Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.133
Filter
1.
J Exp Clin Cancer Res ; 43(1): 157, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824552

ABSTRACT

Phosphoinositide-3-kinase γ (PI3Kγ) plays a critical role in pancreatic ductal adenocarcinoma (PDA) by driving the recruitment of myeloid-derived suppressor cells (MDSC) into tumor tissues, leading to tumor growth and metastasis. MDSC also impair the efficacy of immunotherapy. In this study we verify the hypothesis that MDSC targeting, via PI3Kγ inhibition, synergizes with α-enolase (ENO1) DNA vaccination in counteracting tumor growth.Mice that received ENO1 vaccination followed by PI3Kγ inhibition had significantly smaller tumors compared to those treated with ENO1 alone or the control group, and correlated with i) increased circulating anti-ENO1 specific IgG and IFNγ secretion by T cells, ii) increased tumor infiltration of CD8+ T cells and M1-like macrophages, as well as up-modulation of T cell activation and M1-like related transcripts, iii) decreased infiltration of Treg FoxP3+ T cells, endothelial cells and pericytes, and down-modulation of the stromal compartment and T cell exhaustion gene transcription, iv) reduction of mature and neo-formed vessels, v) increased follicular helper T cell activation and vi) increased "antigen spreading", as many other tumor-associated antigens were recognized by IgG2c "cytotoxic" antibodies. PDA mouse models genetically devoid of PI3Kγ showed an increased survival and a pattern of transcripts in the tumor area similar to that of pharmacologically-inhibited PI3Kγ-proficient mice. Notably, tumor reduction was abrogated in ENO1 + PI3Kγ inhibition-treated mice in which B cells were depleted.These data highlight a novel role of PI3Kγ in B cell-dependent immunity, suggesting that PI3Kγ depletion strengthens the anti-tumor response elicited by the ENO1 DNA vaccine.


Subject(s)
Vaccines, DNA , Animals , Mice , Vaccines, DNA/pharmacology , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Humans , Cell Line, Tumor , Cancer Vaccines/immunology , Cancer Vaccines/pharmacology , Disease Models, Animal , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism
2.
J Cancer Res Clin Oncol ; 150(5): 243, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717677

ABSTRACT

Colitis-associated colorectal cancer has been a hot topic in public health issues worldwide. Numerous studies have demonstrated the significance of myeloid-derived suppressor cells (MDSCs) in the progression of this ailment, but the specific mechanism of their role in the transformation of inflammation to cancer is unclear, and potential therapies targeting MDSC are also unclear. This paper outlines the possible involvement of MDSC to the development of colitis-associated colorectal cancer. It also explores the immune and other relevant roles played by MDSC, and collates relevant targeted therapies against MDSC. In addition, current targeted therapies for colorectal cancer are analyzed and summarized.


Subject(s)
Colitis-Associated Neoplasms , Colorectal Neoplasms , Myeloid-Derived Suppressor Cells , Humans , Myeloid-Derived Suppressor Cells/immunology , Colitis-Associated Neoplasms/pathology , Colitis-Associated Neoplasms/etiology , Colitis-Associated Neoplasms/immunology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/etiology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy , Animals , Colitis/complications , Colitis/immunology
3.
J Hematol Oncol ; 17(1): 31, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720342

ABSTRACT

Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.


Subject(s)
Brain Neoplasms , Myeloid-Derived Suppressor Cells , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Brain Neoplasms/pathology , Myeloid-Derived Suppressor Cells/immunology , Glioma/immunology , Glioma/therapy , Glioma/pathology , Glioblastoma/immunology , Glioblastoma/therapy , Glioblastoma/pathology , Animals , Immunotherapy/methods , T-Lymphocytes, Regulatory/immunology
4.
Front Immunol ; 15: 1342497, 2024.
Article in English | MEDLINE | ID: mdl-38694499

