functional apoptosis system like anti-CD123 antibodies or cellular therapies are in development and may hold promises. Delivering prognostic information in a dismal disease like TP53-mutated MDS and AML is particularly challenging. The physician should balance hope and realism, describing the trajectory of possible treatments and at the same time indicating the poor outcome, together with promoting adaptive coping in patients and elaborating on the nature of the disease.


Subject(s)
Leukemia, Myeloid, Acute , Mutation , Myelodysplastic Syndromes , Tumor Suppressor Protein p53 , Humans , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/therapy , Myelodysplastic Syndromes/drug therapy , Tumor Suppressor Protein p53/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/drug therapy , Molecular Targeted Therapy
14.
Exp Hematol ; 134: 104216, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582293

ABSTRACT

Disordered chromatin organization has emerged as a new aspect of the pathogenesis of myelodysplastic syndrome (MDS). Characterized by lineage dysplasia and a high transformation rate to acute myeloid leukemia (AML), the genetic determinant of MDS is thought to be the main driver of the disease's progression. Among the recurrently mutated pathways, alterations in chromatin organization, such as the cohesin complex, have a profound impact on hematopoietic stem cell (HSC) function and lineage commitment. The cohesin complex is a ring-like structure comprised of structural maintenance of chromosomes (SMC), RAD21, and STAG proteins that involve three-dimensional (3D) genome organization via loop extrusion in mammalian cells. The partial loss of the functional cohesin ring leads to altered chromatin accessibility specific to key hematopoietic transcription factors, which is thought to be the molecular mechanism of cohesin dysfunction. Currently, there are no specific targeting agents for cohesin mutant MDS/AML. Potential therapeutic strategies have been proposed based on the current understanding of cohesin mutant leukemogenesis. Here, we will review the recent advances in investigation and targeting approaches against cohesin mutant MDS/AML.


Subject(s)
Cell Cycle Proteins , Chromatin , Chromosomal Proteins, Non-Histone , Cohesins , Myelodysplastic Syndromes , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , Myelodysplastic Syndromes/metabolism , Humans , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromatin/genetics , Chromatin/metabolism , Animals , Mutation , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism
15.
Hematology ; 29(1): 2338509, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38597818

ABSTRACT

Myelodysplastic syndromes (MDS) patients with DEAD-box helicase 41 (DDX41) mutations have been reported to be treated effectively with lenalidomide; however, there are no randomized studies to prove it. Venetoclax and azacitidine are safe and effective in high-risk MDS/AML. In this study, we evaluated the efficacy of venetoclax and azacitidine combination therapy in eight consecutive MDS patients with DDX41 mutations at our centre from March 2021 to November 2023. We retrospectively analyzed the genetic features and clinical characteristics of these patients. Our findings suggest that MDS patients with DDX41 mutation may benefit from the therapy, for six subjects received this regimen as initial therapy and five of the six subjects achieved complete remission.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Myelodysplastic Syndromes , Sulfonamides , Humans , Retrospective Studies , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Mutation , Azacitidine/therapeutic use , DEAD-box RNA Helicases
16.
Blood Cancer J ; 14(1): 57, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594285

ABSTRACT

In 2022, two novel classification systems for myelodysplastic syndromes/neoplasms (MDS) have been proposed: the International Consensus Classification (ICC) and the 2022 World Health Organization (WHO-2022) classification. These two contemporary systems exhibit numerous shared features but also diverge significantly in terminology and the definition of new entities. Thus, we retrospectively validated the ICC and WHO-2022 classification and found that both systems promoted efficient segregation of this heterogeneous disease. After examining the distinction between the two systems, we showed that a peripheral blood blast percentage ≥ 5% indicates adverse survival. Identifying MDS/acute myeloid leukemia with MDS-related gene mutations or cytogenetic abnormalities helps differentiate survival outcomes. In MDS, not otherwise specified patients, those diagnosed with hypoplastic MDS and single lineage dysplasia displayed a trend of superior survival compared to other low-risk MDS patients. Furthermore, the impact of bone marrow fibrosis on survival was less pronounced within the ICC framework. Allogeneic transplantation appears to improve outcomes for patients diagnosed with MDS with excess blasts in the ICC. Therefore, we proposed an integrated system that may lead to the accurate diagnosis and advancement of future research for MDS. Prospective studies are warranted to validate this refined classification.


Subject(s)
Myelodysplastic Syndromes , Neoplasms , Humans , Retrospective Studies , Consensus , Prognosis , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/therapy , Myelodysplastic Syndromes/genetics , World Health Organization
17.
Zhonghua Xue Ye Xue Za Zhi ; 45(2): 156-162, 2024 Feb 14.
Article in Chinese | MEDLINE | ID: mdl-38604792

