Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 905
Filter
1.
Curr Biol ; 34(9): R343-R345, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38714160

ABSTRACT

Repeated rounds of fusion between apposing myoblasts allow muscles to become multinucleated. New research finds that myoblasts undergoing fusion in the Drosophila embryo respond to hormone signaling from a nearby tissue, resulting in the activation of a myoblast-specific gene necessary for the fusion process.


Subject(s)
Cell Fusion , Myoblasts , Animals , Myoblasts/metabolism , Myoblasts/physiology , Drosophila/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Signal Transduction , Cell Communication
2.
J Orthop Res ; 42(1): 32-42, 2024 01.
Article in English | MEDLINE | ID: mdl-37442643

ABSTRACT

Muscle injuries are common among athletes and often treated with platelet-rich plasma (PRP). However, whether the leukocyte concentration affects the efficacy of PRP in treating muscle injuries remains unclear. This study investigated the effects of leukocyte-poor platelet-rich plasma (LP-PRP) and leukocyte-rich platelet-rich plasma (LR-PRP) on myoblast proliferation and the molecular mechanisms underlying these effects. Myoblasts were treated with 0.5% LP-PRP, 0.5% LR-PRP, 1% LP-PRP, or 1% LR-PRP for 24 h. The gene expression of the LP-PRP- and LR-PRP-treated myoblasts was determined using RNA sequencing analysis. Cell proliferation was evaluated using an bromodeoxyuridine (BrdU) assay, and cell cycle progression was assessed through flow cytometry. The expression of cyclin A, cyclin-dependent kinase 1 (cdk1), and cdk2 was examined using Western blotting. The expression of myoblast determination protein 1 (MyoD1) was examined through Western blotting and immunofluorescence staining. The LP-PRP and LR-PRP both promoted the proliferation of myoblasts and increased differential gene expression of myoblasts. Moreover, the LP-PRP and LR-PRP substantially upregulated the expression of cyclin A, cdk1, and cdk2. MyoD1 expression was induced in the LP-PRP and LR-PRP-treated myoblasts. Our results corroborate the finding that LP-PRP and LR-PRP have similar positive effects on myoblast proliferation and MyoD1 expression.


Subject(s)
Cyclin A , Myoblasts , Platelet-Rich Plasma , Humans , CDC2 Protein Kinase/metabolism , Cell Proliferation , Cyclin A/metabolism , Leukocytes/physiology , Myoblasts/physiology , Platelet-Rich Plasma/metabolism , Up-Regulation
3.
Nat Commun ; 14(1): 3060, 2023 05 27.
Article in English | MEDLINE | ID: mdl-37244931

ABSTRACT

Formation of oriented myofibrils is a key event in musculoskeletal development. However, the mechanisms that drive myocyte orientation and fusion to control muscle directionality in adults remain enigmatic. Here, we demonstrate that the developing skeleton instructs the directional outgrowth of skeletal muscle and other soft tissues during limb and facial morphogenesis in zebrafish and mouse. Time-lapse live imaging reveals that during early craniofacial development, myoblasts condense into round clusters corresponding to future muscle groups. These clusters undergo oriented stretch and alignment during embryonic growth. Genetic perturbation of cartilage patterning or size disrupts the directionality and number of myofibrils in vivo. Laser ablation of musculoskeletal attachment points reveals tension imposed by cartilage expansion on the forming myofibers. Application of continuous tension using artificial attachment points, or stretchable membrane substrates, is sufficient to drive polarization of myocyte populations in vitro. Overall, this work outlines a biomechanical guidance mechanism that is potentially useful for engineering functional skeletal muscle.


Subject(s)
Muscle, Skeletal , Zebrafish , Animals , Mice , Zebrafish/genetics , Muscle, Skeletal/physiology , Myofibrils/physiology , Morphogenesis , Myoblasts/physiology
4.
Life Sci Alliance ; 6(2)2023 02.
Article in English | MEDLINE | ID: mdl-36446523

ABSTRACT

Muscle satellite cells (MuSCs), myogenic stem cells in skeletal muscles, play an essential role in muscle regeneration. After skeletal muscle injury, quiescent MuSCs are activated to enter the cell cycle and proliferate, thereby initiating regeneration; however, the mechanisms that ensure successful MuSC division, including chromosome segregation, remain unclear. Here, we show that PIEZO1, a calcium ion (Ca2+)-permeable cation channel activated by membrane tension, mediates spontaneous Ca2+ influx to control the regenerative function of MuSCs. Our genetic engineering approach in mice revealed that PIEZO1 is functionally expressed in MuSCs and that Piezo1 deletion in these cells delays myofibre regeneration after injury. These results are, at least in part, due to a mitotic defect in MuSCs. Mechanistically, this phenotype is caused by impaired PIEZO1-Rho signalling during myogenesis. Thus, we provide the first concrete evidence that PIEZO1, a bona fide mechanosensitive ion channel, promotes proliferation and regenerative functions of MuSCs through precise control of cell division.


