Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 326
Filter
1.
J Immunol Res ; 2024: 2765001, 2024.
Article in English | MEDLINE | ID: mdl-38774603

ABSTRACT

ß-Glucan is the main component of the cell wall of pathogen-associated molecular patterns (PAMPs) including various yeast, fungi, or certain bacteria. Previous reports demonstrated that ß-glucan was widely investigated as a potent immunomodulators to stimulate innate and adaptive immune responses, which indicated that it could be recommended as an effective adjuvant in immunotherapy. However, the detailed effects of ß-glucan on neonatal immunity are still largely unknown. Here, we found that ß-glucan did not affect the frequencies and numbers of myeloid cells in the spleen and bone marrow from neonates. Functional assay revealed that ß-glucan from neonates compromised the immunosuppressive function of immature myeloid cells, which were myeloid-derived suppressor cells (MDSCs). Flow cytometry or gene expression analysis revealed that ß-glucan-derived polymorphonuclear (PMN)-MDSCs produced lower level of reactive oxygen species (ROS) and arginase-1 (Arg1) in neonatal mice. Furthermore, ß-glucan administration significantly decreased the frequency and ROS level of PMN-MDSCs in vitro. These observations suggest that ß-glucan facilitates the maturation of myeloid cells in early life, which may contribute to its beneficial effects against immune disorders later in life.


Subject(s)
Animals, Newborn , Arginase , Myeloid-Derived Suppressor Cells , Reactive Oxygen Species , beta-Glucans , beta-Glucans/pharmacology , Animals , Mice , Reactive Oxygen Species/metabolism , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/drug effects , Arginase/metabolism , Myeloid Cells/metabolism , Myeloid Cells/immunology , Myeloid Cells/drug effects , Spleen/immunology , Spleen/metabolism , Spleen/cytology , Humans , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/drug effects , Mice, Inbred C57BL
2.
J Immunother Cancer ; 12(4)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38663936

ABSTRACT

RATIONALE: Androgen deprivation therapy (ADT) is pivotal in treating recurrent prostate cancer and is often combined with external beam radiation therapy (EBRT) for localized disease. However, for metastatic castration-resistant prostate cancer, EBRT is typically only used in the palliative setting, because of the inability to radiate all sites of disease. Systemic radiation treatments that preferentially irradiate cancer cells, known as radiopharmaceutical therapy or targeted radionuclide therapy (TRT), have demonstrable benefits for treating metastatic prostate cancer. Here, we explored the use of a novel TRT, 90Y-NM600, specifically in combination with ADT, in murine prostate tumor models. METHODS: 6-week-old male FVB mice were implanted subcutaneously with Myc-CaP tumor cells and given a single intravenous injection of 90Y-NM600, in combination with ADT (degarelix). The combination and sequence of administration were evaluated for effect on tumor growth and infiltrating immune populations were analyzed by flow cytometry. Sera were assessed to determine treatment effects on cytokine profiles. RESULTS: ADT delivered prior to TRT (ADT→TRT) resulted in significantly greater antitumor response and overall survival than if delivered after TRT (TRT→ADT). Studies conducted in immunodeficient NRG mice failed to show a difference in treatment sequence, suggesting an immunological mechanism. Myeloid-derived suppressor cells (MDSCs) significantly accumulated in tumors following TRT→ADT treatment and retained immune suppressive function. However, CD4+ and CD8+ T cells with an activated and memory phenotype were more prevalent in the ADT→TRT group. Depletion of Gr1+MDSCs led to greater antitumor response following either treatment sequence. Chemotaxis assays suggested that tumor cells secreted chemokines that recruited MDSCs, notably CXCL1 and CXCL2. The use of a selective CXCR2 antagonist, reparixin, further improved antitumor responses and overall survival when used in tumor-bearing mice treated with TRT→ADT. CONCLUSION: The combination of ADT and TRT improved antitumor responses in murine models of prostate cancer, however, this was dependent on the order of administration. This was found to be associated with one treatment sequence leading to an increase in infiltrating MDSCs. Combining treatment with a CXCR2 antagonist improved the antitumor effect of this combination, suggesting a possible approach for treating advanced human prostate cancer.


Subject(s)
Myeloid-Derived Suppressor Cells , Prostatic Neoplasms , Animals , Male , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/immunology , Mice , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/radiotherapy , Radiopharmaceuticals/therapeutic use , Radiopharmaceuticals/pharmacology , Humans , Cell Line, Tumor , Yttrium Radioisotopes/therapeutic use , Yttrium Radioisotopes/pharmacology , Disease Models, Animal , Androgen Antagonists/therapeutic use , Androgen Antagonists/pharmacology , Combined Modality Therapy
3.
J Cell Mol Med ; 28(9): e18310, 2024 May.
Article in English | MEDLINE | ID: mdl-38676361

ABSTRACT

Studies have shown that adoptive transfer of myeloid-derived suppressor cells (MDSCs) can alleviate various inflammatory diseases, including glomerulonephritis, but the long-term effects of the transferred MDSCs are still unclear. In addition, although glucocorticoids exert immunosuppressive effects on inflammatory diseases by inducing the expansion of MDSCs, the impact of glucocorticoids on the immunosuppressive function of MDSCs and their molecular mechanisms are unclear. In this study, we found that adoptive transfer of MDSCs to doxorubicin-induced focal segmental glomerulosclerosis (FSGS) mice for eight consecutive weeks led to an increase in serum creatinine and proteinuria and aggravation of renal interstitial fibrosis. Similarly, 8 weeks of high-dose dexamethasone administration exacerbated renal interstitial injury and interstitial fibrosis in doxorubicin-induced mice, manifested as an increase in serum creatinine and proteinuria, collagen deposition and α-SMA expression. On this basis, we found that dexamethasone could enhance MDSC expression and secretion of the fibrosis-related cytokines TGF-ß and IL-10. Mechanistically, we revealed that dexamethasone promotes the expression of immunoglobulin-like transcription factor 4 (ILT4), which enhances the T-cell inhibitory function of MDSCs and promotes the activation of STAT6, thereby strengthening the expression and secretion of TGF-ß and IL-10. Knocking down ILT4 alleviated renal fibrosis caused by adoptive transfer of MDSCs. Therefore, our findings demonstrate that the role and mechanism of dexamethasone mediate the expression and secretion of TGF-ß and IL-10 in MDSCs by promoting the expression of ILT4, thereby leading to renal fibrosis.