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are a phenotypically heterogenous group of cells that potently suppress the immune response. A growing body of evidence supports the important role of MDSCs in a variety of lung diseases, such as asthma. However, the role of MDSCs in asthma exacerbation has so far not been investigated. Here, we studied the role of MDSCs in a murine model of influenza virus-induced asthma exacerbation. BALB/c mice were exposed to house dust mite (HDM) three times a week for a total of five weeks to induce a chronic asthmatic phenotype, which was exacerbated by additional exposure to the A/Hamburg/5/2009 hemagglutinin 1 neuraminidase 1 (H1N1) influenza virus. Induction of lung inflammatory features, production of T helper (Th) 1- and Th2- associated inflammatory cytokines in the lavage fluid and an increased airway hyper-responsiveness were observed, establishing the asthma exacerbation model. The number and activity of pulmonary M-MDSCs increased in exacerbated asthmatic mice compared to non-exacerbated asthmatic mice. Furthermore, depletion of MDSCs aggravated airway hyper-responsiveness in exacerbated asthmatic mice. These findings further denote the role of MDSCs in asthma and provide some of the first evidence supporting a potential important role of MDSCs in asthma exacerbation.


Subject(s)
Asthma , Cytokines , Disease Models, Animal , Influenza A Virus, H1N1 Subtype , Mice, Inbred BALB C , Myeloid-Derived Suppressor Cells , Orthomyxoviridae Infections , Animals , Asthma/immunology , Myeloid-Derived Suppressor Cells/immunology , Mice , Orthomyxoviridae Infections/immunology , Cytokines/metabolism , Influenza A Virus, H1N1 Subtype/immunology , Female , Pyroglyphidae/immunology , Disease Progression , Lung/immunology , Lung/pathology , Lung/virology , Th2 Cells/immunology
5.
Cancer Rep (Hoboken) ; 7(5): e2066, 2024 May.
Article in English | MEDLINE | ID: mdl-38703051

ABSTRACT

BACKGROUND: The tumor microenvironment of solid tumors governs the differentiation of otherwise non-immunosuppressive macrophages and gamma delta (γδ) T cells into strong immunosuppressors while promoting suppressive abilities of known immunosuppressors such as myeloid-derived suppressor cells (MDSCs) upon infiltration into the tumor beds. RECENT FINDINGS: In epithelial malignancies, tumor-associated macrophages (TAMs), precursor monocytic MDSCs (M-MDSCs), and gamma delta (γδ) T cells often acquire strong immunosuppressive abilities that dampen spontaneous immune responses by tumor-infiltrating T cells and B lymphocytes against cancer. Both M-MDSCs and γδ T cells have been associated with worse prognosis for multiple epithelial cancers. CONCLUSION: Here we discuss recent discoveries on how tumor-associated macrophages and precursor M-MDSCs as well as tumor associated-γδ T cells acquire immunosuppressive abilities in the tumor beds, promote cancer metastasis, and perspectives on how possible novel interventions could restore the effective adaptive immune responses in epithelial cancers.


Subject(s)
Lymphocytes, Tumor-Infiltrating , Myeloid-Derived Suppressor Cells , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Myeloid-Derived Suppressor Cells/immunology , Intraepithelial Lymphocytes/immunology , Neoplasms, Glandular and Epithelial/immunology , Neoplasms, Glandular and Epithelial/pathology , Immune Tolerance , Animals , Tumor-Associated Macrophages/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Myeloid Cells/immunology
6.
Commun Biol ; 7(1): 669, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822095

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) play a crucial role in maintaining maternal-fetal tolerance by expressing some immune-suppressive molecules, such as indoleamine 2,3-dioxygenase (IDO). Toxoplasma gondii (T. gondii) infection can break the immune microenvironment of maternal-fetal interface, resulting in adverse pregnancy outcomes. However, whether T. gondii affects IDO expression in dMDSCs and the molecular mechanism of its effect are still unclear. Here we show, the mRNA level of IDO is increased but the protein level decreased in infected dMDSCs. Mechanistically, the upregulation of transcriptional levels of IDO in dMDSCs is regulated through STAT3/p52-RelB pathway and the decrease of IDO expression is due to its degradation caused by increased SOCS3 after T. gondii infection. In vivo, the adverse pregnancy outcomes of IDO-/- infected mice are more severe than those of wide-type infected mice and obviously improved after exogenous kynurenine treatment. Also, the reduction of IDO in dMDSCs induced by T. gondii infection results in the downregulation of TGF-ß and IL-10 expression in dNK cells regulated through Kyn/AhR/SP1 signal pathway, eventually leading to the dysfunction of dNK cells and contributing the occurrence of adverse pregnancy outcomes. This study reveals a novel molecular mechanism in adverse pregnancy outcome induced by T. gondii infection.