Subject(s)
Ion Channels , Regeneration , Satellite Cells, Skeletal Muscle , Animals , Mice , Chromosome Segregation/genetics , Chromosome Segregation/physiology , Ion Channels/genetics , Ion Channels/physiology , Muscle, Skeletal/physiology , Myoblasts/physiology , Signal Transduction , Satellite Cells, Skeletal Muscle/physiology , Regeneration/genetics , Regeneration/physiology
5.
Br Poult Sci ; 64(1): 74-80, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36069737

ABSTRACT

1. Methyltransferase-like 21C (METTL21C) and insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) play important roles in the proliferation of chicken myoblasts. However, it remains unclear whether there is protein-protein interaction between METTL21C and IGF2BP1 to regulate proliferation of chicken myoblasts.2. In this study, the Igf2bp1 gene was amplified from cDNA of liver tissue of Lueyang black-bone chicken to construct the overexpression vector HA-Igf2bp1. The HA-Igf2bp1 and Flag-Mettl21c vectors were individually transfected and co-transfected into HEK293T, respectively. Co-immunoprecipitation (Co-IP) assay indicated a protein-protein interaction between METTL21C and IGF2BP1.3. Using the Western blotting and LC-MS/MS, it was found that METTL21C could mediate the lysine methylation modification of IGF2BP1. Furthermore, the His-tagged overexpression vector HA-Igf2bp1-His was constructed, transfected and co-transfected with Flag-Mettl21c into HEK293T. His-tagged IGF2BP1 was purified by nickel ion affinity chromatography. Western blotting revealed that IGF2BP1 was successfully purified, and the trimethylation modification level of co-transfection group was significantly elevated compared with the single-transfection Igf2bp1 group.4. Mettl21c and Igf2bp1 overexpression vectors were transfected and co-transfected into primary chicken myoblasts, respectively. The results of 5-ethynyl-2'-deoxyuridine assay and the expression level of Pax7 and MyoD indicated that overexpression of Igf2bp1 alone inhibited the chicken myoblast proliferation, whereas co-expression of Mettl21c and Igf2bp1 eliminated the inhibitory effects of Igf2bp1, thereby favouring cell proliferation and differentiation.5. The results, for the first time, revealed that METTL21C mediated the lysine trimethylation modification of IGF2BP1 to regulate the proliferation of chicken myoblasts, which provided a new insight into in-depth analysis of the molecular mechanism of METTL21C methylation involved in regulating the growth and development of skeletal muscle in Lueyang black-bone chicken.


Subject(s)
Chickens , Lysine , Animals , Humans , Chickens/genetics , Lysine/metabolism , Lysine/pharmacology , Chromatography, Liquid/veterinary , HEK293 Cells , Tandem Mass Spectrometry/veterinary , Myoblasts/physiology , Cell Proliferation/genetics
6.
Cell Signal ; 101: 110509, 2023 01.
Article in English | MEDLINE | ID: mdl-36328118