Subject(s)
Dexamethasone , Fibrosis , Myeloid-Derived Suppressor Cells , Animals , Dexamethasone/pharmacology , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/drug effects , Mice , Kidney/pathology , Kidney/metabolism , Kidney/drug effects , Male , Doxorubicin/adverse effects , Doxorubicin/pharmacology , Mice, Inbred C57BL , Glomerulosclerosis, Focal Segmental/chemically induced , Glomerulosclerosis, Focal Segmental/metabolism , Glomerulosclerosis, Focal Segmental/pathology , Adoptive Transfer , Disease Models, Animal , Up-Regulation/drug effects , Interleukin-10/metabolism , Interleukin-10/genetics , Transforming Growth Factor beta/metabolism
4.
J Control Release ; 369: 199-214, 2024 May.
Article in English | MEDLINE | ID: mdl-38537717

ABSTRACT

We found that immunosuppressive monocytic-myeloid-derived suppressor cells (M-MDSCs) were more likely to be recruited by glioblastoma (GBM) through adhesion molecules on GBM-associated endothelial cells upregulated post-chemoradiotherapy. These cells are continuously generated during tumor progression, entering tumors and expressing PD-L1 at a high level, allowing GBM to exhaust T cells and evade attack from the immune system, thereby facilitating GBM relapse. αLy-6C-LAMP is composed of (i) drug cores with slightly negative charges condensed by cationic protamine and plasmids encoding PD-L1 trap protein, (ii) pre-formulated cationic liposomes targeted to Ly-6C for encapsulating the drug cores, and (iii) a layer of red blood cell membrane on the surface for effectuating long-circulation. αLy-6C-LAMP persistently targets peripheral, especially splenic, M-MDSCs and delivers secretory PD-L1 trap plasmids, leveraging M-MDSCs to transport the plasmids crossing the blood-brain barrier (BBB), thus expressing PD-L1 trap protein in tumors to inhibit PD-1/PD-L1 pathway. Our proposed drug delivery strategy involving intermediaries presents an efficient cross-BBB drug delivery concept that incorporates live-cell targeting and long-circulating nanotechnology to address GBM recurrence.


Subject(s)
B7-H1 Antigen , Blood-Brain Barrier , Brain Neoplasms , Drug Delivery Systems , Glioblastoma , Myeloid-Derived Suppressor Cells , Neoplasm Recurrence, Local , Glioblastoma/drug therapy , Glioblastoma/pathology , Animals , Blood-Brain Barrier/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Humans , Myeloid-Derived Suppressor Cells/drug effects , Cell Line, Tumor , Neoplasm Recurrence, Local/prevention & control , Liposomes , Mice, Inbred C57BL , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Protamines/chemistry , Protamines/administration & dosage , Mice , Monocytes/drug effects , Monocytes/metabolism
5.
Int Immunopharmacol ; 132: 111921, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38547770

ABSTRACT

Interleukin-1-beta (IL-1ß) one of the biomarkers for oral squamous cell carcinoma (OSCC), is upregulated in tumor-microenvironment (TME) and associated with poor patient survival. Thus, a novel modulator of IL-1ß would be of great therapeutic value for OSCC treatment. Here we report regulation of IL-1ß and TME by histone deacetylase-6 (HDAC6)-inhibitor in OSCC. We observed significant upregulation of HDAC6 in 4-nitroquniline (4-NQO)-induced OSCC in mice and 4-NQO & Lipopolysaccharide (LPS) stimulated OSCC and fibroblast cells. Tubastatin A (TSA)-attenuated the OSCC progression in mice as observed improvement in the histology over tongue and esophagus, with reduced tumor burden. TSA treatment to 4-NQO mice attenuated protein expression of HDAC6, pro-and-mature-IL-1ß and pro-and-cleaved-caspase-1 and ameliorated acetylated-tubulin. In support of our experimental work, human TCGA analysis revealed HDAC6 and IL-1ß were upregulated in the primary tumor, with different tumor stages and grades. We found TSA modulate TME, indicated by downregulation of CD11b+Gr1+-Myeloid-derived suppressor cells, CD11b+F4/80+CD206+ M2-macrophages and increase in CD11b+F4/80+MHCII+ M1-macrophages. TSA significantly reduced the gene expression of HDAC6, IL-1ß, Arginase-1 and iNOS in isolated splenic-MDSCs. FaDu-HTB-43 and NIH3T3 cells stimulated with LPS and 4-NQO exhibit higher IL-1ß levels in the supernatant. Interestingly, immunoblot analysis of the cell lysate, we observed that TSA does not alter the expression as well as activation of IL-1ß and caspase-1 but the acetylated-tubulin was found to be increased. Nocodazole pre-treatment proved that TSA inhibited the lysosomal exocytosis of IL-1ß through tubulin acetylation. In conclusion, HDAC6 inhibitors attenuated TME and cancer progression through the regulation of IL-1ß in OSCC.


