Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.724
Filter
1.
Int Heart J ; 65(3): 498-505, 2024.
Article in English | MEDLINE | ID: mdl-38825494

ABSTRACT

This study aimed to explore the expression of long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) in patients with acute myocardial infarction (AMI) and its inflammatory regulation mechanism through miR-211/interleukin 10 (IL-10) axis.A total of 75 participants were enrolled in this study: 25 healthy people in the control group, 25 patients with stable angina pectoris (SAP) in the SAP group, and 25 patients with AMI in the AMI group. Real-time qPCR was used to detect mRNA expression levels of NEAT1, miR-211, and IL-10. The interaction between miR-211, NEAT1, and IL-10 was confirmed by dual-luciferase reporter assay, and protein expression was detected using western blot.High expression of NEAT1 in peripheral blood mononuclear cells (PBMCs) of patients with AMI was negatively related to serum creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), tumor necrosis factor-α (TNF-α), IL-6, and IL-1ß and was positively correlated with left ventricular ejection fraction (LVEF). In THP-1 cells, miR-211 was confirmed to target and inhibit IL-10 expression. NEAT1 knockdown and miR-211-mimic markedly decreased IL-10 protein levels, whereas anti-miR-211 markedly increased IL-10 protein levels. Importantly, miR-211 level was negatively related to NEAT1 and IL-10 levels, whereas IL-10 level was positively related to the level of NEAT1 expression in PBMCs of patients with AMI.LncRNA NEAT1 was highly expressed in PBMCs of patients with AMI, and NEAT1 suppressed inflammation via miR-211/IL-10 axis in PBMCs of patients with AMI.


Subject(s)
Interleukin-10 , Leukocytes, Mononuclear , MicroRNAs , Myocardial Infarction , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/blood , MicroRNAs/blood , MicroRNAs/genetics , Interleukin-10/blood , Interleukin-10/metabolism , Myocardial Infarction/blood , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Leukocytes, Mononuclear/metabolism , Male , Female , Middle Aged , Aged , Inflammation/genetics , Inflammation/blood , Inflammation/metabolism , Case-Control Studies
2.
Int Heart J ; 65(3): 517-527, 2024.
Article in English | MEDLINE | ID: mdl-38825496

ABSTRACT

Myocardial infarction/reperfusion (I/R) injury significantly impacts the health of older individuals. We confirmed that the level of lncRNA Peg13 was downregulated in I/R injury. However, the detailed function of Peg13 in myocardial I/R injury has not yet been explored.To detect the function of Peg13, in vivo model of I/R injury was constructed. RT-qPCR was employed to investigate RNA levels, and Western blotting was performed to assess levels of endoplasmic reticulum stress and apoptosis-associated proteins. EdU staining was confirmed to assess the cell proliferation.I/R therapy dramatically produced myocardial injury, increased the infarct area, and decreased the amount of Peg13 in myocardial tissues of mice. In addition, hypoxia/reoxygenation (H/R) notably induced the apoptosis and promoted the endoplasmic reticulum (ER) stress of HL-1 cells, while overexpression of Peg13 reversed these phenomena. Additionally, Peg13 may increase the level of Sirt1 through binding to miR-34a. Upregulation of Peg13 reversed H/R-induced ER stress via regulation of miR-34a/Sirt1 axis.LncRNA Peg13 reduces ER stress in myocardial infarction/reperfusion injury through mediation of miR-34a/Sirt1 axis. Hence, our research might shed new lights on developing new strategies for the treatment of myocardial I/R injury.


Subject(s)
Endoplasmic Reticulum Stress , MicroRNAs , Myocardial Reperfusion Injury , RNA, Long Noncoding , Sirtuin 1 , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Sirtuin 1/metabolism , Sirtuin 1/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/genetics , Mice , Male , Myocardial Infarction/metabolism , Myocardial Infarction/genetics , Apoptosis/genetics , Disease Models, Animal , Mice, Inbred C57BL
3.
J Craniofac Surg ; 35(4): 1292-1297, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38829148