ABSTRACT

Cancer-associated cachexia (CAC) is a multifactorial wasting syndrome characterized by loss of skeletal muscle. Interleukin-11 (IL11), one of the IL6 family cytokines, is highly expressed in various types of cancer including cancers frequently associated with cachexia. However, the impact of IL11 on muscle metabolism remains to be determined. Since one of the mechanisms of muscle wasting in cachexia is defective muscle regeneration due to impaired myogenic differentiation, we examined the effect of IL11 on the differentiation of C2C12 mouse myoblasts. Treatment of C2C12 cells with recombinant mouse IL11 resulted in decreased myotube formation. In addition, IL11 treatment reduced the protein and mRNA levels of myosin heavy chain (MHC), a marker of myogenic differentiation. Moreover, the levels of myogenic regulatory factors including myogenin and Mrf4 were significantly reduced by IL11 treatment. IL11 treatment increased the number of BrdU-positive cells and the level of phosphorylated retinoblastoma (Rb) protein, while the levels of p21Waf1 and p27Kip1 were reduced by IL11 treatment in differentiating C2C12 cells, suggesting that IL11 interferes with cell cycle exit during the early stages of myogenic differentiation. Consistent with this, IL11 treatment at the late stage of differentiation did not affect myotube formation and MHC expression. IL11 treatment resulted in an activation of ERK, STAT3, and AKT in differentiating C2C12 cells. However, only ERK inhibitors including PD98059 and U0126 were able to ameliorate the suppressive effect of IL11 on the expression of MHC and myogenin. Additionally, pretreatment with PD98059 and U0126 resulted in improved myotube formation and reduced BrdU staining in IL11-treated cells. Together, our results suggest that IL11 inhibits myogenic differentiation through delayed cell cycle exit in an ERK-dependent manner. To our knowledge, this study is the first to demonstrate an inhibitory role of IL11 in myogenic differentiation and identifies the previously unrecognized role of IL11 as a possible mediator of CAC.


Subject(s)
Cell Differentiation , Interleukin-11 , Myoblasts , Animals , Mice , Bromodeoxyuridine , Cachexia , Extracellular Signal-Regulated MAP Kinases , Interleukin-11/pharmacology , Muscle Development , Myogenin/genetics , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Neoplasms , Myoblasts/drug effects , Myoblasts/physiology
7.
Anim Biotechnol ; 34(7): 2617-2625, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35951546

ABSTRACT

MircoRNAs (miRNAs) play an important role in skeletal muscle development. Previous study had found that miR-495-3p was differentially expressed in fetal and adult goat skeletal muscle, but its function in myogenic proliferation and differentiation are unclear. Herein, we found the expression of miR-495-3p in C2C12 was downregulated during proliferation stage and upregulated during differentiation stage. Functionally, overexpression of miR-495-3p in C2C12 inhibited proliferation, and promoted myogenic differentiation. Mechanistically, the luciferase reporter assay demonstrated that cadherin 2 (CDH2) was a potential target gene of miR-495-3p. Importantly, overexpression of miR-495-3p inhibited CDH2 expression. Furthermore, knockdown of CDH2 in C2C12 inhibited proliferation and promoted myogenic differentiation. Together, the results showed that miR-495-3p inhibits C2C12 proliferation and promotes myogenic differentiation through targeting CDH2.


Subject(s)
MicroRNAs , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Myoblasts/physiology , Cell Proliferation/genetics , Cadherins/genetics , Cadherins/metabolism , Muscle Development/genetics , Cell Differentiation/genetics
8.
Res Vet Sci ; 152: 569-578, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36191510

ABSTRACT

This study aims to explore the functional role of Myoz2 in myoblast differentiation, and elucidate the potential factors interact with Myoz2 in promoter transcriptional regulation. The temporal-spatial expression results showed that the bovine Myoz2 gene was highest expressed in longissimus dorsi, and in individual growth stages and myoblast differentiation stages. Knockdown of Myoz2 inhibited the differentiation of myoblast, and negative effect of MyoD, MyoG, MyH and MEF2A expression on mRNA levels. Subsequently, the promoter region of bovine Myoz2 gene with 1.7 Kb sequence was extracted, and then it was set as eight series of deleted fragments, which were ligated into pGL3-basic to detect core promoter regions of Myoz2 gene in myoblasts and myotubes. Transcription factors MyoD and MyoG were identified as important cis-acting elements in the core promoter region (-159/+1). Also, it was highly conserved in different species based on dual-luciferase analysis and multiple sequence alignment analysis, respectively. Furthermore, a chromatin immunoprecipitation (ChIP) analysis combined with site-directed mutation and siRNA interference and overexpression confirmed that the combination of MyoD and MyoG occurred in region -159/+1, and played an important role in the regulation of bovine Myoz2 gene. These findings explored the regulatory network mechanism of Myoz2 gene during the development of bovine skeletal muscle.


