Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 705
Filter
2.
J Hematol Oncol ; 17(1): 43, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853260

ABSTRACT

BACKGROUND: Neutrophils play a crucial role in inflammation and in the increased thrombotic risk in myeloproliferative neoplasms (MPNs). We have investigated how neutrophil-specific expression of JAK2-V617F or CALRdel re-programs the functions of neutrophils. METHODS: Ly6G-Cre JAK2-V617F and Ly6G-Cre CALRdel mice were generated. MPN parameters as blood counts, splenomegaly and bone marrow histology were compared to wild-type mice. Megakaryocyte differentiation was investigated using lineage-negative bone marrow cells upon in vitro incubation with TPO/IL-1ß. Cytokine concentrations in serum of mice were determined by Mouse Cytokine Array. IL-1α expression in various hematopoietic cell populations was determined by intracellular FACS analysis. RNA-seq to analyse gene expression of inflammatory cytokines was performed in isolated neutrophils from JAK2-V617F and CALR-mutated mice and patients. Bioenergetics of neutrophils were recorded on a Seahorse extracellular flux analyzer. Cell motility of neutrophils was monitored in vitro (time lapse microscopy), and in vivo (two-photon microscopy) upon creating an inflammatory environment. Cell adhesion to integrins, E-selectin and P-selection was investigated in-vitro. Statistical analysis was carried out using GraphPad Prism. Data are shown as mean ± SEM. Unpaired, two-tailed t-tests were applied. RESULTS: Strikingly, neutrophil-specific expression of JAK2-V617F, but not CALRdel, was sufficient to induce pro-inflammatory cytokines including IL-1 in serum of mice. RNA-seq analysis in neutrophils from JAK2-V617F mice and patients revealed a distinct inflammatory chemokine signature which was not expressed in CALR-mutant neutrophils. In addition, IL-1 response genes were significantly enriched in neutrophils of JAK2-V617F patients as compared to CALR-mutant patients. Thus, JAK2-V617F positive neutrophils, but not CALR-mutant neutrophils, are pathogenic drivers of inflammation in MPN. In line with this, expression of JAK2-V617F or CALRdel elicited a significant difference in the metabolic phenotype of neutrophils, suggesting a stronger inflammatory activity of JAK2-V617F cells. Furthermore, JAK2-V617F, but not CALRdel, induced a VLA4 integrin-mediated adhesive phenotype in neutrophils. This resulted in reduced neutrophil migration in vitro and in an inflamed vessel. This mechanism may contribute to the increased thrombotic risk of JAK2-V617F patients compared to CALR-mutant individuals. CONCLUSIONS: Taken together, our findings highlight genotype-specific differences in MPN-neutrophils that have implications for the differential pathophysiology of JAK2-V617F versus CALR-mutant disease.


Subject(s)
Inflammation , Janus Kinase 2 , Myeloproliferative Disorders , Neutrophils , Animals , Neutrophils/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Mice , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Myeloproliferative Disorders/metabolism , Humans , Inflammation/genetics , Inflammation/pathology , Calreticulin/genetics , Calreticulin/metabolism , Mice, Transgenic , Mice, Inbred C57BL , Cytokines/metabolism
4.
Clin Lab Med ; 44(2): 339-353, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821648

ABSTRACT

Despite the apparent complexity of the molecular genetic underpinnings of myeloid neoplasms, most myeloid mutational profiles can be understood within a simple framework. Somatic mutations accumulate in hematopoietic stem cells with aging and toxic insults, termed clonal hematopoiesis. These "old stem cells" mutations, predominantly in the epigenetic and RNA spliceosome pathways, act as "founding" driver mutations leading to a clonal myeloid neoplasm when sufficient in number and clone size. Subsequent mutations can create the genetic flavor of the myeloid neoplasm ("backseat" drivers) due to their enrichment in certain entities or act as progression events ("aggressive" drivers) during clonal evolution.