Subject(s)
Histone Deacetylase 6 , Histone Deacetylase Inhibitors , Hydroxamic Acids , Indoles , Interleukin-1beta , Mouth Neoplasms , Tumor Microenvironment , Animals , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase 6/metabolism , Interleukin-1beta/metabolism , Humans , Mouth Neoplasms/drug therapy , Mouth Neoplasms/pathology , Mouth Neoplasms/immunology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Mice , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/immunology , Mice, Inbred C57BL , Cell Line, Tumor , Disease Progression , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/immunology , Male , Tubulin/metabolism , Lipopolysaccharides
6.
Phytomedicine ; 128: 155413, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513377

ABSTRACT

AIM OF THE STUDY: To evaluate the in vitro and in vivo anti-metastasis efficacy of Jianpi Yangzheng (JPYZ) decoction against gastric cancer (GC) and its potential mechanisms. MATERIALS AND METHODS: The distant metastasis of GC cells administered via tail vein injection was assessed using the pre-metastatic niche (PMN) model. 16S rRNA sequencing and GC-MS/MS were applied to determine the component of the gut microbiota and content of short-chain fatty acids (SCFAs) in feces of mice, respectively. The proportion of myeloid-derived suppressor cells (MDSCs) in the lung was evaluated by flow cytometry and immunofluorescence. Serum or tissue levels of inflammation factors including IL-6, IL-10 and TGF-ß were determined by ELISA or Western blot respectively. RESULTS: Injecting GC cells into the tail vein of mice led to the development of lung metastases and also resulted in alterations in the composition of gut microbiota and the levels of SCFAs produced. Nevertheless, JPYZ treatment robustly impeded the effect of GC cells administration. Mechanically, JPYZ treatment not only prevented the alteration in gut microbiota structure, but also restored the SCFAs content induced by GC cells administration. Specifically, JPYZ treatment recovered the relative abundance of genera Moryella, Helicobacter, Lachnoclostridium, Streptococcus, Tuzzerella, GCA-900066575, uncultured_Lachnospiraceae, Rikenellaceae_RC9_gut_group and uncultured_bacterium_Muribaculaceae to near the normal control levels. In addition, JPYZ abrogated MDSCs accumulation in the lung tissue and blocked inflammation factors overproduction in the serum and lung tissues, which subsequently impede the formation of the immunosuppressive microenvironment. Correlation analysis revealed that the prevalence of Rikenellaceae in the model group exhibited a positive correlation with MDSCs proportion and inflammation factor levels. Conversely, the scarcity of Muribaculaceae in the model group showed a negative correlation with these parameters. This suggests that JPYZ might exert an influence on the gut microbiota and their metabolites, such as SCFAs, potentially regulating the formation of the PMN and consequently impacting the outcome of GC metastasis. CONCLUSION: These findings suggest that GC cells facilitate metastasis by altering the gut microbiota composition, affecting the production of SCFAs, and recruiting MDSCs to create a pro-inflammatory pre-metastatic niche. JPYZ decoction counteracts this process by reshaping the gut microbiota structure, enhancing SCFA production, and inhibiting the formation of the pre-metastatic microenvironment, thereby exerting an anti-metastatic effect.


Subject(s)
Drugs, Chinese Herbal , Gastrointestinal Microbiome , Lung Neoplasms , Myeloid-Derived Suppressor Cells , Stomach Neoplasms , Gastrointestinal Microbiome/drug effects , Animals , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/secondary , Drugs, Chinese Herbal/pharmacology , Mice , Myeloid-Derived Suppressor Cells/drug effects , Cell Line, Tumor , Fatty Acids, Volatile/metabolism , Mice, Inbred BALB C , Humans , RNA, Ribosomal, 16S , Male , Feces/microbiology , Female
7.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(1): 88-100, 2023 Feb 25.
Article in English, Chinese | MEDLINE | ID: mdl-37283122

ABSTRACT

OBJECTIVES: To investigate the mechanism of Xuanhusuo powder (XHSP) inhibiting the differentiation of spleen myeloid-derived suppressor cells (MDSCs) in breast cancer mice. METHODS: Forty-eight BALB/c female mice aged 4-5 weeks were selected, 6 of them were in normal control group, while others were in tumor-bearing models established by orthotopic injection of 4T1 cells into the subcutaneous fat pad of the second pair of left mammary glands. The tumor-bearing mice were divided into granulocyte colony stimulating factor (G-CSF) control group, G-CSF knock-down group, model control group, XHSP small dose group, XHSP medium dose group, XHSP high dose group, and cyclophosphamide (CTX) group, with 6 mice in each group. G-CSF control group and G-CSF knock-down group were constructed by stably transfecting 4T1 cells established by shRNA lentivirus combined with puromycin selection. 48 h after the model was established, XHSP small, medium, high dose group were given 2, 4, 8 g·kg-1·d-1 intragastric administration once a day, respectively. CTX was given 30 mg/kg by intraperitoneal injection, once every other day. The other groups were given an equal volume of 0.5% hydroxymethylcellulose sodium. The drugs in each group were continuously administered for 25 d. Histological changes in spleen were observed by HE staining, the proportion of MDSCs subsets in the spleen were detected by flow cytometry, the co-expression of CD11b and Ly6G in the spleen was detected by immunofluorescence, and the concentration of G-CSF in peripheral blood was detected by ELISA. The spleen of tumor-bearing mice was co-cultured with 4T1 stably transfected cell lines in vitro, treated with XHSP (30 µg/mL) for 24 h, and the co-expression of CD11b and Ly6G in the spleen was detected by immunofluorescence. 4T1 cells were treated by XHSP (10, 30, 100 µg/mL) for 12 h. The mRNA level of G-CSF was detected by realtime RT-PCR. RESULTS: Compared with normal mice, the red pulp of the spleen in tumor-bearing mice was widened with megakaryocyte infiltration. The proportion of spleen polymorphonucleocyte-like MDSCs (PMN-MDSCs) was significantly increased (P<0.01) and the co-expression of CD11b and Ly6G was increased, and the concentration of G-CSF in peripheral blood was significantly increased (P<0.01). However, XHSP could significantly reduce the proportion of PMN-MDSCs (P<0.05) and the co-expression of CD11b and Ly6G in the spleen, down-regulate the mRNA level of G-CSF in 4T1 cells (P<0.01). The concentration of G-CSF in peripheral blood of tumor-bearing mice also decreased (P<0.05) and tumor volume was reduced and splenomegaly was improved (all P<0.05). CONCLUSIONS: XHSP may play an anti-breast cancer role by down-regulating G-CSF, negatively regulating the differentiation of MDSCs, and reconstruct the spleen myeloid microenvironment.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Drugs, Chinese Herbal , Animals , Mice , Drugs, Chinese Herbal/administration & dosage , Spleen/cytology , Spleen/drug effects , Myeloid-Derived Suppressor Cells/drug effects , Mice, Inbred BALB C , Female , Breast Neoplasms/drug therapy , Disease Models, Animal , Granulocyte Colony-Stimulating Factor/metabolism , Cell Differentiation/drug effects , Antineoplastic Agents/administration & dosage
8.
Clin Cancer Res ; 29(7): 1167-1169, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36656164