Subject(s)
MyoD Protein , Myoblasts , Cattle , Animals , MyoD Protein/genetics , MyoD Protein/metabolism , Myoblasts/physiology , Promoter Regions, Genetic , Gene Expression Regulation , Transcription Factors/metabolism , Cell Differentiation/genetics , Muscle Development/genetics
9.
Proc Natl Acad Sci U S A ; 119(38): e2202490119, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36095199

ABSTRACT

Muscle cell fusion is a multistep process where the final step of the reaction drives progression beyond early hemifusion events to complete fusion. This step requires activity of the muscle-specific fusogen Myomerger, a single-pass transmembrane protein containing 84 amino acids with an ectodomain that includes two α-helices. Previous studies have demonstrated that Myomerger acts by destabilizing membranes through generation of elastic stresses in the outer leaflet of the plasma membrane. An obvious question is how such destabilizing activity might be regulated to avoid membrane and cellular damage, and how the two juxtaposed helices cooperate in fusion. Using cellular fusion assays and in vitro liposome assays, we report that the two helices possess unique characteristics, both of which are needed for full activity of the protein. We demonstrate that externalized phosphatidylserine (PS), a lipid previously implicated in myoblast fusion, has a determinant role in the regulation of Myomerger activity. The membrane-proximal, amphipathic Helix-1 is normally disordered and its α-helical structure is induced by PS, making membrane interactions more efficacious. The distal, more hydrophobic Helix-2 is intrinsically ordered, possesses an ability to insert into membranes, and augments the membrane-stressing effects of Helix-1. These data reveal that Myomerger fusogenic activity is an exquisitely orchestrated event involving its two ectodomain helices, which are controlled by membrane lipid composition, providing an explanation as to how its membrane-stressing activity is spatially and temporally regulated during the final step of myoblast fusion.


Subject(s)
Cell Fusion , Membrane Proteins , Myoblasts , Phosphatidylserines , Animals , Cell Line , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Myoblasts/physiology
10.
Toxins (Basel) ; 14(4)2022 04 07.
Article in English | MEDLINE | ID: mdl-35448872

ABSTRACT

Uremic sarcopenia is a serious clinical problem associated with physical disability and increased morbidity and mortality. Methylglyoxal (MG) is a highly reactive, dicarbonyl uremic toxin that accumulates in the circulatory system in patients with chronic kidney disease (CKD) and is related to the pathology of uremic sarcopenia. The pathophysiology of uremic sarcopenia is multifactorial; however, the details remain unknown. We investigated the mechanisms of MG-induced muscle atrophy using mouse myoblast C2C12 cells, focusing on intracellular metabolism and mitochondrial injury. We found that one of the causative pathological mechanisms of uremic sarcopenia is metabolic flow change to fatty acid synthesis with MG-induced ATP shortage in myoblasts. Evaluation of cell viability revealed that MG showed toxic effects only in myoblast cells, but not in myotube cells. Expression of mRNA or protein analysis revealed that MG induces muscle atrophy, inflammation, fibrosis, and oxidative stress in myoblast cells. Target metabolomics revealed that MG induces metabolic alterations, such as a reduction in tricarboxylic acid cycle metabolites. In addition, MG induces mitochondrial morphological abnormalities in myoblasts. These changes resulted in the reduction of ATP derived from the mitochondria of myoblast cells. Our results indicate that MG is a pathogenic factor in sarcopenia in CKD.


Subject(s)
Renal Insufficiency, Chronic , Sarcopenia , Adenosine Triphosphate/metabolism , Animals , Female , Humans , Indican/pharmacology , Inflammation/chemically induced , Inflammation/pathology , Male , Mice , Muscular Atrophy , Myoblasts/pathology , Myoblasts/physiology , Oxidative Stress , Pyruvaldehyde/toxicity , Renal Insufficiency, Chronic/metabolism
11.
Biochem Biophys Res Commun ; 599: 17-23, 2022 04 09.
Article in English | MEDLINE | ID: mdl-35168059

ABSTRACT

Actin cytoskeletal dynamics play a critical role in the regulation of myogenesis through mechanotransduction, Hippo signaling modulation, cell proliferation, and morphological changes. Although Twinfilin-1 (TWF1), a highly conserved actin-depolymerizing factor, is known to regulate actin filament assembly by sequestering actin monomer and capping barbed ends, the biological significance of TWF1 during the differentiation of myogenic progenitor cells has not been investigated. In this study, we unveiled the roles played by TWF1 in the proliferation and differentiation of C2C12 myoblasts. TWF1 was the predominant isoform in myoblasts, and its expression was induced during the early stage of differentiation. Knockdown of TWF1 by siRNA (siTWF1) induced the accumulation of actin filaments (F-actin) and promoted the nuclear translocation of Yes-associated protein (YAP) in the Hippo signaling pathway. TWF1 depletion activated transcription of YAP target genes and induced cell cycle and proliferation in myoblasts. Furthermore, TWF1 knockdown markedly reduced the expressions of myogenic regulatory factors, such as MyoD and MyoG, and drastically hindered myoblast differentiation, fusion, and myotube formation. Collectively, this study highlights the essential role of TWF1 in the myogenic differentiation of progenitor cells via modulation of F-actin and YAP, and suggests TWF1 as a potential therapeutic target for muscle wasting and myopathies.