Subject(s)
Down-Regulation , Indoleamine-Pyrrole 2,3,-Dioxygenase , Killer Cells, Natural , Toxoplasmosis , Animals , Female , Humans , Mice , Pregnancy , Decidua/immunology , Decidua/metabolism , Decidua/parasitology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Toxoplasma/physiology , Toxoplasmosis/immunology , Toxoplasmosis/parasitology
7.
Front Immunol ; 15: 1390327, 2024.
Article in English | MEDLINE | ID: mdl-38742106

ABSTRACT

Introduction: Tuberculous pleural effusion (TPE) stands as one of the primary forms of extrapulmonary tuberculosis (TB) and frequently manifests in regions with a high prevalence of TB, consequently being a notable cause of pleural effusion in such areas. However, the differentiation between TPE and parapneumonic pleural effusion (PPE) presents diagnostic complexities. This study aimed to evaluate the potential of myeloid-derived suppressor cells (MDSCs) in the pleural fluid as a potential diagnostic marker for distinguishing between TPE and PPE. Methods: Adult patients, aged 18 years or older, who presented to the emergency room of a tertiary referral hospital and received a first-time diagnosis of pleural effusion, were prospectively enrolled in the study. Various immune cell populations, including T cells, B cells, natural killer (NK) cells, and MDSCs, were analyzed in both pleural fluid and peripheral blood samples. Results: In pleural fluid, the frequency of lymphocytes, including T, B, and NK cells, was notably higher in TPE compared to PPE. Conversely, the frequency of polymorphonuclear (PMN)-MDSCs was significantly higher in PPE. Notably, compared to traditional markers such as the neutrophil-to-lymphocyte ratio and adenosine deaminase level, the frequency of PMN-MDSCs emerged as a more effective discriminator between PPE and TPE. PMN-MDSCs demonstrated superior positive and negative predictive values and exhibited a higher area under the curve in the receiver operating characteristic curve analysis. PMN-MDSCs in pleural effusion increased the levels of reactive oxygen species and suppressed the production of interferon-gamma from T cells following nonspecific stimulation. These findings suggest that MDSC-mediated immune suppression may contribute to the pathology of both TPE and PPE. Discussion: The frequency of PMN-MDSCs in pleural fluid is a clinically useful indicator for distinguishing between TPE and PPE.


Subject(s)
Biomarkers , Myeloid-Derived Suppressor Cells , Pleural Effusion , Tuberculosis, Pulmonary , Humans , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Male , Female , Pleural Effusion/immunology , Pleural Effusion/diagnosis , Middle Aged , Diagnosis, Differential , Adult , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/immunology , Aged , Pneumonia/diagnosis , Pneumonia/immunology , Prospective Studies , Tuberculosis, Pleural/diagnosis , Tuberculosis, Pleural/immunology
8.
Exp Hematol ; 129: 104125, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38743005

ABSTRACT

The revised International Prognostic Index (R-IPI) is an important prognostic tool in diffuse large B cell lymphoma (DLBCL); however, outcomes can vary markedly within R-IPI groups, and additional prognostic markers are needed. We conducted a prospective observational study to evaluate the circulating immature myeloid (IM) cell subsets and cytokine profiles of 31 patients with newly diagnosed DLBCL before and after chemoimmunotherapy. Among circulating IM cells, myeloid-derived suppressor cells (MDSCs) were the predominant cell type (73.8% ± 26%). At baseline, circulating monocytic MDSCs (M-MDSCs) and polymorphonuclear MDSCs (PMN-MDSCs) were predominantly mutually exclusive. Patients with DLBCL clustered into three distinct immunotypes according to MDSC levels and subtype predominance: M-MDSChigh, PMN-MDSChigh, and MDSClow. The M-MDSChigh immunotype was associated with the germinal center B cell-like (GCB) subtype and elevated serum IL-8 and MIP-1α levels. PMN-MDSChigh was associated with the non-GCB subtype and elevated IL-8, MCP-1, IP-10, TNFα, and IL-1Ra levels. Standard chemoimmunotherapy partially reduced M-MDSC distribution across the MDSClow and M-MDSChigh groups. By contrast, among the MDSClow and PMN-MDSChigh groups, PMN-MDSCs persisted after treatment. Two high-risk patients with non-GCB DLBCL and MDSClow immunotype experienced early disease recurrence within 12 months of treatment completion. This study demonstrates that distinct types of MDSCs are associated with subtypes of DLBCL. MDSC levels are dynamic and may be associated with disease status. Persistence of PMN-MDSCs among high-risk patients with DLBCL may be associated with early relapse.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Myeloid-Derived Suppressor Cells , Humans , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/pathology , Myeloid-Derived Suppressor Cells/metabolism , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/therapy , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Large B-Cell, Diffuse/immunology , Lymphoma, Large B-Cell, Diffuse/blood , Female , Male , Middle Aged , Aged , Prognosis , Inflammation/pathology , Adult , Prospective Studies , Aged, 80 and over , Cytokines/blood , Immunotherapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
9.
BMC Gastroenterol ; 24(1): 163, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745150