Subject(s)
Myelodysplastic Syndromes , Myeloproliferative Disorders , Humans , Mutation , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/pathology , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Myeloproliferative Disorders/diagnosis , Myeloproliferative Disorders/metabolism
6.
Nature ; 629(8014): 1149-1157, 2024 May.
Article in English | MEDLINE | ID: mdl-38720070

ABSTRACT

In somatic tissue differentiation, chromatin accessibility changes govern priming and precursor commitment towards cellular fates1-3. Therefore, somatic mutations are likely to alter chromatin accessibility patterns, as they disrupt differentiation topologies leading to abnormal clonal outgrowth. However, defining the impact of somatic mutations on the epigenome in human samples is challenging due to admixed mutated and wild-type cells. Here, to chart how somatic mutations disrupt epigenetic landscapes in human clonal outgrowths, we developed genotyping of targeted loci with single-cell chromatin accessibility (GoT-ChA). This high-throughput platform links genotypes to chromatin accessibility at single-cell resolution across thousands of cells within a single assay. We applied GoT-ChA to CD34+ cells from patients with myeloproliferative neoplasms with JAK2V617F-mutated haematopoiesis. Differential accessibility analysis between wild-type and JAK2V617F-mutant progenitors revealed both cell-intrinsic and cell-state-specific shifts within mutant haematopoietic precursors, including cell-intrinsic pro-inflammatory signatures in haematopoietic stem cells, and a distinct profibrotic inflammatory chromatin landscape in megakaryocytic progenitors. Integration of mitochondrial genome profiling and cell-surface protein expression measurement allowed expansion of genotyping onto DOGMA-seq through imputation, enabling single-cell capture of genotypes, chromatin accessibility, RNA expression and cell-surface protein expression. Collectively, we show that the JAK2V617F mutation leads to epigenetic rewiring in a cell-intrinsic and cell type-specific manner, influencing inflammation states and differentiation trajectories. We envision that GoT-ChA will empower broad future investigations of the critical link between somatic mutations and epigenetic alterations across clonal populations in malignant and non-malignant contexts.


Subject(s)
Chromatin , Epigenesis, Genetic , Genotype , Mutation , Single-Cell Analysis , Animals , Female , Humans , Male , Mice , Antigens, CD34/metabolism , Cell Differentiation/genetics , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Epigenesis, Genetic/genetics , Epigenome/genetics , Genome, Mitochondrial/genetics , Genotyping Techniques , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Inflammation/genetics , Inflammation/pathology , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Megakaryocytes/metabolism , Megakaryocytes/pathology , Membrane Proteins/genetics , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Myeloproliferative Disorders/pathology , RNA/genetics , Clone Cells/metabolism
7.
Virchows Arch ; 484(5): 837-845, 2024 May.
Article in English | MEDLINE | ID: mdl-38602559

ABSTRACT

The classical BCR::ABL1-negative myeloproliferative neoplasms (MPN) form a group of bone marrow (BM) diseases with the potential to progress to acute myeloid leukemia or develop marrow fibrosis and subsequent BM failure. The mechanism by which BM fibrosis develops and the factors that drive stromal activation and fibrosis are not well understood. Cellular Communication Network 2 (CCN2), also known as CTGF (Connective Tissue Growth Factor), is a profibrotic matricellular protein functioning as an important driver and biomarker of fibrosis in a wide range of diseases outside the marrow. CCN2 can promote fibrosis directly or by acting as a factor downstream of TGF-ß, the latter already known to contribute to myelofibrosis in MPN.To study the possible involvement of CCN2 in BM fibrosis in MPN, we assessed CCN2 protein expression by immunohistochemistry in 75 BM biopsies (55 × MPN and 20 × normal controls). We found variable expression of CCN2 in megakaryocytes with significant overexpression in a subgroup of 7 (13%) MPN cases; 4 of them (3 × essential thrombocytemia and 1 × prefibrotic primary myelofibrosis) showed no fibrosis (MF-0), 2 (1 × post-polycythemic myelofibrosis and 1 × primary myelofibrosis) showed moderate fibrosis (MF-2), and 1 (primary myelofibrosis) severe fibrosis (MF-3). Remarkably, CCN2 expression did not correlate with fibrosis or other disease parameters such as platelet count or thrombovascular events, neither in this subgroup nor in the whole study group. This suggests that in BM of MPN patients other, CCN2-independent pathways (such as noncanonical TGF-ß signaling) may be more important for the development of fibrosis.