ABSTRACT

BACKGROUND: Acute myocardial infarction (AMI) risk correlates with C-reactive protein (CRP) levels, suggesting systemic inflammation is present well before AMI. Studying different types of periodontal disease (PD), extremely common in individuals at risk for AMI, has been one important research topic. According to recent research, AMI and PD interact via the systemic production of certain proinflammatory and anti-inflammatory cytokines, small signal molecules, and enzymes that control the onset and development of both disorders' chronic inflammatory reactions. This study uses machine learning to identify the interactome hub biomarker genes in acute myocardial infarction and periodontitis. METHODS: GSE208194 and GSE222883 were chosen for our research after a thorough search using keywords related to the study's goal from the gene expression omnibus (GEO) datasets. DEGs were identified from the GEOR tool, and the hub gene was identified using Cytoscape-cytohubba. Using expression values, Random Forest, Adaptive Boosting, and Naive Bayes, widgets-generated transcriptomics data, were labelled, and divided into 80/20 training and testing data with cross-validation. ROC curve, confusion matrix, and AUC were determined. In addition, Functional Enrichment Analysis of Differentially Expressed Gene analysis was performed. RESULTS: Random Forest, AdaBoost, and Naive Bayes models with 99%, 100%, and 75% AUC, respectively. Compared to RF, AdaBoost, and NB classification models, AdaBoost had the highest AUC. Categorization algorithms may be better predictors than important biomarkers. CONCLUSIONS: Machine learning model predicts hub and non-hub genes from genomic datasets with periodontitis and acute myocardial infarction.


Subject(s)
Machine Learning , Myocardial Infarction , Periodontitis , Humans , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Periodontitis/genetics , Periodontitis/metabolism , Biomarkers/metabolism , Gene Expression Profiling , Bayes Theorem , Transcriptome/genetics
4.
Lipids Health Dis ; 23(1): 163, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831433

ABSTRACT

OBJECTIVE: High low-density-lipoprotein (LDL) cholesterol has been associated with an increased risk of coronary artery diseases (CAD) including acute myocardial infarction (AMI). However, whether lipids lowering drug treatment is causally associated with decreased risk of AMI remains largely unknown. We used Mendelian randomization (MR) to evaluate the influence of genetic variation affecting the function of lipid-lowering drug targets on AMI. METHODS: Single-nucleotide polymorphisms (SNPs) associated with lipids as instruments were extracted from the Global Lipids Genetics Consortium (GLGC). The genome-wide association study (GWAS) data for AMI were obtained from UK Biobank. Two sample MR analysis was used to study the associations between high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, and triglycerides (TG) with AMI (n = 3,927). Genetic variants associated with LDL cholesterol at or near drug target gene were used to mimic drug effects on the AMI events in drug target MR. RESULTS: Genetically predicted higher LDL-C (per one SD increase in LDL-C of 38.67 mg/dL, OR 1.006, 95% CI 1.004-1.007) and TG (per one SD increase in TG of 90.72 mg/dL, 1.004, 1.002-1.006) was associated with increased risk of AMI, but decreased risk for higher HDL-C (per one SD increase in HDL-C of 15.51 mg/dL, 0.997, 0.995-0.999) in univariable MR. Association remained significant for LDL-C, but attenuated toward the null for HDL-C and TG in multivariable MR. Genetically proxied lower LDL-C with genetic variants at or near the PCSK9 region (drug target of evolocumab) and NPC1L1 (drug target of ezetimibe) were associated with decreased risk of AMI (0.997, 0.994-0.999 and 0.986, 0.975-0.998, respectively), whereas genetic variants at HMGCR region (drug target of statin) showed marginal association with AMI (0.995, 0.990-1.000). After excluding drug target-related SNPs, LDL-C related SNPs outside the drug target region remained a causal effect on AMI (0.994, 0.993-0.996). CONCLUSIONS: The findings suggest that genetically predicted LDL-C may play a predominant role in the development of AMI. The drug MR results imply that ezetimibe and evolocumab may decrease the risk of AMI due to their LDL-C lowering effect, and there are other non-drug related lipid lowering pathways that may be causally linked to AMI.


Subject(s)
Cholesterol, HDL , Cholesterol, LDL , Genome-Wide Association Study , Mendelian Randomization Analysis , Myocardial Infarction , Polymorphism, Single Nucleotide , Triglycerides , Humans , Myocardial Infarction/genetics , Myocardial Infarction/drug therapy , Cholesterol, LDL/blood , Triglycerides/blood , Male , Female , Cholesterol, HDL/blood , Middle Aged , Membrane Proteins/genetics , Membrane Transport Proteins/genetics , Proprotein Convertase 9/genetics , Hypolipidemic Agents/therapeutic use , Hydroxymethylglutaryl CoA Reductases/genetics , Aged
5.
PeerJ ; 12: e17280, 2024.
Article in English | MEDLINE | ID: mdl-38827298