ABSTRACT

BACKGROUND: The liver regeneration is a highly complicated process depending on the close cooperations between the hepatocytes and non-parenchymal cells involving various inflammatory cells. Here, we explored the role of myeloid-derived suppressor cells (MDSCs) in the processes of liver regeneration and liver fibrosis after liver injury. METHODS: We established four liver injury models of mice including CCl4-induced liver injury model, bile duct ligation (BDL) model, concanavalin A (Con A)-induced hepatitis model, and lipopolysaccharide (LPS)-induced hepatitis model. The intrahepatic levels of MDSCs (CD11b+Gr-1+) after the liver injury were detected by flow cytometry. The effects of MDSCs on liver tissues were analyzed in the transwell co-culture system, in which the MDSCs cytokines including IL-10, VEGF, and TGF-ß were measured by ELISA assay and followed by being blocked with specific antibodies. RESULTS: The intrahepatic infiltrations of MDSCs with surface marker of CD11b+Gr-1+ remarkably increased after the establishment of four liver injury models. The blood served as the primary reservoir for hepatic recruitment of MDSCs during the liver injury, while the bone marrow appeared play a compensated role in increasing the number of MDSCs at the late stage of the inflammation. The recruited MDSCs in injured liver were mainly the M-MDSCs (CD11b+Ly6G-Ly6Chigh) featured by high expression levels of cytokines including IL-10, VEGF, and TGF-ß. Co-culture of the liver tissues with MDSCs significantly promoted the proliferation of both hepatocytes and hepatic stellate cells (HSCs). CONCLUSIONS: The dramatically and quickly infiltrated CD11b+Gr-1+ MDSCs in injured liver not only exerted pro-proliferative effects on hepatocytes, but also accounted for the activation of profibrotic HSCs.


Subject(s)
CD11b Antigen , Liver Cirrhosis , Liver Regeneration , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells , Animals , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/immunology , Mice , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Liver Regeneration/physiology , CD11b Antigen/metabolism , Male , Disease Models, Animal , Liver/pathology , Liver/metabolism , Vascular Endothelial Growth Factor A/metabolism , Carbon Tetrachloride , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/immunology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/physiopathology , Concanavalin A , Ligation , Lipopolysaccharides , Interleukin-10/metabolism , Transforming Growth Factor beta/metabolism , Hepatic Stellate Cells/metabolism , Coculture Techniques , Hepatocytes/metabolism , Hepatocytes/pathology , Bile Ducts
10.
Med Oncol ; 41(7): 165, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819590

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) play a crucial role in promoting melanoma metastasis. Reprogramming MDSCs into mature M1 macrophages has emerged as a strategy to inhibit metastasis. Decitabine (Dec) is known to eradicate MDSCs and suppress tumor growth. In this study, we provide evidence that Dec not only reduces the MDSC population by inducing apoptosis, arresting cell cycle, and impairing recruitment, but also suppresses their immunosuppressive function by downregulating related genes and facilitating differentiation into M1 macrophages. Transcriptomic analysis of Dec-treated MDSCs revealed a marked downregulation of immunosuppressive genes including S100a9, S100a8, Vegf, Cxcr2, and Nos2. Meanwhile, M1 macrophage-associated genes involved in immune activation were upregulated, such as Ddx58, Isg15, Tap1, Ccl5, Cxcl9, and Cxcl10. Further bioinformatic analysis indicated that Dec promotes MDSC-to-M1 macrophage differentiation and activates innate immune pathways including NOD-like signaling to enhance anti-tumor immunity. Time-course studies implied that Dec upregulates myeloid transcription factor Irf7 to initiate MDSC differentiation and orchestrate the anti-tumor immune response. Collectively, our study unveils a novel dual-functional mechanism of Dec as both a cytotoxic agent reducing MDSCs and an inducer of their differentiation into M1 macrophages, thereby alleviating immunosuppression. This highlights Dec's potential for clinical melanoma metastasis suppression.