Subject(s)
Microfilament Proteins/metabolism , Myoblasts/cytology , YAP-Signaling Proteins/metabolism , Actins/metabolism , Active Transport, Cell Nucleus/genetics , Animals , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Line , Cell Proliferation/genetics , Gene Expression Regulation , Gene Knockdown Techniques , Mice , Microfilament Proteins/genetics , Muscle Development/genetics , Muscle Fibers, Skeletal/metabolism , Myoblasts/physiology , YAP-Signaling Proteins/genetics
12.
Sci Rep ; 12(1): 827, 2022 01 17.
Article in English | MEDLINE | ID: mdl-35039582

ABSTRACT

In vitro skeletal muscle cell production is emerging in the field of artificial lab-grown meat as alternative future food. Currently, there is an urgent paradigm shift towards a serum replacement culture system. Surprisingly, little is known about the impact of serum-free culture on skeletal muscle cells to date. Therefore, we performed metabolic profiling of the C2C12 myoblasts and myotubes in serum-free mediums (B27, AIM-V) and compared it with conventional serum supplementation culture. Furthermore, cell morphology, viability, and myogenic differentiation were observed for 7 days of cultivation. Intriguingly, the metabolic difference is more dominant between the cell status than medium effects. In addition, proliferative myoblast showed more distinct metabolic differences than differentiated myotubes in different culture conditions. The intracellular levels of GL3P and UDP-GlcNAc were significantly increased in myotubes versus myoblast. Non-essential amino acids and pyruvate reduction and transamination showed significant differences among serum, B27, and AIM-V cultures. Intracellular metabolite profiles indicated that C2C12 myotubes cultured in serum and B27 had predominant glycolytic and oxidative metabolism, respectively, indicating fast and slow types of muscle confirmed by MHC immunostaining. This work might be helpful to understand the altered metabolism of skeletal muscle cells in serum-free culture and contribute to future artificial meat research work.


Subject(s)
Culture Media, Serum-Free , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/physiology , Myoblasts/metabolism , Myoblasts/physiology , Animals , Cell Differentiation , Cells, Cultured , Food Industry , Meat , Muscle Development , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Phenotype , Time Factors
13.
J Ethnopharmacol ; 285: 114854, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34808301

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Tsantan Sumtang (TS), a traditional Tibetan medicine, has been used in the clinic for the treatment of myocardial ischemia (MI) for ages, however, the bioactive ingredients that are responsible for improving MI remain unknown. AIM OF THE STUDY: This study investigated the chemical components of TS and their medicinal efficacies at cell levels, in order to expound the bioactive ingredients in TS. MATERIALS AND METHODS: First, a response-surface methodology was employed to determine the optimum ethanol reflux extraction process of polyphenols in TS (PTS) due to their close correlation with MI improvement. Second, a serum pharmacochemistry technique was used to analyze the compounds of PTS absorbed into the blood of rats. Third, hypoxia-, H2O2-, and adriamycin (ADM)-induced H9c2 cell injury models were used to investigate the cardioprotective effects of these compounds in vitro. Fourth, protective effects of isovitexin, quercitrin, and isoeugenol on mitochondrial function were further tested. RESULTS: The optimum extraction conditions for obtaining PTS were an ethanol concentration of 78.22%, an extraction time of 67.4 min, and a material-liquid ratio of 1:72.60 mL/g. Serum pharmacochemistry analysis detected 21 compounds, of which 11 compounds were always present in the blood within 5 h. Cytotoxicity and the protective effect of 11 compounds in hypoxia-, H2O2-, and ADM-induced H9c2 cell injury models shown that isovitexin, quercitrin, and isoeugenol had almost no cytotoxicity, and they could elevate the survival rate in injured H9c2 cells. Furthermore, isovitexin, quercitrin, and isoeugenol could decrease mitochondrial reactive oxygen species (ROS) releasion, inhibite mitochondrial permeability transition pore (mPTP) opening, ameliorate the change of mitochondrial membrane potential (MMP) to exert mitochondrial protection effect. CONCLUSION: Isovitexin, quercitrin, and isoeugenol exhibited cardioprotective effect at cell levles, these three compounds might be the bioactive ingredients in TS. These findings elucidate the pharmacodynamic substances and mechanisms of TS, guiding its clinical use.