ABSTRACT

Myeloid-derived suppressor cells (MDSC) are associated with resistance to anti-PD-1 therapies. All-trans retinoic acid (ATRA) may induce maturation of MDSCs and alter their immunosuppressive effects. Adding ATRA to pembrolizumab may target this resistance mechanism to enhance the overall impact of anti-PD-1-based immunotherapy. See related article by Tobin et al., p. 1209.


Subject(s)
Melanoma , Myeloid-Derived Suppressor Cells , Humans , Myeloid-Derived Suppressor Cells/drug effects , Melanoma/drug therapy , Tretinoin/pharmacology , Tretinoin/therapeutic use , Cell Differentiation/drug effects
9.
Invest New Drugs ; 40(3): 506-518, 2022 06.
Article in English | MEDLINE | ID: mdl-35089465

ABSTRACT

BACKGROUND: In cancer, myeloid-derived suppressor cells (MDSCs) are known to escape the host immune system by developing a highly suppressive environment. However, little is known about the molecular mechanism behind MDSC-mediated tumor cell evasion of the immune system. Toll-like receptor (TLR) signaling elicited in the tumor microenvironment has the potential to induce MDSC differentiations in different organs. Therefore, MDSC elimination by blocking the action of myeloid differentiation factor 88 (MyD88), which is a key adaptor-signaling molecule that affects TLR activity, seems to be an ideal tumor immunotherapy. Previous studies have proven that blocking MyD88 signaling with a novel MyD88 inhibitor (TJ-M2010-5, synthesized by Zhou's group) completely prevented colitis-associated colorectal cancer (CAC) development in mice. METHODS: In the present study, we investigated the impact of the novel MyD88 inhibitor on the number, phenotype, and function of MDSC in the mice model of CAC. RESULTS: We showed that CAC growth inhibition was involved in diminished MDSC generation, expansion, and suppressive function and that MDSC-mediated immune escape was dependent on MyD88 signaling pathway activation. MyD88 inhibitor treatment decreased the accumulation of CD11b+Gr1+ MDSCs in mice with CAC, thereby reducing cytokine (GM-CSF, G-CSF, IL-1ß, IL-6 and TGF-ß) secretion associated with MDSC accumulation, and reducing the expression of molecules (iNOS, Arg-1 and IDO) associated with the suppressive capacity of MDSCs. In addition, MyD88 inhibitor treatment reduced the differentiation of MDSCs from myeloid cells and the suppressive capacity of MDSCs on the proliferation of activated CD4+ T cells in vitro. CONCLUSION: MDSCs are primary cellular targets of a novel MyD88 inhibitor during CAC development. Our findings prove that MyD88 signaling is involved in the regulation of the immunosuppressive functions of MDSCs. The novel MyD88 inhibitor TJ-M2010-5 is a new and effective agent that modulates MyD88 signaling to overcome MDSC suppressive functions, enabling the development of successful antitumor immunotherapy.


Subject(s)
Colitis-Associated Neoplasms , Myeloid Differentiation Factor 88 , Myeloid-Derived Suppressor Cells , Piperazines , Thiazoles , Animals , Colitis-Associated Neoplasms/drug therapy , Colitis-Associated Neoplasms/metabolism , Colitis-Associated Neoplasms/pathology , Cytokines/metabolism , Mice , Myeloid Differentiation Factor 88/antagonists & inhibitors , Myeloid Differentiation Factor 88/metabolism , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/pathology , Piperazines/pharmacology , Signal Transduction , Thiazoles/pharmacology , Tumor Microenvironment
10.
Diabetes ; 71(3): 470-482, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35040474

ABSTRACT

We previously showed that treating NOD mice with an agonistic monoclonal anti-TLR4/MD2 antibody (TLR4-Ab) reversed acute type 1 diabetes (T1D). Here, we show that TLR4-Ab reverses T1D by induction of myeloid-derived suppressor cells (MDSCs). Unbiased gene expression analysis after TLR4-Ab treatment demonstrated upregulation of genes associated with CD11b+Ly6G+ myeloid cells and downregulation of T-cell genes. Further RNA sequencing of purified, TLR4-Ab-treated CD11b+ cells showed significant upregulation of genes associated with bone marrow-derived CD11b+ cells and innate immune system genes. TLR4-Ab significantly increased percentages and numbers of CD11b+ cells. TLR4-Ab-induced CD11b+ cells, derived ex vivo from TLR4-Ab-treated mice, suppress T cells, and TLR4-Ab-conditioned bone marrow cells suppress acute T1D when transferred into acutely diabetic mice. Thus, the TLR4-Ab-induced CD11b+ cells, by the currently accepted definition, are MDSCs able to reverse T1D. To understand the TLR4-Ab mechanism, we compared TLR4-Ab with TLR4 agonist lipopolysaccharide (LPS), which cannot reverse T1D. TLR4-Ab remains sequestered at least 48 times longer than LPS within early endosomes, alters TLR4 signaling, and downregulates inflammatory genes and proteins, including nuclear factor-κB. TLR4-Ab in the endosome, therefore, induces a sustained, attenuated inflammatory response, providing an ideal "second signal" for the activation/maturation of MDSCs that can reverse acute T1D.