Subject(s)
Decitabine , Melanoma , Myeloid-Derived Suppressor Cells , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Animals , Decitabine/pharmacology , Mice , Melanoma/drug therapy , Melanoma/pathology , Melanoma/immunology , Humans , Mice, Inbred C57BL , Cell Differentiation/drug effects , Antimetabolites, Antineoplastic/pharmacology , Cell Line, Tumor , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Apoptosis/drug effects , Immune Tolerance/drug effects
11.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791188

ABSTRACT

In our previous studies, a novel cryothermal therapy (CTT) was developed to induce systemic long-term anti-tumor immunity. Natural killer (NK) cells were found to play an important role in CTT-induced long-term immune-mediated tumor control at the late stage after CTT, but the underlying mechanism is unclear. Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that have potent immunosuppressive effects on T cells and weaken the long-term benefits of immunotherapy. Consequently, overcoming MDSC immunosuppression is essential for maintaining the long-term efficacy of immunotherapy. In this study, we revealed that NK cells considerably diminish MDSC accumulation at the late stage after CTT, boost T cell production, increase T cell activation, and promote MDSC maturation, culminating in Th1-dominant CD4+ T cell differentiation and enhancing NK and CD8+ T cell cytotoxicity. Additionally, NK cells activate ERK signaling in MDSCs through NKG2D-ligand interaction to increase the activity of tumor necrosis factor (TNF)-α converting enzyme (TACE)-cleaved membrane TNF-α. Furthermore, Increased TACE activity releases more soluble TNF-α from MDSCs to promote MDSC maturation. In our studies, we propose a novel mechanism by which NK cells can overcome MDSC-induced immunosuppression and maintain CTT-induced persistent anti-tumor immunity, providing a prospective therapeutic option to improve the performance of cancer immunotherapy.


Subject(s)
Killer Cells, Natural , Myeloid-Derived Suppressor Cells , NK Cell Lectin-Like Receptor Subfamily K , Tumor Necrosis Factor-alpha , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Animals , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Mice , Tumor Necrosis Factor-alpha/metabolism , Mice, Inbred C57BL , Lymphocyte Activation/immunology , Cell Differentiation , Ligands , ADAM17 Protein/metabolism
12.
Front Immunol ; 15: 1355405, 2024.
Article in English | MEDLINE | ID: mdl-38720891

ABSTRACT

Introduction: Sepsis engenders distinct host immunologic changes that include the expansion of myeloid-derived suppressor cells (MDSCs). These cells play a physiologic role in tempering acute inflammatory responses but can persist in patients who develop chronic critical illness. Methods: Cellular Indexing of Transcriptomes and Epitopes by Sequencing and transcriptomic analysis are used to describe MDSC subpopulations based on differential gene expression, RNA velocities, and biologic process clustering. Results: We identify a unique lineage and differentiation pathway for MDSCs after sepsis and describe a novel MDSC subpopulation. Additionally, we report that the heterogeneous response of the myeloid compartment of blood to sepsis is dependent on clinical outcome. Discussion: The origins and lineage of these MDSC subpopulations were previously assumed to be discrete and unidirectional; however, these cells exhibit a dynamic phenotype with considerable plasticity.


Subject(s)
Myeloid-Derived Suppressor Cells , Sepsis , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Humans , Sepsis/immunology , Transcriptome , Male , Female , Cell Differentiation/immunology , Gene Expression Profiling
13.
J Immunol Res ; 2024: 2765001, 2024.
Article in English | MEDLINE | ID: mdl-38774603