ABSTRACT

Cuproptosis-related key genes play a significant role in the pathological processes of acute myocardial infarction (AMI). However, a complete understanding of the molecular mechanisms behind this participation remains elusive. This study was designed to identify genes and immune cells critical to AMI pathogenesis. Based on the GSE48060 dataset (31 AMI patients and 21 healthy persons, GPL570-55999), we identified genes associated with dysregulated cuproptosis and the activation of immune responses between normal subjects and patients with a first myocardial attack. Two molecular clusters associated with cuproptosis were defined in patients with AMI. Immune infiltration analysis showed that there was significant immunity heterogeneity among different clusters. Multiple immune responses were closely associated with Cluster2-specific differentially expressed genes (DEGs). The generalized linear model machine model presented the best discriminative performance with relatively lower residual and root mean square error, and a higher area under the curve (AUC = 0.870). A final two-gene-based generalized linear model was constructed, exhibiting satisfactory performance in two external validation datasets (AUC = 0.719, GSE66360 and AUC = 0.856, GSE123342). Column graph, calibration curve, and decision curve analyses also proved the accuracy of AMI prediction. We also constructed a mouse C57BL/6 model of AMI (3 h, 48 h, and 1 week) and used qRT-PCR and immunofluorescence to detect the expression changes of CBLB and ZNF302. In this study, we present a systematic analysis of the complex relationship between cuproptosis and a first AMI attack, and provide new insights into the diagnosis and treatment of AMI.


Subject(s)
Computational Biology , Disease Models, Animal , Myocardial Infarction , Myocardial Infarction/genetics , Animals , Mice , Computational Biology/methods , Biomarkers/metabolism , Humans , Mice, Inbred C57BL , Gene Expression Profiling/methods , Male
6.
Sci Rep ; 14(1): 9991, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693202

ABSTRACT

Endothelial cells (ECs) have essential roles in cardiac tissue repair after myocardial infarction (MI). To establish stage-specific and long-term effects of the ischemic injury on cardiac ECs, we analyzed their transcriptome at landmark time points after MI in mice. We found that early EC response at Day 2 post-MI centered on metabolic changes, acquisition of proinflammatory phenotypes, initiation of the S phase of cell cycle, and activation of stress-response pathways, followed by progression to mitosis (M/G2 phase) and acquisition of proangiogenic and mesenchymal properties during scar formation at Day 7. In contrast, genes involved in vascular physiology and maintenance of vascular tone were suppressed. Importantly, ECs did not return to pre-injury phenotypes after repair has been completed but maintained inflammatory, fibrotic and thrombotic characteristics and lost circadian rhythmicity. We discovered that the highest induced transcript is the mammalian-specific Sh2d5 gene that promoted migration and invasion of ECs through Rac1 GTPase. Our results revealed a synchronized, temporal activation of disease phenotypes, metabolic pathways, and proliferation in quiescent ECs after MI, indicating that precisely-timed interventions are necessary to optimize cardiac tissue repair and improve outcomes. Furthermore, long-term effects of acute ischemic injury on ECs may contribute to vascular dysfunction and development of heart failure.


Subject(s)
Endothelial Cells , Gene Expression Profiling , Myocardial Infarction , Animals , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Mice , Endothelial Cells/metabolism , Endothelial Cells/pathology , Transcriptome , Male , Mice, Inbred C57BL , Myocardium/metabolism , Myocardium/pathology , rac1 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/genetics , Disease Models, Animal , Cell Proliferation , Cell Movement/genetics
7.
Sci Rep ; 14(1): 10175, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702356