Subject(s)
Antibodies, Monoclonal/metabolism , Diabetes Mellitus, Type 1/drug therapy , Endosomes/metabolism , Myeloid-Derived Suppressor Cells/drug effects , Toll-Like Receptor 4/immunology , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Bone Marrow Cells/drug effects , Bone Marrow Cells/immunology , CD11b Antigen/analysis , Diabetes Mellitus, Type 1/immunology , Female , Gene Expression Regulation/immunology , Mice , Mice, Inbred NOD , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/physiology
11.
Int Immunopharmacol ; 104: 108506, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35008007

ABSTRACT

BACKGROUND: Myeloid-derived suppressor cells (MDSCs) and cyclooxy-genase-2 (COX-2)/Prostaglandin E2 (PGE2) axis are important contributors to sepsis-induced immune-suppression. The purpose of present study is to explore whether COX-2 inhibitor can improve immunological disorder after sepsis via regulating MDSCs. METHODS: A ''two-hit'' model reflecting clinical sepsis development was performed. Cecal ligation and puncture (CLP) and Legionella pneumophila infection were used as the first and the second hit, respectively. NS398, a selective COX-2 inhibitor, was utilized to treat septic mice. The motality, bacterial counts in the lung, systematic inflammatory reaction and CD4 + T cells response after sepsis were assessed, so as the frequency and function of MDSCs. In some experiments, the number of MDSCs was manipulated by adoptive transfer or neutralizing antibody before induction of secondary infection. RESULTS: Mice surviving CLP showed a marked expansion and activation of MDSCs in spleen, accompanied by suppressed proliferating capability, impaired secreting functionand increased apoptosis of CD4 + T cells. Majority of CLP survivors became succumbed to L. pneumophila invasion, associated with defective bacteria elimination ability. NS398 treatment was found to ameliorate these adverse outcomes significantly. CONCLUSION: MDSCs contribute greatly to the sepsis-induced immune dysfunction. Inhibiting COX-2 may become a promising therapy that targets MDSCs-induced immunosuppression.


Subject(s)
Cyclooxygenase 2 Inhibitors/therapeutic use , Legionnaires' Disease/drug therapy , Myeloid-Derived Suppressor Cells/drug effects , Nitrobenzenes/therapeutic use , Sepsis/drug therapy , Sulfonamides/therapeutic use , Animals , CD4-Positive T-Lymphocytes/immunology , Cecum/surgery , Cyclooxygenase 2 Inhibitors/pharmacology , Cytokines/blood , Disease Models, Animal , Hypersensitivity, Delayed , Immune Tolerance/drug effects , Legionella pneumophila , Legionnaires' Disease/immunology , Legionnaires' Disease/microbiology , Lipopolysaccharides/pharmacology , Lung/immunology , Lung/microbiology , Male , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells/immunology , Nitrobenzenes/pharmacology , Sepsis/immunology , Sepsis/microbiology , Spleen/cytology , Spleen/immunology , Sulfonamides/pharmacology
12.
Semin Cancer Biol ; 79: 68-82, 2022 02.
Article in English | MEDLINE | ID: mdl-32201368

ABSTRACT

In the last decade, a large amount of research has focused on elucidating the mechanisms that account for homing disseminated cancer cells (DCCs) from solid tumours to distant organs, which successively progress to overt metastatic disease; this is currently incurable. A better understanding of DCC behaviour is expected to allow detectable metastasis prevention by more effectively targeting 'metastatic seeds before they sprout'. As DCC biology co-evolved with that of the primary tumour, and due to the many similarities between them, the term 'niche' has been borrowed from normal adult stem cells (ASCs) to define the site of DCC metastatic colonisation. Moreover, heterogeneity, survival, protection, stemness and plasticity as well as the prolonged G0-G1 dormant state in the metastatic niche have been the main aspects of intense investigation. Consistent with these findings, in solid cancers with minimal residual disease (MRD), it has been proposed to prolong adjuvant therapy by targeting specific molecular pathway(s) involving DCC dormancy. However, so far, few disappointing clinical data have been reported. As an alternative strategy, because immune-surveillance contributes to the steady state of the DCC population and likely to the G0-G1 state of cancer cells, we have used prolonged immune-modulatory cytostatic chemotherapy, active immune stimulation with an INF-ß/IL-2 sequence or drugs inhibiting myeloid-derived suppressor cell (MDSC)/Treg-mediated immune suppression. This strategy, mainly aimed at boosting the immune response, is based on recent findings suggesting the downregulation of immune escape mechanisms as well as other principal hallmarks during the G0-G1 state and/or in MRD. Preliminary clinical and/or laboratory data suggest the efficacy of this strategy in gastrointestinal and some endocrine-dependent cancers. Following this, we propose therapeutic schedules to prevent DCC activation and proliferation in solid cancers at a high risk of relapse or as maintenance therapy in metastatic patients after complete response (CR) to conventional treatment.