ABSTRACT

ß-Glucan is the main component of the cell wall of pathogen-associated molecular patterns (PAMPs) including various yeast, fungi, or certain bacteria. Previous reports demonstrated that ß-glucan was widely investigated as a potent immunomodulators to stimulate innate and adaptive immune responses, which indicated that it could be recommended as an effective adjuvant in immunotherapy. However, the detailed effects of ß-glucan on neonatal immunity are still largely unknown. Here, we found that ß-glucan did not affect the frequencies and numbers of myeloid cells in the spleen and bone marrow from neonates. Functional assay revealed that ß-glucan from neonates compromised the immunosuppressive function of immature myeloid cells, which were myeloid-derived suppressor cells (MDSCs). Flow cytometry or gene expression analysis revealed that ß-glucan-derived polymorphonuclear (PMN)-MDSCs produced lower level of reactive oxygen species (ROS) and arginase-1 (Arg1) in neonatal mice. Furthermore, ß-glucan administration significantly decreased the frequency and ROS level of PMN-MDSCs in vitro. These observations suggest that ß-glucan facilitates the maturation of myeloid cells in early life, which may contribute to its beneficial effects against immune disorders later in life.


Subject(s)
Animals, Newborn , Arginase , Myeloid-Derived Suppressor Cells , Reactive Oxygen Species , beta-Glucans , beta-Glucans/pharmacology , Animals , Mice , Reactive Oxygen Species/metabolism , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/drug effects , Arginase/metabolism , Myeloid Cells/metabolism , Myeloid Cells/immunology , Myeloid Cells/drug effects , Spleen/immunology , Spleen/metabolism , Spleen/cytology , Humans , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/drug effects , Mice, Inbred C57BL
15.
Nat Microbiol ; 9(6): 1467-1482, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750176

ABSTRACT

Bacteria such as the oral microbiome member Peptostreptococcus anaerobius can exacerbate colorectal cancer (CRC) development. Little is known regarding whether these immunomodulatory bacteria also affect antitumour immune checkpoint blockade therapy. Here we show that administration of P. anaerobius abolished the efficacy of anti-PD1 therapy in mouse models of CRC. P. anaerobius both induced intratumoral myeloid-derived suppressor cells (MDSCs) and stimulated their immunosuppressive activities to impair effective T cell responses. Mechanistically, P. anaerobius administration activated integrin α2ß1-NF-κB signalling in CRC cells to induce secretion of CXCL1 and recruit CXCR2+ MDSCs into tumours. The bacterium also directly activated immunosuppressive activity of intratumoral MDSCs by secreting lytC_22, a protein that bound to the Slamf4 receptor on MDSCs and promoted ARG1 and iNOS expression. Finally, therapeutic targeting of either integrin α2ß1 or the Slamf4 receptor were revealed as promising strategies to overcome P. anaerobius-mediated resistance to anti-PD1 therapy in CRC.


Subject(s)
Colorectal Neoplasms , Myeloid-Derived Suppressor Cells , Programmed Cell Death 1 Receptor , Animals , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Mice , Colorectal Neoplasms/immunology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/microbiology , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Humans , Cell Line, Tumor , Integrin alpha2beta1/metabolism , Immune Checkpoint Inhibitors/pharmacology , Signaling Lymphocytic Activation Molecule Family/metabolism , Mice, Inbred C57BL , Signal Transduction , Drug Resistance, Neoplasm , Disease Models, Animal , Female , NF-kappa B/metabolism
16.
PLoS Negl Trop Dis ; 18(5): e0012203, 2024 May.
Article in English | MEDLINE | ID: mdl-38771861

ABSTRACT

BACKGROUND: Chronic infection by Loa loa remains an unsolved immunological paradox. Despite harboring subcutaneously migrating adult worms and often high densities of microfilariae, most patients experience only relatively mild symptoms, yet microfilaricidal treatment can trigger life-threatening inflammation. Here, we investigated innate cell populations hypothesized to play a role in these two faces of the disease, in an endemic population in Gabon. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed numbers and activation of eosinophils and basophils, as well as myeloid-derived suppressor cell (MDSC) subsets and associated circulating cytokine levels by flow cytometry in sex- and age-matched L. loa-uninfected (LL-), -amicrofilaraemic (MF-) and -microfilaraemic (MF+) individuals (n = 42), as well as microfilaraemic individuals treated with albendazole (n = 26). The percentage of eosinophils was lower in LL- (3.0%) than in the combined L. loa-infected population, but was similar in MF+ (13.1%) and MF- (12.3%). Upon treatment of MF+, eosinophilia increased from day 0 (17.2%) to day 14 (24.8%) and had decreased below baseline at day 168 (6.3%). Expression of the eosinophil activation marker CD123 followed the same pattern as the percentage of eosinophils, while the inverse was observed for CD193 and to some extent CD125. Circulating IL-5 levels after treatment followed the same pattern as eosinophil dynamics. Basophil numbers did not differ between infection states but increased after treatment of MF+. We did not observe differences in MDSC numbers between infection states or upon treatment. CONCLUSIONS/SIGNIFICANCE: We demonstrate that both chronic infection and treatment of L. loa microfilaraemia are associated with eosinophil circulation and distinct phenotypical activation markers that might contribute to inflammatory pathways in this setting. In this first ever investigation into MDSC in L. loa infection, we found no evidence for their increased presence in chronic loiasis, suggesting that immunomodulation by L. loa is induced through other pathways.