Subject(s)
Connective Tissue Growth Factor , Myeloproliferative Disorders , Primary Myelofibrosis , Signal Transduction , Transforming Growth Factor beta , Humans , Connective Tissue Growth Factor/metabolism , Transforming Growth Factor beta/metabolism , Primary Myelofibrosis/pathology , Primary Myelofibrosis/metabolism , Middle Aged , Male , Female , Aged , Myeloproliferative Disorders/pathology , Myeloproliferative Disorders/metabolism , Adult , Bone Marrow/pathology , Bone Marrow/metabolism , Aged, 80 and over , Immunohistochemistry , Fibrosis/pathology
8.
Med Oncol ; 41(6): 128, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656461

ABSTRACT

Myeloid neoplasms are a group of bone marrow diseases distinguished by disruptions in the molecular pathways that regulate the balance between hematopoietic stem cell (HSC) self-renewal and the generation of specialized cells. Cytokines and chemokines, two important components of the inflammatory process, also influence hematological differentiation. In this scenario, immunological dysregulation plays a pivotal role in the pathogenesis of bone marrow neoplasms. The STING pathway recognizes DNA fragments in the cell cytoplasm and triggers an immune response by type I interferons. The role of STING in cancer has not yet been established; however, both actions, as an oncogene or tumor suppressor, have been documented in other types of cancer. Therefore, we performed a systematic review (registered in PROSPERO database #CRD42023407512) to discuss the role of STING pathway in the advancement of pathogenesis and/or prognosis for different myeloid neoplasms. In brief, scientific evidence supports investigations that primarily use cell lines from myeloid neoplasms, such as leukemia. More high-quality research and clinical trials are needed to understand the role of the STING pathway in the pathology of hematological malignancies. Finally, the STING pathway suggests being a promising therapeutic molecular target, particularly when combined with current drug therapies.


Subject(s)
Hematologic Neoplasms , Membrane Proteins , Humans , Hematologic Neoplasms/metabolism , Hematologic Neoplasms/pathology , Hematologic Neoplasms/immunology , Membrane Proteins/metabolism , Myeloproliferative Disorders/metabolism , Signal Transduction
9.
Cell Commun Signal ; 22(1): 186, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38509561

ABSTRACT

BACKGROUND: Calcium (Ca2+) signaling regulates various vital cellular functions, including integrin activation and cell migration. Store-operated calcium entry (SOCE) via calcium release-activated calcium (CRAC) channels represents a major pathway for Ca2+ influx from the extracellular space in multiple cell types. The impact of JAK2-V617F and CALR mutations which are disease initiating in myeloproliferative neoplasms (MPN) on SOCE, calcium flux from the endoplasmic reticulum (ER) to the cytosol, and related key signaling pathways in the presence or absence of erythropoietin (EPO) or thrombopoietin (TPO) is poorly understood. Thus, this study aimed to elucidate the effects of these mutations on the aforementioned calcium dynamics, in cellular models of MPN. METHODS: Intracellular Ca2+ levels were measured over a time frame of 0-1080 s in Fura-2 AM labeled myeloid progenitor 32D cells expressing various mutations (JAK2-WT/EpoR, JAK2-V617F/EpoR; CALR-WT/MPL, CALR-ins5/MPL, and del52/MPL). Basal Ca2+ concentrations were assessed from 0-108 s. Subsequently, cells were stimulated with EPO/TPO in Ca2+-free Ringer solution, measuring Ca2+ levels from 109-594 s (store depletion). Then, 2 mM of Ca2+ buffer resembling physiological concentrations was added to induce SOCE, and Ca2+ levels were measured from 595-1080 s. Fura-2 AM emission ratios (F340/380) were used to quantify the integrated Ca2+ signal. Statistical significance was assessed by unpaired Student's t-test or Mann-Whitney-U-test, one-way or two-way ANOVA followed by Tukey's multiple comparison test. RESULTS: Following EPO stimulation, the area under the curve (AUC) representing SOCE significantly increased in 32D-JAK2-V617F cells compared to JAK2-WT cells. In TPO-stimulated CALR cells, we observed elevated Ca2+ levels during store depletion and SOCE in CALR-WT cells compared to CALR-ins5 and del52 cells. Notably, upon stimulation, key components of the Ca2+ signaling pathways, including PLCγ-1 and IP3R, were differentially affected in these cell lines. Hyper-activated PLCγ-1 and IP3R were observed in JAK2-V617F but not in CALR mutated cells. Inhibition of calcium regulatory mechanisms suppressed cellular growth and induced apoptosis in JAK2-V617F cells. CONCLUSIONS: This report highlights the impact of JAK2 and CALR mutations on Ca2+ flux (store depletion and SOCE) in response to stimulation with EPO and TPO. The study shows that the JAK2-V617F mutation strongly alters the regulatory mechanism of EpoR/JAK2-dependent intracellular calcium balance, affecting baseline calcium levels, EPO-induced calcium entry, and PLCγ-1 signaling pathways. Our results reveal an important role of calcium flux in the homeostasis of JAK2-V617F positive cells.