Subject(s)
Immunologic Factors/therapeutic use , Immunotherapy/methods , Neoplasm Metastasis/prevention & control , Neoplasm Recurrence, Local/prevention & control , Neoplasm, Residual/therapy , Neoplastic Cells, Circulating/pathology , Cell Proliferation/drug effects , Humans , Interleukin-2/metabolism , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/immunology , Neoplasm Metastasis/drug therapy , Neoplasm Recurrence, Local/drug therapy , Neoplasm, Residual/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Tumor Escape/drug effects , Tumor Escape/immunology
13.
J Clin Lab Anal ; 36(1): e24158, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34861064

ABSTRACT

BACKGROUND: Agglomeration of myeloid-derived suppressor cells (MDSCs) in tumors impedes immunotherapeutic effects. Doxorubicin (DOX) is currently the most specific drug used for the selective removal of MDSCs. Here, we study the feasibility and mechanism of eliminating MDSCs by DOX to improve antigen-specific cytotoxic T lymphocyte (CTL)-killing neuroblastoma (NB) cells in vitro. METHODS: CTL and MDSC were prepared; then, CTLs, NB cells, MDSCs, and DOX were mixed and cultivated in different collocation patterns and divided into different groups. The levels of cluster of differentiation 3ζ chain (CD3ζ) and L-selectin in CTL in different groups were detected. Thereafter, the killing rate of NB cells and secretion of interleukin-2 and interferon-γ were measured and compared. RESULTS: By real-time polymerase chain reaction (PCR) and Western blot test respectively, the proliferation and killing effect of CTLs on NB cells were all inhibited by MDSC through downregulating CD3ζ (p = 0.002; p = 0.001) and L-selectin (p = 0.006; p < 0.001). However, this inhibitory effect was reversed by DOX. Significant differences were observed in the levels of interleukin-2 (p < 0.001), interferon-γ (p < 0.001), and the killing rate (p < 0.001) among the groups, except between the CTL +SK-N-SH and CTL +SK-N-SH +DOX groups (p > 0.05). CONCLUSIONS: Targeted elimination of MDSCs by DOX can improve Ag-specific CTL killing of NB cells in vitro by upregulating CD3ζ and L-selectin. This study provides a novel method to enhance the immunotherapeutic effects of NB.


Subject(s)
Doxorubicin/pharmacology , L-Selectin , Myeloid-Derived Suppressor Cells/drug effects , Neuroblastoma , T-Lymphocytes, Cytotoxic/metabolism , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Humans , L-Selectin/genetics , L-Selectin/metabolism , Mice , Myeloid-Derived Suppressor Cells/metabolism , Neuroblastoma/metabolism , Neuroblastoma/pathology , Up-Regulation/genetics
14.
BMC Cancer ; 21(1): 1226, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34781899

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with rising incidence and with 5-years overall survival of less than 8%. PDAC creates an immune-suppressive tumor microenvironment to escape immune-mediated eradication. Regulatory T (Treg) cells and myeloid-derived suppressor cells (MDSC) are critical components of the immune-suppressive tumor microenvironment. Shifting from tumor escape or tolerance to elimination is the major challenge in the treatment of PDAC. RESULTS: In a mathematical model, we combine distinct treatment modalities for PDAC, including 5-FU chemotherapy and anti- CD25 immunotherapy to improve clinical outcome and therapeutic efficacy. To address and optimize 5-FU and anti- CD25 treatment (to suppress MDSCs and Tregs, respectively) schedule in-silico and simultaneously unravel the processes driving therapeutic responses, we designed an in vivo calibrated mathematical model of tumor-immune system (TIS) interactions. We designed a user-friendly graphical user interface (GUI) unit which is configurable for treatment timings to implement an in-silico clinical trial to test different timings of both 5-FU and anti- CD25 therapies. By optimizing combination regimens, we improved treatment efficacy. In-silico assessment of 5-FU and anti- CD25 combination therapy for PDAC significantly showed better treatment outcomes when compared to 5-FU and anti- CD25 therapies separately. Due to imprecise, missing, or incomplete experimental data, the kinetic parameters of the TIS model are uncertain that this can be captured by the fuzzy theorem. We have predicted the uncertainty band of cell/cytokines dynamics based on the parametric uncertainty, and we have shown the effect of the treatments on the displacement of the uncertainty band of the cells/cytokines. We performed global sensitivity analysis methods to identify the most influential kinetic parameters and simulate the effect of the perturbation on kinetic parameters on the dynamics of cells/cytokines. CONCLUSION: Our findings outline a rational approach to therapy optimization with meaningful consequences for how we effectively design treatment schedules (timing) to maximize their success, and how we treat PDAC with combined 5-FU and anti- CD25 therapies. Our data revealed that a synergistic combinatorial regimen targeting the Tregs and MDSCs in both crisp and fuzzy settings of model parameters can lead to tumor eradication.


Subject(s)
Carcinoma, Pancreatic Ductal/therapy , Fluorouracil/therapeutic use , Immunotherapy/methods , Interleukin-2 Receptor alpha Subunit/immunology , Models, Theoretical , Pancreatic Neoplasms/therapy , Animals , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Fuzzy Logic , Humans , Immune Tolerance , Immunity, Cellular , Killer Cells, Natural/cytology , Mice , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells/drug effects , Neoplasm Transplantation , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Regulatory/drug effects , Treatment Outcome , Tumor Escape , Tumor Microenvironment/immunology , User-Computer Interface
15.
Biomed Pharmacother ; 144: 112346, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34678727

ABSTRACT

The expansion of myeloid-derived suppressor cells (MDSCs), known as heterogeneous population of immature myeloid cells, is enhanced during several pathological conditions such as inflammatory or viral respiratory infections. It seems that the way MDSCs behave in infection depends on the type and the virulence mechanisms of the invader pathogen, the disease stage, and the infection-related pathology. Increasing evidence showing that in correlation with the severity of the disease, MDSCs are accumulated in COVID-19 patients, in particular in those at severe stages of the disease or ICU patients, contributing to pathogenesis of SARS-CoV2 infection. Based on the involved subsets, MDSCs delay the clearance of the virus through inhibiting T-cell proliferation and responses by employing various mechanisms such as inducing the secretion of anti-inflammatory cytokines, inducible nitric oxide synthase (iNOS)-mediated hampering of IFN-γ production, or forcing arginine shortage. While the immunosuppressive characteristic of MDSCs may help to preserve the tissue homeostasis and prevent hyperinflammation at early stages of the infection, hampering of efficient immune responses proved to exert significant pathogenic effects on severe forms of COVID-19, suggesting the targeting of MDSCs as a potential intervention to reactivate T-cell immunity and thereby prevent the infection from developing into severe stages of the disease. This review tried to compile evidence on the roles of different subsets of MDSCs during viral respiratory infections, which is far from being totally understood, and introduce the promising potential of MDSCs for developing novel diagnostic and therapeutic approaches, especially against COVID-19 disease.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , COVID-19 , Myeloid-Derived Suppressor Cells , COVID-19/immunology , COVID-19/virology , Drug Discovery , Humans , Immune Tolerance , Immunity, Innate , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/physiology , SARS-CoV-2
16.
ACS Appl Mater Interfaces ; 13(40): 47407-47417, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34597015