Subject(s)
Basophils , Eosinophils , Loa , Loiasis , Myeloid-Derived Suppressor Cells , Humans , Loiasis/drug therapy , Loiasis/immunology , Male , Female , Adult , Eosinophils/immunology , Gabon/epidemiology , Basophils/immunology , Loa/physiology , Loa/immunology , Animals , Middle Aged , Myeloid-Derived Suppressor Cells/immunology , Young Adult , Albendazole/therapeutic use , Chronic Disease , Flow Cytometry , Cytokines , Endemic Diseases , Adolescent
17.
Sci Transl Med ; 16(747): eadi2952, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748775

ABSTRACT

Apart from their killer identity, natural killer (NK) cells have integral roles in shaping the tumor microenvironment. Through immune gene deconvolution, the present study revealed an interplay between NK cells and myeloid-derived suppressor cells (MDSCs) in nonresponders of immune checkpoint therapy. Given that the mechanisms governing the outcome of NK cell-to-myeloid cell interactions remain largely unknown, we sought to investigate the cross-talk between NK cells and suppressive myeloid cells. Upon contact with tumor-experienced NK cells, monocytes and neutrophils displayed increased expression of MDSC-related suppressive factors along with increased capacities to suppress T cells. These changes were accompanied by impaired antigen presentation by monocytes and increased ER stress response by neutrophils. In a cohort of patients with sarcoma and breast cancer, the production of interleukin-6 (IL-6) by tumor-infiltrating NK cells correlated with S100A8/9 and arginase-1 expression by MDSCs. At the same time, NK cell-derived IL-6 was associated with tumors with higher major histocompatibility complex class I expression, which we further validated with b2m-knockout (KO) tumor mice models. Similarly in syngeneic wild-type and IL-6 KO mouse models, we then demonstrated that the accumulation of MDSCs was influenced by the presence of such regulatory NK cells. Inhibition of the IL-6/signal transducer and activator of transcription 3 (STAT3) axis alleviated suppression of T cell responses, resulting in reduced tumor growth and metastatic dissemination. Together, these results characterize a critical NK cell-mediated mechanism that drives the development of MDSCs during tumor immune escape.


Subject(s)
Immune Tolerance , Interleukin-6 , Killer Cells, Natural , Myeloid-Derived Suppressor Cells , STAT3 Transcription Factor , STAT3 Transcription Factor/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Interleukin-6/metabolism , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/immunology , Animals , Humans , Signal Transduction , Tumor Microenvironment/immunology , Mice, Knockout , Cell Line, Tumor , Female , Mice , Mice, Inbred C57BL , Neoplasms/immunology , Neoplasms/pathology
18.
Front Immunol ; 15: 1352821, 2024.
Article in English | MEDLINE | ID: mdl-38711517

ABSTRACT

Pancreatic cancer is a significant cause of cancer-related mortality and often presents with limited treatment options. Pancreatic tumors are also notorious for their immunosuppressive microenvironment. Irreversible electroporation (IRE) is a non-thermal tumor ablation modality that employs high-voltage microsecond pulses to transiently permeabilize cell membranes, ultimately inducing cell death. However, the understanding of IRE's impact beyond the initiation of focal cell death in tumor tissue remains limited. In this study, we demonstrate that IRE triggers a unique mix of cell death pathways and orchestrates a shift in the local tumor microenvironment driven, in part, by reducing the myeloid-derived suppressor cell (MDSC) and regulatory T cell populations and increasing cytotoxic T lymphocytes and neutrophils. We further show that IRE drives induce cell cycle arrest at the G0/G1 phase in vitro and promote inflammatory cell death pathways consistent with pyroptosis and programmed necrosis in vivo. IRE-treated mice exhibited a substantial extension in progression-free survival. However, within a span of 14 days, the tumor immune cell populations reverted to their pre-treatment composition, which resulted in an attenuation of the systemic immune response targeting contralateral tumors and ultimately resulting in tumor regrowth. Mechanistically, we show that IRE augments IFN- Î³ signaling, resulting in the up-regulation of the PD-L1 checkpoint in pancreatic cancer cells. Together, these findings shed light on potential mechanisms of tumor regrowth following IRE treatment and offer insights into co-therapeutic targets to improve treatment strategies.