ABSTRACT

Objective: To investigate the efficacy and safety of combining venetoclax (VEN) with hypomethylated drugs (HMA) in the treatment of higher-risk (IPSS-R score >3.5) myelodysplastic syndromes (MDS) . Methods: From March 2021 to December 2022, forty-five MDS patients with intermediate and high risk were treated with VEN in combination with HMAs. Clinical data were collected and analyzed retrospectively, including gender, age, MDS subtype, IPSS-R score, treatment regimen, and efficacy, etc. Kaplan-Meier method and Cox regression model were used to analyze univariate and multivariate of survival prognosis. Results: ①Forty-five patients with MDS, including ninety-one percent were classified as high or very high risk. According to the 2023 consensus proposal for revised International Working Group response criteria for higher-risk MDS, the overall response rate (ORR) was 62.2% (28/45), with the complete response rate (CR) was 33.3% (15/45). For twenty-five naïve MDS, the ORR was 68% (17/25) and the CR rate was 32% (8/25). In nonfirst-line patients, the ORR and CR were 55% (11/20) and 35% (7/20) respectively. The median cycle to best response was 1 (1-4). ②With a median followup of 189 days, the median overall survival (OS) time was 499 (95% confidence interval, 287-711) days, and most patients died from disease progression. Responders had a significantly better median OS time than nonresponders (499 days vs 228 days, P<0.001). Multifactor analysis revealed that IPSS-R score and response to treatment were independent prognostic factors for OS; the presence of SETBP1 gene mutations was associated with a longer hospital stay (51.5 days vs 27 days, P=0.017) . Conclusions: There is clinical benefit of venetoclax in combination with hypomethylated agents in patients with higher-risk MDS, but adverse events such as severe hypocytopenia during treatment should be avoided.


Subject(s)
Myelodysplastic Syndromes , Sulfonamides , Humans , Retrospective Studies , Prognosis , Myelodysplastic Syndromes/genetics , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
18.
Nat Commun ; 15(1): 3016, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589367

ABSTRACT

Myelodysplastic syndromes (MDS) with mutated SF3B1 gene present features including a favourable outcome distinct from MDS with mutations in other splicing factor genes SRSF2 or U2AF1. Molecular bases of these divergences are poorly understood. Here we find that SF3B1-mutated MDS show reduced R-loop formation predominating in gene bodies associated with intron retention reduction, not found in U2AF1- or SRSF2-mutated MDS. Compared to erythroblasts from SRSF2- or U2AF1-mutated patients, SF3B1-mutated erythroblasts exhibit augmented DNA synthesis, accelerated replication forks, and single-stranded DNA exposure upon differentiation. Importantly, histone deacetylase inhibition using vorinostat restores R-loop formation, slows down DNA replication forks and improves SF3B1-mutated erythroblast differentiation. In conclusion, loss of R-loops with associated DNA replication stress represents a hallmark of SF3B1-mutated MDS ineffective erythropoiesis, which could be used as a therapeutic target.


Subject(s)
Myelodysplastic Syndromes , R-Loop Structures , Humans , Splicing Factor U2AF/genetics , Serine-Arginine Splicing Factors/genetics , RNA Splicing Factors/genetics , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Mutation , Transcription Factors/genetics , Phosphoproteins/genetics
19.
A A Pract ; 18(4): e01770, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38569152

ABSTRACT

MIRAGE syndrome consists of Myelodysplasia, Infection, Growth restriction, Adrenal hypoplasia, Genital phenotypes, and Enteropathy. We report the uneventful anesthesia management of a 6-year-old female patient with MIRAGE syndrome. We think it can guide anesthesiologists caring for patients with this syndrome to find the appropriate method for them.


Subject(s)
Adrenal Insufficiency , Anesthetics , Myelodysplastic Syndromes , Female , Humans , Child , Intracellular Signaling Peptides and Proteins , Myelodysplastic Syndromes/genetics
20.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(4): 404-410, 2024 Apr 10.
Article in Chinese | MEDLINE | ID: mdl-38565504

ABSTRACT

OBJECTIVE: To explore the genetic background for a patient with refractory myelodysplastic/myeloproliferative neoplasm (MDS/MPN) with co-morbid neutrophilia patient. METHODS: A MDS/MPN patient who was admitted to the First Affiliated Hospital of Nanjing Medical University in May 2021 was selected as the study subject. RNA sequencing was carried out to identify fusion genes in his peripheral blood mononuclear cells. Fusion gene sequence was searched through transcriptome-wide analysis with a STAR-fusion procedure. The novel fusion genes were verified by quantitative real-time PCR and Sanger sequencing. RESULTS: The patient, a 67-year-old male, had progressive thrombocytopenia. Based on the morphological and molecular examinations, he was diagnosed as MDS/MPN with co-morbid neutropenia, and was treated with demethylating agents and Bcl-2 inhibitors. Seventeen months after the diagnosis, he had progressed to AML. A novel fusion gene NCOR1::GLYR1 was identified by RNA-sequencing in his peripheral blood sample, which was verified by quantitative real-time PCR and Sanger sequencing. The patient had attained morphological remission after a DCAG regimen (a combinatory chemotherapy of decitabine, cytarabine, aclarubicin and granulocyte colony-stimulating factors) plus Chidamide treatment. A significant decrease in the NCOR1::GLYR1 expression was revealed by quantitative real-time PCR at post-chemotherapy evaluation. CONCLUSION: NCOR1::GLYR1 gene is considered as the pathogenic factor for the MDS/MPN patient with neutropenia.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Neutropenia , Male , Humans , Aged , Myelodysplastic Syndromes/genetics , Leukocytes, Mononuclear , Cytarabine/therapeutic use , Nuclear Receptor Co-Repressor 1
SELECTION OF CITATIONS
SEARCH DETAIL
...