Subject(s)
Calcium , Myeloproliferative Disorders , Humans , Fura-2 , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Signal Transduction , Mutation , Receptors, Erythropoietin/genetics , Janus Kinase 2/genetics
10.
Leukemia ; 38(6): 1342-1352, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38491305

ABSTRACT

Thrombopoietin (Tpo), which binds to its specific receptor, the Mpl protein, is the major cytokine regulator of megakaryopoiesis and circulating platelet number. Tpo binding to Mpl triggers activation of Janus kinase 2 (Jak2) and phosphorylation of the receptor, as well as activation of several intracellular signalling cascades that mediate cellular responses. Three tyrosine (Y) residues in the C-terminal region of the Mpl intracellular domain have been implicated as sites of phosphorylation required for regulation of major Tpo-stimulated signalling pathways: Mpl-Y565, Mpl-Y599 and Mpl-Y604. Here, we have introduced mutations in the mouse germline and report a consistent physiological requirement for Mpl-Y599, mutation of which resulted in thrombocytopenia, deficient megakaryopoiesis, low hematopoietic stem cell (HSC) number and function, and attenuated responses to myelosuppression. We further show that in models of myeloproliferative neoplasms (MPN), where Mpl is required for pathogenesis, thrombocytosis was dependent on intact Mpl-Y599. In contrast, Mpl-Y565 was required for negative regulation of Tpo responses; mutation of this residue resulted in excess megakaryopoiesis at steady-state and in response to myelosuppression, and exacerbated thrombocytosis associated with MPN.


Subject(s)
Hematopoiesis , Myeloproliferative Disorders , Receptors, Thrombopoietin , Thrombopoietin , Tyrosine , Animals , Receptors, Thrombopoietin/metabolism , Receptors, Thrombopoietin/genetics , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Myeloproliferative Disorders/pathology , Mice , Thrombopoietin/metabolism , Tyrosine/metabolism , Tyrosine/genetics , Phosphorylation , Mice, Inbred C57BL , Hematopoietic Stem Cells/metabolism , Signal Transduction , Mutation , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Thrombopoiesis/genetics
11.
Blood ; 143(24): 2490-2503, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38493481