Subject(s)
Disease Models, Animal , Electroporation , Pancreatic Neoplasms , Tumor Microenvironment , Animals , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/pathology , Tumor Microenvironment/immunology , Mice , Cell Line, Tumor , Myeloid-Derived Suppressor Cells/immunology , Mice, Inbred C57BL , Humans , T-Lymphocytes, Regulatory/immunology , Female
19.
Pharmacol Res ; 204: 107204, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704109

ABSTRACT

We previously demonstrated that the C-E-cad protein encoded by circ-E-cadherin promotes the self-renewal of glioma stem cells. The expression pattern of C-E-cad in breast cancer and its potential function in the tumor microenvironment are unclear. The expression of circ-E-cadherin and C-E-cad was detected in breast cancer specimens. The influence of C-E-cad expression on MDSCs was assessed using FACS and in vivo tumorigenesis experiments. The synergistic effect of anti-C-E-cad and anti-PD-1 antibodies was validated in vivo. circ-E-cadherin and the encoded protein C-E-cad were found to be upregulated in breast cancer vs. normal samples. C-E-cad promotes the recruitment of MDSCs, especially PMN-MDSCs. C-E-cad activates EGFR signaling in tumor cells and promotes the transcription of CXCL8; moreover, C-E-cad binds to MDSCs and maintains glycolysis in PMN-MDSCs. Targeting C-E-cad enhanced anti-PD-1 efficiency. Our data suggested that C-E-cad is markedly overexpressed in breast cancer and promotes MDSC recruitment and survival. Targeting C-E-cad increases the efficacy of immune checkpoint inhibitor therapy.


Subject(s)
Breast Neoplasms , Cadherins , Myeloid-Derived Suppressor Cells , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/drug effects , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Humans , Female , Cadherins/metabolism , Cadherins/genetics , Animals , Tumor Microenvironment/drug effects , Cell Line, Tumor , Mice, Inbred BALB C , Mice , ErbB Receptors/metabolism , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/genetics , Antigens, CD/metabolism , Antigens, CD/genetics , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use
20.
Int J Biol Macromol ; 270(Pt 1): 131949, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749890

ABSTRACT

Granular ß-1,3-glucan extracted from the wall of Ganoderma lucidum spores, named GPG, is a bioregulator. In this study, we investigated the structural, thermal, and other physical properties of GPG. We determined whether GPG ameliorated immunosuppression caused by Gemcitabine (GEM) chemotherapy. Triple-negative breast cancer mice with GPG combined with GEM treatment had reduced tumor burdens. In addition, GEM treatment alone altered the tumor microenvironment(TME), including a reduction in antitumor T cells and a rise in myeloid-derived suppressor cells (MDSC) and regulatory T cells (Tregs). However, combined GPG treatment reversed the tumor immunosuppressive microenvironment induced by GEM. GPG inhibited bone marrow (BM)-derived MDSC differentiation and reversed MDSC expansion induced by conditioned medium (CM) in GEM-treated E0771 cells through a Dectin-1 pathway. In addition, GPG downgraded PD-L1 and IDO1 expression on MDSC while boosting MHC-II, CD86, TNF-α, and IL-6 expression. In conclusion, this study demonstrated that GPG could alleviate the adverse effects induced by GEM chemotherapy by regulating TME.


Subject(s)
Myeloid-Derived Suppressor Cells , Reishi , Spores, Fungal , Triple Negative Breast Neoplasms , Tumor Microenvironment , beta-Glucans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Animals , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/immunology , Mice , beta-Glucans/pharmacology , beta-Glucans/chemistry , Reishi/chemistry , Female , Tumor Microenvironment/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Lectins, C-Type
SELECTION OF CITATIONS
SEARCH DETAIL
...