ABSTRACT

Pyroptosis is a programmed cell death to enhance immunogenicity of tumor cells, but pyroptosis-based immunotherapy is limited due to the immune escape involving myeloid-derived suppressor cells (MDSCs). Therefore, designing a nanoplatform to not only trigger apoptosis-pyroptosis transformation but also combat the MDSC-based immune escape is of great significance. As a proof-of-concept study, here, we designed a metal organic framework (MOF)-based nanoplatform to tailor the pyroptosis immunotherapy through disrupting the MDSC-mediated immunosuppression. By pH-responsive zeolitic imidazolate framework-8 (ZIF-8) modified with hyaluronic acid (HA), the chemotherapeutic drug mitoxantrone (MIT) and DNA demethylating agent hydralazine (HYD) were successfully co-encapsulated into ZIF-8 for achieving (M+H)@ZIF/HA nanoparticles. This nanoplatform demonstrated a powerful apoptosis-to-pyroptosis transformation with a potent disruption of MDSC-mediated T cell paralysis via reducing immunosuppressive methylglyoxal by HYD. Overall, our two-pronged nanoplatform (M+H)@ZIF/HA can switch the cold tumor into an arsenal of antigens that stimulate robust immunological responses, while suppressing immune escape, collectively triggering vigorous cytotoxic T cell responses with remarkable tumor elimination and building a long-term immune memory response against metastasis.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Carriers/chemistry , Immunologic Factors/therapeutic use , Myeloid-Derived Suppressor Cells/drug effects , Nanoparticles/chemistry , Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Drug Liberation , Female , Hyaluronic Acid/chemistry , Hydralazine/chemistry , Hydralazine/therapeutic use , Imidazoles/chemistry , Immunologic Factors/chemistry , Immunomodulation/drug effects , Immunotherapy/methods , Metal-Organic Frameworks/chemistry , Mice, Inbred BALB C , Mitoxantrone/chemistry , Mitoxantrone/therapeutic use , Neoplasm Metastasis/prevention & control , Proof of Concept Study , Pyroptosis/drug effects
17.
Int Immunopharmacol ; 101(Pt A): 108173, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34607233

ABSTRACT

In previous studies, we have obtained a notable anti-tumor efficacy of the recombinant MUC1-MBP vaccine in the process of mouse B16-MUC1 melanoma treatment. However, the tumor cannot be eliminated completely. We found that the tumor inhibition rate decreased from 81.67% (five immunizations) to 43.67% (eight immunizations) after more than five immunizations, indicating persistent vaccine stimulation may activate immunosuppressive factors. In the present study, we revealed that programmed cell death 1 (PD1), an inhibitory molecule suppressing T cell function, expressed on splenic and tumor-infiltrating T cells were up-regulated by the vaccine. Therefore, to optimize the anti-tumor efficacy of the vaccine, we employed combination immunotherapy with MUC1-MBP vaccine and αPD1 (anti-PD1 antibody). Results showed that combination immunotherapy induced a more remarkable anti-tumor efficacy, the tumor clearance being increased to 80% from 20% which obtain by MUC1-MBP vaccine immunizations. To investigate the possible underlying mechanism, IFN-γ secretion and cytotoxic T lymphocyte (CTL) cytotoxicity were measured by enzyme-linked immunosorbent assay (ELISA) and xCELLigence real-time cell analyzer (RTCA) respectively. T cell subsets and immunosuppressive cells in the mouse spleen and tumor microenvironment were analyzed by FACS. Results showed that the proportion of splenic CD8+T cells and tumor infiltration was increased and the activity of CTL killing, T helper 1 (Th1), Type 1 CD8+T (Tc1) was enhanced, indicating that the anti-tumor efficacy enhanced by combination immunotherapy was mainly through boosting CD8+T cells mediated anti-tumor cellular immunity. Additionally, combination immunotherapy significantly decreased the splenic and tumor-infiltrating myeloid derived suppressor cells (MDSCs). These results demonstrated that combination immunotherapy with MUC1-MBP vaccine and αPD1 was capable to invoke a more potent anti-tumor immune response and provide a foundation for further research.


Subject(s)
Cancer Vaccines/administration & dosage , Immune Checkpoint Inhibitors/pharmacology , Melanoma, Experimental/therapy , Skin Neoplasms/therapy , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/genetics , Cancer Vaccines/immunology , Cell Line, Tumor/transplantation , Female , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Mucin-1/administration & dosage , Mucin-1/genetics , Mucin-1/immunology , Myelin Basic Protein/administration & dosage , Myelin Basic Protein/genetics , Myelin Basic Protein/immunology , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Skin Neoplasms/immunology , Skin Neoplasms/pathology , Th1 Cells/drug effects , Th1 Cells/immunology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
18.
Front Immunol ; 12: 687874, 2021.
Article in English | MEDLINE | ID: mdl-34675913