ABSTRACT

ABSTRACT: Pegylated interferon alfa (pegIFN-α) can induce molecular remissions in patients with JAK2-V617F-positive myeloproliferative neoplasms (MPNs) by targeting long-term hematopoietic stem cells (LT-HSCs). Additional somatic mutations in genes regulating LT-HSC self-renewal, such as DNMT3A, have been reported to have poorer responses to pegIFN-α. We investigated whether DNMT3A loss leads to alterations in JAK2-V617F LT-HSC functions conferring resistance to pegIFN-α treatment in a mouse model of MPN and in hematopoietic progenitors from patients with MPN. Long-term treatment with pegIFN-α normalized blood parameters and reduced splenomegaly and JAK2-V617F chimerism in single-mutant JAK2-V617F (VF) mice. However, pegIFN-α in VF;Dnmt3aΔ/Δ (VF;DmΔ/Δ) mice worsened splenomegaly and failed to reduce JAK2-V617F chimerism. Furthermore, LT-HSCs from VF;DmΔ/Δ mice compared with VF were less prone to accumulate DNA damage and exit dormancy upon pegIFN-α treatment. RNA sequencing showed that IFN-α induced stronger upregulation of inflammatory pathways in LT-HSCs from VF;DmΔ/Δ than from VF mice, indicating that the resistance of VF;DmΔ/Δ LT-HSC was not due to failure in IFN-α signaling. Transplantations of bone marrow from pegIFN-α-treated VF;DmΔ/Δ mice gave rise to more aggressive disease in secondary and tertiary recipients. Liquid cultures of hematopoietic progenitors from patients with MPN with JAK2-V617F and DNMT3A mutation showed increased percentages of JAK2-V617F-positive colonies upon IFN-α exposure, whereas in patients with JAK2-V617F alone, the percentages of JAK2-V617F-positive colonies decreased or remained unchanged. PegIFN-α combined with 5-azacytidine only partially overcame resistance in VF;DmΔ/Δ mice. However, this combination strongly decreased the JAK2-mutant allele burden in mice carrying VF mutation only, showing potential to inflict substantial damage preferentially to the JAK2-mutant clone.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases , DNA Methyltransferase 3A , Drug Resistance, Neoplasm , Hematopoietic Stem Cells , Interferon-alpha , Janus Kinase 2 , Myeloproliferative Disorders , Animals , DNA Methyltransferase 3A/genetics , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Interferon-alpha/pharmacology , Mice , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Myeloproliferative Disorders/drug therapy , Myeloproliferative Disorders/metabolism , Humans , Drug Resistance, Neoplasm/genetics , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Hematopoietic Stem Cells/drug effects , Cell Self Renewal , Mice, Inbred C57BL , Polyethylene Glycols/pharmacology , Recombinant Proteins
12.
Blood ; 143(23): 2414-2424, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38457657

ABSTRACT

ABSTRACT: Hyperactivation of the NF-κB cascade propagates oncogenic signaling and proinflammation, which together augments disease burden in myeloproliferative neoplasms (MPNs). Here, we systematically ablate NF-κB signaling effectors to identify core dependencies using a series of primary samples and syngeneic and patient-derived xenograft (PDX) mouse models. Conditional knockout of Rela attenuated Jak2V617F- and MPLW515L-driven onset of polycythemia vera and myelofibrosis disease hallmarks, respectively. In PDXs, RELA knockout diminished leukemic engraftment and bone marrow fibrosis while extending survival. Knockout of upstream effector Myd88 also alleviated disease burden; conversely, perturbation of negative regulator miR-146a microRNA induced earlier lethality and exacerbated disease. Perturbation of NF-κB effectors further skewed the abundance and distribution of hematopoietic multipotent progenitors. Finally, pharmacological targeting of interleukin-1 receptor-associated kinase 4 (IRAK4) with inhibitor CA-4948 suppressed disease burden and inflammatory cytokines specifically in MPN without inducing toxicity in nondiseased models. These findings highlight vulnerabilities in MPN that are exploitable with emerging therapeutic approaches.


Subject(s)
Myeloproliferative Disorders , NF-kappa B , Signal Transduction , Animals , Mice , Humans , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Myeloproliferative Disorders/metabolism , NF-kappa B/metabolism , Mice, Knockout , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics
13.
Exp Hematol ; 132: 104178, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38340948

ABSTRACT

Myeloproliferative neoplasms (MPNs) are driven by hyperactivation of JAK-STAT signaling but can demonstrate skewed hematopoiesis upon acquisition of additional somatic mutations. Here, using primary MPN samples and engineered embryonic stem cells, we demonstrate that mutations in JAK2 induced a significant increase in erythroid colony formation, whereas mutations in additional sex combs-like 1 (ASXL1) led to an erythroid colony defect. RNA-sequencing revealed upregulation of protein arginine methyltransferase 6 (PRMT6) induced by mutant ASXL1. Furthermore, genetic perturbation of PRMT6 exacerbated the MPN disease burden, including leukemic engraftment and splenomegaly, in patient-derived xenograft models, highlighting a novel tumor-suppressive function of PRMT6. However, augmented erythroid potential and bone marrow human CD71+ cells following PRMT6 knockdown were reserved only for primary MPN samples harboring ASXL1 mutations. Last, treatment of CD34+ hematopoietic/stem progenitor cells with the PRMT6 inhibitor EPZ020411 induced expression of genes involved in heme metabolism, hemoglobin, and erythropoiesis. These findings highlight interactions between JAK2 and ASXL1 mutations and a unique erythroid regulatory network in the context of mutant ASXL1.