Subject(s)
Medicine, Tibetan Traditional , Myoblasts/drug effects , Myocardial Ischemia/drug therapy , Polyphenols/pharmacology , Animals , Antibiotics, Antineoplastic/toxicity , Apigenin/administration & dosage , Apigenin/chemistry , Apigenin/pharmacology , Cell Line , Dose-Response Relationship, Drug , Doxorubicin/toxicity , Eugenol/administration & dosage , Eugenol/analogs & derivatives , Eugenol/chemistry , Eugenol/pharmacology , Hydrogen Peroxide/toxicity , Myoblasts/physiology , Phytotherapy , Polyphenols/blood , Polyphenols/chemistry , Polyphenols/pharmacokinetics , Quercetin/administration & dosage , Quercetin/analogs & derivatives , Quercetin/chemistry , Quercetin/pharmacology , Rats , Rats, Sprague-Dawley
14.
Int J Mol Sci ; 22(24)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34948427

ABSTRACT

Kirsten rat sarcoma 2 viral oncogene homolog (Kras) is a proto-oncogene that encodes the small GTPase transductor protein KRAS, which has previously been found to promote cytokine secretion, cell survival, and chemotaxis. However, its effects on preadipocyte differentiation and lipid accumulation are unclear. In this study, the effects of KRAS inhibition on proliferation, autophagy, and adipogenic differentiation as well as its potential mechanisms were analyzed in the 3T3-L1 and C2C12 cell lines. The results showed that KRAS was localized mainly in the nuclei of 3T3-L1 and C2C12 cells. Inhibition of KRAS altered mammalian target of rapamycin (Mtor), proliferating cell nuclear antigen (Pcna), Myc, peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein beta (C/ebp-ß), diacylglycerol O-acyltransferase 1 (Dgat1), and stearoyl-coenzyme A desaturase 1 (Scd1) expression, thereby reducing cell proliferation capacity while inducing autophagy, enhancing differentiation of 3T3-L1 and C2C12 cells into mature adipocytes, and increasing adipogenesis and the capacity to store lipids. Moreover, during differentiation, KRAS inhibition reduced the levels of extracellular regulated protein kinases (ERK), c-Jun N-terminal kinase (JNK), p38, and phosphatidylinositol 3 kinase (PI3K) activation. These results show that KRAS has unique regulatory effects on cell proliferation, autophagy, adipogenic differentiation, and lipid accumulation.


Subject(s)
Adipogenesis , Autophagy , Cell Proliferation , Fibroblasts/metabolism , Myoblasts/metabolism , Proto-Oncogene Proteins p21(ras)/physiology , Signal Transduction , 3T3 Cells , Animals , CCAAT-Enhancer-Binding Protein-beta/genetics , Cells, Cultured , Diacylglycerol O-Acyltransferase/genetics , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Fibroblasts/physiology , Gene Expression Regulation , JNK Mitogen-Activated Protein Kinases/genetics , JNK Mitogen-Activated Protein Kinases/metabolism , Lipid Metabolism , Mice , Myoblasts/physiology , PPAR gamma/genetics , Proliferating Cell Nuclear Antigen/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Stearoyl-CoA Desaturase/genetics , TOR Serine-Threonine Kinases/genetics
15.
Molecules ; 26(18)2021 Sep 19.
Article in English | MEDLINE | ID: mdl-34577156

ABSTRACT

DPY19L3 has been identified as a C-mannosyltransferase for thrombospondin type-1 repeat domain-containing proteins. In this study, we focused on the role of DPY19L3 in the myogenic differentiation of C2C12 mouse myoblast cells. We carried out DPY19L3 gene depletion using the CRISPR/Cas9 system. The result showed that these DPY19L3-knockout cells could not be induced for differentiation. Moreover, the phosphorylation levels of MEK/ERK and p70S6K were suppressed in the DPY19L3-knockout cells compared with that of parent cells, suggesting that the protein(s) that is(are) DPY19L3-mediated C-mannosylated and regulate(s) MEK/ERK or p70S6K signaling is(are) required for the differentiation.