ABSTRACT

Soluble tumor necrosis factor-α (sTNF-α) plays an important role in colitis-associated cancer (CAC); however, little is known about transmembrane TNF-α (tmTNF-α). Here, we observed an increase in sTNF-α mainly in colitis tissues from an azoxymethane/dextran sodium sulfate (DSS)-induced CAC mouse model whereas tmTNF-α levels were chiefly increased on epithelial cells at the tumor stage. The ratio of intracolonic tmTNF-α/sTNF-α was negatively correlated with the levels of pro-inflammatory mediators (IL-1ß, IL-6, and NO) and M1 macrophages but positively correlated with the infiltration of myeloid-derived suppressor cells, regulatory T cells, and the level of the anti-inflammatory cytokine IL-10, suggesting an anti-inflammatory effect of tmTNF-α. This effect of tmTNF-α was confirmed again by the induction of resistance to LPS in colonic epithelial cell lines NCM460 and HCoEpiC through the addition of exogenous tmTNF-α or transfection of the tmTNF-α leading sequence that lacks the extracellular segment but retains the intracellular domain of tmTNF-α. A tmTNF-α antibody was used to block tmTNF-α shedding after the first or second round of inflammation induction by DSS drinking to shift the time window of tmTNF-α expression ahead to the inflammation stage. Antibody treatment significantly alleviated inflammation and suppressed subsequent adenoma formation, accompanied by increased apoptosis. An antitumor effect was also observed when the antibody was administered at the malignant phase of CAC. Our results reveal tmTNF-α as a novel molecular marker for malignant transformation in CAC and provide a new insight into blocking the pathological process by targeting tmTNF-α processing.


Subject(s)
Adenoma/prevention & control , Anti-Inflammatory Agents/pharmacology , Antibodies/pharmacology , Anticarcinogenic Agents/pharmacology , Cell Membrane/drug effects , Colitis-Associated Neoplasms/prevention & control , Colon/drug effects , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Adenoma/immunology , Adenoma/metabolism , Adenoma/pathology , Animals , Apoptosis/drug effects , Cell Line , Cell Membrane/immunology , Cell Membrane/metabolism , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/immunology , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Colitis-Associated Neoplasms/immunology , Colitis-Associated Neoplasms/metabolism , Colitis-Associated Neoplasms/pathology , Colon/immunology , Colon/metabolism , Colon/pathology , Disease Models, Animal , Humans , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Male , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Time Factors , Tumor Burden/drug effects , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
19.
Biomed Pharmacother ; 143: 112211, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34649344

ABSTRACT

Lipopolysaccharide (LPS) is the major component of the outer membrane of Gram-negative bacteria and is usually administrated to establish models of inflammation. Artesunate (ART), a water-soluble artemisinin derivative, displays multiple pharmacological actions against tumors, viral infections, and inflammation, and has been used as a therapeutic weapon against malaria. In this study, our aim was to evaluate whether ART pretreatment is capable of preventing inflammation induced by LPS. BALB/c mice were treated with 100 mg/kg of ART i.p. for 7 days followed by a single dose of LPS. ART pretreatment led to an improvement in clinical score, prevented alterations in biochemical markers, and reestablished the platelet counts. Flow cytometry analysis showed that ART protected the inflammation mainly by reducing the percentage of M1 macrophages while increasing M2 macrophages and a reestablishment of classical monocytes in the BM. In the spleen, ART pretreatment increased N2 neutrophils, myeloid-derived suppressor cells (MDSC), and regulatory T cells, the latter was also increased in peripheral blood. In addition, a marked decrease in inflammatory cytokines and chemokines was observed in the ART treated group. Our data suggest that ART prevents inflammation, reducing tissue damage and restoring homeostasis.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Artesunate/pharmacology , Inflammation/prevention & control , Myeloid Cells/drug effects , T-Lymphocytes, Regulatory/drug effects , Animals , Chemokines/metabolism , Cytokines/metabolism , Disease Models, Animal , Humans , Inflammation/chemically induced , Inflammation/immunology , Inflammation/metabolism , Lipopolysaccharides , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Male , Mice, Inbred BALB C , Myeloid Cells/immunology , Myeloid Cells/metabolism , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Neutrophils/drug effects , Neutrophils/immunology , Neutrophils/metabolism , Phenotype , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
20.
J Cancer Res Ther ; 17(4): 1093-1100, 2021.
Article in English | MEDLINE | ID: mdl-34528569

ABSTRACT

CONTEXT: Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immune cells of myeloid lineage. Recent reports have suggested that human MDSC are divided into three subsets: monocytic MDSC (M-MDSC), granulocytic MDSC (G-MDSC), and immature MDSC (I-MDSC). However, the characteristics of each human MDSC subset still remain unclear. MATERIALS AND METHODS: To evaluate the immunosuppressive effects and mechanisms, we first performed a T-cell suppression assay using cells obtained from healthy donor peripheral blood samples. The levels of immune inhibitory molecules in the culture supernatant of each MDSC subset were measured to reveal the T-cell suppressive mechanisms. Then, we compared these results with the results from cells obtained from cancer patient blood samples. Finally, we investigated the difference in the frequency of each MDSC subset between the healthy donors and the cancer patients. RESULTS: Although M-MDSC and G-MDSC suppressed T-cell activation, I-MDSC had no T-cell suppressive effect. We found that the culture supernatant of M-MDSC and G-MDSC contained high levels of interleukin-1 receptor antagonist (IL-1RA) and arginase, respectively, in both healthy donors and cancer patients. No inhibitory molecules were detected in the culture supernatant of I-MDSC. The population of functional MDSC (M-MDSC and G-MDSC) in the total MDSC was significantly increased in cancer patients compared with that in healthy donors. CONCLUSIONS: Although M-MDSC and G-MDSC, which released IL-1RA and arginase, respectively, suppressed T-cell activation, I-MDSC did not have an immunosuppressive effect. The population of functional MDSC was increased in cancer patients compared with that in healthy donors.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Granulocytes/immunology , Monocytes/immunology , Myeloid-Derived Suppressor Cells/immunology , Neoplasms/immunology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Case-Control Studies , Cell Proliferation , Female , Granulocytes/drug effects , Granulocytes/pathology , Humans , Male , Monocytes/drug effects , Monocytes/pathology , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/pathology , Neoplasms/drug therapy , Neoplasms/pathology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...