Subject(s)
Myeloproliferative Disorders , Neoplasms , Humans , Erythropoiesis/genetics , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Signal Transduction , Mutation , Repressor Proteins/genetics , Repressor Proteins/metabolism , Nuclear Proteins/genetics , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism
14.
Bull Math Biol ; 86(3): 32, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38363386

ABSTRACT

In some patients with myeloproliferative neoplasms (MPN), two genetic mutations are often found: JAK2 V617F and one in the TET2 gene. Whether one mutation is present influences how the other subsequent mutation will affect the regulation of gene expression. In other words, when a patient carries both mutations, the order of when they first arose has been shown to influence disease progression and prognosis. We propose a nonlinear ordinary differential equation, the Moran process, and Markov chain models to explain the non-additive and non-commutative mutation effects on recent clinical observations of gene expression patterns, proportions of cells with different mutations, and ages at diagnosis of MPN. Combined, these observations are used to shape our modeling framework. Our key proposal is that bistability in gene expression provides a natural explanation for many observed order-of-mutation effects. We also propose potential experimental measurements that can be used to confirm or refute predictions of our models.


Subject(s)
Myeloproliferative Disorders , Neoplasms , Humans , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Mathematical Concepts , Models, Biological , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Mutation
15.
Blood Adv ; 8(9): 2312-2325, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38295283

ABSTRACT

ABSTRACT: Hyperproliferation of myeloid and erythroid cells in myeloproliferative neoplasms (MPN) driven by the JAK2-V617F mutation is associated with altered metabolism. Given the central role of glutamine in anabolic and catabolic pathways, we examined the effects of pharmacologically inhibiting glutaminolysis, that is, the conversion of glutamine (Gln) to glutamate (Glu), using CB-839, a small molecular inhibitor of the enzyme glutaminase (GLS). We show that CB-839 strongly reduced the mitochondrial respiration rate of bone marrow cells from JAK2-V617F mutant (VF) mice, demonstrating a marked dependence of these cells on Gln-derived ATP production. Consistently, in vivo treatment with CB-839 normalized blood glucose levels, reduced splenomegaly and decreased erythrocytosis in VF mice. These effects were more pronounced when CB-839 was combined with the JAK1/2 inhibitor ruxolitinib or the glycolysis inhibitor 3PO, indicating possible synergies when cotargeting different metabolic and oncogenic pathways. Furthermore, we show that the inhibition of glutaminolysis with CB-839 preferentially lowered the proportion of JAK2-mutant hematopoietic stem cells (HSCs). The total number of HSCs was decreased by CB-839, primarily by reducing HSCs in the G1 phase of the cell cycle. CB-839 in combination with ruxolitinib also strongly reduced myelofibrosis at later stages of MPN. In line with the effects shown in mice, proliferation of CD34+ hematopoietic stem and progenitor cells from polycythemia vera patients was inhibited by CB-839 at nanomolar concentrations. These data suggest that inhibiting GLS alone or in combination with inhibitors of glycolysis or JAK2 inhibitors represents an attractive new therapeutic approach to MPN.


Subject(s)
Benzeneacetamides , Glutaminase , Hematopoiesis , Janus Kinase 2 , Myeloproliferative Disorders , Animals , Mice , Myeloproliferative Disorders/drug therapy , Myeloproliferative Disorders/metabolism , Janus Kinase 2/metabolism , Janus Kinase 2/antagonists & inhibitors , Hematopoiesis/drug effects , Humans , Glutaminase/antagonists & inhibitors , Glutaminase/metabolism , Benzeneacetamides/pharmacology , Benzeneacetamides/therapeutic use , Mutation , Pyrimidines/pharmacology , Pyrimidines/therapeutic use
16.
Haematologica ; 109(1): 44-52, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-36951152