Subject(s)
Cell Differentiation/genetics , Cell Differentiation/physiology , Mannosyltransferases/physiology , Myoblasts/physiology , Animals , Cell Line , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Knockdown Techniques , Glycosylation , Mannosyltransferases/genetics , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Myoblasts/cytology , Phosphorylation/genetics , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction/genetics , Up-Regulation/genetics
16.
Int J Mol Sci ; 22(17)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34502296

ABSTRACT

Proper muscle function depends on the neuromuscular junctions (NMJs), which mature postnatally to complex "pretzel-like" structures, allowing for effective synaptic transmission. Postsynaptic acetylcholine receptors (AChRs) at NMJs are anchored in the actin cytoskeleton and clustered by the scaffold protein rapsyn, recruiting various actin-organizing proteins. Mechanisms driving the maturation of the postsynaptic machinery and regulating rapsyn interactions with the cytoskeleton are still poorly understood. Drebrin is an actin and microtubule cross-linker essential for the functioning of the synapses in the brain, but its role at NMJs remains elusive. We used immunohistochemistry, RNA interference, drebrin inhibitor 3,5-bis-trifluoromethyl pyrazole (BTP2) and co-immunopreciptation to explore the role of this protein at the postsynaptic machinery. We identify drebrin as a postsynaptic protein colocalizing with the AChRs both in vitro and in vivo. We also show that drebrin is enriched at synaptic podosomes. Downregulation of drebrin or blocking its interaction with actin in cultured myotubes impairs the organization of AChR clusters and the cluster-associated microtubule network. Finally, we demonstrate that drebrin interacts with rapsyn and a drebrin interactor, plus-end-tracking protein EB3. Our results reveal an interplay between drebrin and cluster-stabilizing machinery involving rapsyn, actin cytoskeleton, and microtubules.


Subject(s)
Acetylcholine/metabolism , Microtubules/physiology , Myoblasts/physiology , Neuromuscular Junction/physiology , Neuropeptides/pharmacology , Receptors, Cholinergic/metabolism , Synapses/physiology , Actin Cytoskeleton/metabolism , Animals , Cells, Cultured , Mice , Microtubules/drug effects , Myoblasts/cytology , Myoblasts/drug effects , Neuromuscular Junction/drug effects , Receptors, Cholinergic/genetics , Synaptic Transmission
17.
Cells ; 10(8)2021 08 17.
Article in English | MEDLINE | ID: mdl-34440881

ABSTRACT

Muscle stem cells (MuSCs) are essential for muscle growth, maintenance and repair. Over the past decade, experiments in Drosophila have been instrumental in understanding the molecular and cellular mechanisms regulating MuSCs (also known as adult muscle precursors, AMPs) during development. A large number of genetic tools available in fruit flies provides an ideal framework to address new questions which could not be addressed with other model organisms. This review reports the main findings revealed by the study of Drosophila AMPs, with a specific focus on how AMPs are specified and properly positioned, how they acquire their identity and which are the environmental cues controlling their behavior and fate. The review also describes the recent identification of the Drosophila adult MuSCs that have similar characteristics to vertebrates MuSCs. Integration of the different levels of MuSCs analysis in flies is likely to provide new fundamental knowledge in muscle stem cell biology largely applicable to other systems.


Subject(s)
Muscle Development/physiology , Myoblasts/physiology , Regeneration/physiology , Adult Stem Cells/cytology , Adult Stem Cells/physiology , Animals , Cell Differentiation , Cell Proliferation , Drosophila/cytology , Drosophila/physiology , Models, Biological , Myoblasts/cytology , Signal Transduction
18.
Genes (Basel) ; 12(5)2021 05 08.
Article in English | MEDLINE | ID: mdl-34066653

ABSTRACT

Circular RNAs (circRNAs) represent a class of covalently closed single-stranded RNA molecules that are emerging as essential regulators of various biological processes. The circRNA circHipk2 originates from exon 2 of the Hipk2 gene in mice and was reported to be involved in acute promyelocytic leukemia and myocardial injury. However, the functions and mechanisms of circHipk2 in myogenesis are largely unknown. Here, to deepen our knowledge about the role of circHipk2, we studied the expression and function of circHipk2 during skeletal myogenesis. We found that circHipk2 was mostly distributed in the cytoplasm, and dynamically and differentially expressed in various myogenesis systems in vitro and in vivo. Functionally, overexpression of circHipk2 inhibited myoblast proliferation and promoted myotube formation in C2C12 cells, whereas the opposite effects were observed after circHipk2 knockdown. Mechanistically, circHipk2 could directly bind to ribosomal protein Rpl7, an essential 60S preribosomal assembly factor, to inhibit ribosome translation. In addition, we verified that transcription factor Sp1 directly bound to the promoter of circHipk2 and affected the expression of Hipk2 and circHipk2 in C2C12 myoblasts. Collectively, these findings identify circHipk2 as a candidate circRNA regulating ribosome biogenesis and myogenesis proliferation and differentiation.