ABSTRACT

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematologic malignancy that presents with characteristic dark purple skin papules, plaques, and tumors, but may also involve the bone marrow, blood, lymph nodes, and central nervous system. The disease, which commonly affects older men but can also present in children, is associated with a distinct immunophenotype including universal expression of CD123, the α chain of the interleukin 3 receptor. Recently, tagraxofusp, a CD123-targeting drug consisting of the ligand for CD123, interleukin 3, conjugated to a truncated diphtheria toxin payload was approved for treatment of BPDCN. This was the first agent specifically approved for BPDCN and the first CD123 targeted agent in oncology. Here, we review the development of tagraxofusp, and the key preclinical insights and clinical data that led to approval. Tagraxofusp treatment is associated with a unique toxicity, capillary leak syndrome (CLS), which can be severe but is manageable with proper patient selection and monitoring, early recognition, and directed intervention. We outline our approach to the use of tagraxofusp and discuss open questions in the treatment of BPDCN. Overall, tagraxofusp represents a unique targeted therapy and a step forward in meeting an unmet need for patients with this rare disease.


Subject(s)
Hematologic Neoplasms , Myeloproliferative Disorders , Skin Neoplasms , Male , Child , Humans , Aged , Interleukin-3 Receptor alpha Subunit/metabolism , Dendritic Cells/metabolism , Hematologic Neoplasms/therapy , Recombinant Fusion Proteins/therapeutic use , Acute Disease , Myeloproliferative Disorders/metabolism , Skin Neoplasms/drug therapy
17.
J Clin Invest ; 134(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38060311

ABSTRACT

Platelets from patients with myeloproliferative neoplasms (MPNs) exhibit a hyperreactive phenotype. Here, we found elevated P-selectin exposure and platelet-leukocyte aggregates indicating activation of platelets from essential thrombocythemia (ET) patients. Single-cell RNA-seq analysis of primary samples revealed significant enrichment of transcripts related to platelet activation, mTOR, and oxidative phosphorylation in ET patient platelets. These observations were validated via proteomic profiling. Platelet metabolomics revealed distinct metabolic phenotypes consisting of elevated ATP generation accompanied by increases in the levels of multiple intermediates of the tricarboxylic acid cycle, but lower α-ketoglutarate (α-KG) in MPN patients. Inhibition of PI3K/AKT/mTOR signaling significantly reduced metabolic responses and hyperreactivity in MPN patient platelets, while α-KG supplementation markedly reduced oxygen consumption and ATP generation. Ex vivo incubation of platelets from both MPN patients and Jak2 V617F-knockin mice with α-KG supplementation significantly reduced platelet activation responses. Oral α-KG supplementation of Jak2 V617F mice decreased splenomegaly and reduced hematocrit, monocyte, and platelet counts. Finally, α-KG treatment significantly decreased proinflammatory cytokine secretion from MPN CD14+ monocytes. Our results reveal a previously unrecognized metabolic disorder in conjunction with aberrant PI3K/AKT/mTOR signaling that contributes to platelet hyperreactivity in MPN patients.


Subject(s)
Myeloproliferative Disorders , Neoplasms , Thrombocythemia, Essential , Humans , Mice , Animals , Multiomics , Phosphatidylinositol 3-Kinases/genetics , Proteomics , Proto-Oncogene Proteins c-akt/genetics , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Thrombocythemia, Essential/genetics , Inflammation , TOR Serine-Threonine Kinases/genetics , Adenosine Triphosphate , Janus Kinase 2/genetics , Mutation
18.
Adv Biol Regul ; 91: 100993, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37827894

ABSTRACT

Acquired myeloid malignancies are a spectrum of clonal disorders known to be caused by sequential acquisition of genetic lesions in hematopoietic stem and progenitor cells, leading to their aberrant self-renewal and differentiation. The increasing use of induced pluripotent stem cell (iPSC) technology to study myeloid malignancies has helped usher a paradigm shift in approaches to disease modeling and drug discovery, especially when combined with gene-editing technology. The process of reprogramming allows for the capture of the diversity of genetic lesions and mutational burden found in primary patient samples into individual stable iPSC lines. Patient-derived iPSC lines, owing to their self-renewal and differentiation capacity, can thus be a homogenous source of disease relevant material that allow for the study of disease pathogenesis using various functional read-outs. Furthermore, genome editing technologies like CRISPR/Cas9 enable the study of the stepwise progression from normal to malignant hematopoiesis through the introduction of specific driver mutations, individually or in combination, to create isogenic lines for comparison. In this review, we survey the current use of iPSCs to model acquired myeloid malignancies including myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), acute myeloid leukemia and MDS/MPN overlap syndromes. The use of iPSCs has enabled the interrogation of the underlying mechanism of initiation and progression driving these diseases. It has also made drug testing, repurposing, and the discovery of novel therapies for these diseases possible in a high throughput setting.


Subject(s)
Induced Pluripotent Stem Cells , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Myeloproliferative Disorders , Humans , Induced Pluripotent Stem Cells/metabolism , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/therapy , Myeloproliferative Disorders/metabolism , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/therapy , Myelodysplastic Syndromes/metabolism , Cell Differentiation , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/metabolism
19.
Clin Cancer Res ; 30(3): 586-599, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37992313

ABSTRACT

PURPOSE: Myeloproliferative neoplasms (MPN) dysregulate JAK2 signaling. Because clinical JAK2 inhibitors have limited disease-modifying effects, type II JAK2 inhibitors such as CHZ868 stabilizing inactive JAK2 and reducing MPN clones, gain interest. We studied whether MPN cells escape from type ll inhibition. EXPERIMENTAL DESIGN: MPN cells were continuously exposed to CHZ868. We used phosphoproteomic analyses and ATAC/RNA sequencing to characterize acquired resistance to type II JAK2 inhibition, and targeted candidate mediators in MPN cells and mice. RESULTS: MPN cells showed increased IC50 and reduced apoptosis upon CHZ868 reflecting acquired resistance to JAK2 inhibition. Among >2,500 differential phospho-sites, MAPK pathway activation was most prominent, while JAK2-STAT3/5 remained suppressed. Altered histone occupancy promoting AP-1/GATA binding motif exposure associated with upregulated AXL kinase and enriched RAS target gene profiles. AXL knockdown resensitized MPN cells and combined JAK2/AXL inhibition using bemcentinib or gilteritinib reduced IC50 to levels of sensitive cells. While resistant cells induced tumor growth in NOD/SCID gamma mice despite JAK2 inhibition, JAK2/AXL inhibition largely prevented tumor progression. Because inhibitors of MAPK pathway kinases such as MEK are clinically used in other malignancies, we evaluated JAK2/MAPK inhibition with trametinib to interfere with AXL/MAPK-induced resistance. Tumor growth was halted similarly to JAK2/AXL inhibition and in a systemic cell line-derived mouse model, marrow infiltration was decreased supporting dependency on AXL/MAPK. CONCLUSIONS: We report on a novel mechanism of AXL/MAPK-driven escape from type II JAK2 inhibition, which is targetable at different nodes. This highlights AXL as mediator of acquired resistance warranting inhibition to enhance sustainability of JAK2 inhibition in MPN.


Subject(s)
Aminopyridines , Benzimidazoles , Janus Kinase Inhibitors , Myeloproliferative Disorders , Animals , Mice , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Mice, Inbred NOD , Mice, SCID , Janus Kinase 2/metabolism , Myeloproliferative Disorders/drug therapy , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism
20.
Mol Biol Evol ; 41(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38124397

ABSTRACT

An individual's chronological age does not always correspond to the health of different tissues in their body, especially in cases of disease. Therefore, estimating and contrasting the physiological age of tissues with an individual's chronological age may be a useful tool to diagnose disease and its progression. In this study, we present novel metrics to quantify the loss of phylogenetic diversity in hematopoietic stem cells (HSCs), which are precursors to most blood cell types and are associated with many blood-related diseases. These metrics showed an excellent correspondence with an age-related increase in blood cancer incidence, enabling a model to estimate the phylogeny-derived age (phyloAge) of HSCs present in an individual. The HSC phyloAge was generally older than the chronological age of patients suffering from myeloproliferative neoplasms (MPNs). We present a model that relates excess HSC aging with increased MPN risk. It predicted an over 200 times greater risk based on the HSC phylogenies of the youngest MPN patients analyzed. Our new metrics are designed to be robust to sampling biases and do not rely on prior knowledge of driver mutations or physiological assessments. Consequently, they complement conventional biomarker-based methods to estimate physiological age and disease risk.


Subject(s)
Myeloproliferative Disorders , Neoplasms , Humans , Phylogeny , Hematopoietic Stem Cells/metabolism , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Aging
SELECTION OF CITATIONS
SEARCH DETAIL
...