Subject(s)
Muscle Development , Myoblasts/metabolism , RNA, Circular/metabolism , Animals , Cell Proliferation , HEK293 Cells , Humans , Mice , Myoblasts/cytology , Myoblasts/physiology , Protein Serine-Threonine Kinases/genetics , RNA, Circular/genetics , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Sp1 Transcription Factor/metabolism
19.
Cell Death Dis ; 12(6): 611, 2021 06 12.
Article in English | MEDLINE | ID: mdl-34120143

ABSTRACT

Skeletal muscle regeneration following injury results from the proliferation and differentiation of myogenic stem cells, called satellite cells, located beneath the basal lamina of the muscle fibers. Infiltrating macrophages play an essential role in the process partly by clearing the necrotic cell debris, partly by producing cytokines that guide myogenesis. Infiltrating macrophages are at the beginning pro-inflammatory, but phagocytosis of dead cells induces a phenotypic change to become healing macrophages that regulate inflammation, myoblast fusion and growth, fibrosis, vascularization and return to homeostasis. The TAM receptor kinases Mer and Axl are known efferocytosis receptors in macrophages functioning in tolerogenic or inflammatory conditions, respectively. Here we investigated their involvement in the muscle regeneration process by studying the muscle repair following cardiotoxin-induced injury in Mer-/- mice. We found that Axl was the only TAM kinase receptor expressed on the protein level by skeletal muscle and C2C12 myoblast cells, while Mer was the dominant TAM kinase receptor in the CD45+ cells, and its expression significantly increased during repair. Mer ablation did not affect the skeletal muscle weight or structure, but following injury it resulted in a delay in the clearance of necrotic muscle cell debris, in the healing phenotype conversion of macrophages and consequently in a significant delay in the full muscle regeneration. Administration of the TAM kinase inhibitor BMS-777607 to wild type mice mimicked the effect of Mer ablation on the muscle regeneration process, but in addition, it resulted in a long-persisting necrotic area. Finally, in vitro inhibition of TAM kinase signaling in C2C12 myoblasts resulted in decreased viability and in impaired myotube growth. Our work identifies Axl as a survival and growth receptor in the mouse myoblasts, and reveals the contribution of TAM kinase-mediated signaling to the skeletal muscle regeneration both in macrophages and in myoblasts.


Subject(s)
Muscle, Skeletal/physiology , Proto-Oncogene Proteins/physiology , Receptor Protein-Tyrosine Kinases/physiology , Regeneration/genetics , c-Mer Tyrosine Kinase/physiology , Animals , Cell Survival/genetics , Cells, Cultured , Female , Male , Mice , Mice, Knockout , Muscle Development/genetics , Myoblasts/physiology , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , c-Mer Tyrosine Kinase/genetics , Axl Receptor Tyrosine Kinase
20.
Cell Death Dis ; 12(6): 535, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34035232

ABSTRACT

Tet dioxygenases are responsible for the active DNA demethylation. The functions of Tet proteins in muscle regeneration have not been well characterized. Here we find that Tet2, but not Tet1 and Tet3, is specifically required for muscle regeneration in vivo. Loss of Tet2 leads to severe muscle regeneration defects. Further analysis indicates that Tet2 regulates myoblast differentiation and fusion. Tet2 activates transcription of the key differentiation modulator Myogenin (MyoG) by actively demethylating its enhancer region. Re-expressing of MyoG in Tet2 KO myoblasts rescues the differentiation and fusion defects. Further mechanistic analysis reveals that Tet2 enhances MyoD binding by demethylating the flanking CpG sites of E boxes to facilitate the recruitment of active histone modifications and increase chromatin accessibility and activate its transcription. These findings shed new lights on DNA methylation and pioneer transcription factor activity regulation.


Subject(s)
DNA-Binding Proteins/physiology , Dioxygenases/physiology , Muscles/physiology , Regeneration/genetics , Animals , Cell Differentiation/genetics , Cells, Cultured , DNA-Binding Proteins/genetics , Dioxygenases/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myoblasts/metabolism , Myoblasts/physiology , Myogenin/genetics , Myogenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...