ABSTRACT

Acute myocardial infarction (AMI) commonly precedes ventricular remodeling, heart failure. Few dynamic molecular signatures have gained widespread acceptance in mainstream clinical testing despite the discovery of many potential candidates. These unmet needs with respect to biomarker and drug discovery of AMI necessitate a prioritization. We enrolled patients with AMI aged between 30 and 70. RNA-seq analysis was performed on the peripheral blood mononuclear cells collected from the patients at three time points: 1 day, 7 days, and 3 months after AMI. PLC/LC-MS analysis was conducted on the peripheral blood plasma collected from these patients at the same three time points. Differential genes and metabolites between groups were screened by bio-informatics methods to understand the dynamic changes of AMI in different periods. We obtained 15 transcriptional and 95 metabolite expression profiles at three time points after AMI through high-throughput sequencing. AMI-1d: enrichment analysis revealed the biological features of 1 day after AMI primarily included acute inflammatory response, elevated glycerophospholipid metabolism, and decreased protein synthesis capacity. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) might stand promising biomarkers to differentiate post-AMI stage. Anti-inflammatory therapy during the acute phase is an important direction for preventing related pathology. AMI-7d: the biological features of this stage primarily involved the initiation of cardiac fibrosis response and activation of platelet adhesion pathways. Accompanied by upregulated TGF-beta signaling pathway and ECM receptor interaction, GP5 help assess platelet activation, a potential therapeutic target to improve haemostasis. AMI-3m: the biological features of 3 months after AMI primarily showed a vascular regeneration response with VEGF signaling pathway, NOS3 and SHC2 widely activated, which holds promise for providing new therapeutic approaches for AMI. Our analysis highlights transcriptional and metabolomics signatures at different time points after MI, which deepens our understanding of the dynamic biological responses and associated molecular mechanisms that occur during cardiac repair.


Subject(s)
Metabolomics , Myocardial Infarction , Humans , Myocardial Infarction/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/blood , Middle Aged , Male , Female , Metabolomics/methods , Aged , Adult , Transcriptome , Biomarkers/metabolism , Biomarkers/blood , Leukocytes, Mononuclear/metabolism , Gene Expression Profiling
8.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 666-674, 2024 Apr 20.
Article in Chinese | MEDLINE | ID: mdl-38708499

ABSTRACT

OBJECTIVE: To investigate the changes of mitochondrial respiratory function during myocardial fibrosis in mice with myocardial infarction (MI) and its correlation with the increase of glycolytic flux. METHODS: Forty C57BL/6N mice were randomized into two equal groups to receive sham operation or ligation of the left anterior descending coronary artery to induce acute MI. At 28 days after the operation, 5 mice from each group were euthanized and left ventricular tissue samples were collected for transcriptomic sequencing. FPKM method was used to calculate gene expression levels to identify the differentially expressed genes (DEGs) in MI mice, which were analyzed using GO and KEGG databases to determine the pathways affecting the disease process. Heat maps were drawn to show the differential expressions of the pathways and the related genes in the enrichment analysis. In primary cultures of neonatal mouse cardiac fibroblasts (CFs), the changes in mitochondrial respiration and glycolysis levels in response to treatment with the pro-fibrotic agonist TGF-ß1 were analyzed using Seahorse experiment. RESULTS: The mouse models of MI showed significantly increased diastolic and systolic left ventricular diameter (P < 0.05) and decreased left ventricular ejection fraction (P < 0.0001). A total of 124 up-regulated and 106 down-regulated DEGs were identified in the myocardial tissues of MI mice, and GO and KEGG enrichment analysis showed that these DEGs were significantly enriched in fatty acid metabolism, organelles and other metabolic pathways and in the mitochondria. Heat maps revealed fatty acid beta oxidation, mitochondrial dysfunction and increased glycolysis levels in MI mice. In the primary culture of CFs, treatment with TGF-ß1 significantly reduced the basal and maximum respiratory levels and increased the basal and maximum glycolysis levels (P < 0.0001). CONCLUSION: During myocardial fibrosis, energy metabolism remodeling occurs in the CFs, manifested by lowered mitochondrial function and increased energy generation through glycolysis.


Subject(s)
Energy Metabolism , Fibrosis , Mice, Inbred C57BL , Myocardial Infarction , Animals , Mice , Myocardial Infarction/metabolism , Myocardial Infarction/genetics , Myocardium/metabolism , Myocardium/pathology , Disease Models, Animal , Mitochondria/metabolism , Glycolysis , Gene Expression Profiling , Transcriptome , Fibroblasts/metabolism , Male , Transforming Growth Factor beta1/metabolism
9.
Scand Cardiovasc J ; 58(1): 2347290, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38733316

ABSTRACT

Objectives. The aim of this study was to investigate the expression of long non-coding RNA (lncRNA) brain and reproductive organ-expressed protein (BRE) antisense RNA 1 (BRE-AS1) in patients with acute myocardial infarction (AMI) and its effect on ischemia/reperfusion (I/R)-induced oxidative stress and apoptosis of cardiomyocytes. Methods. Serum BRE-AS1 levels in patients with AMI was detected using quantitative real-time polymerase chain reaction (qRT-PCR). The diagnostic and prognostic values of BRE-AS1 were evaluated. H9c2 cells were treated with hypoxia/reoxygenation to establish an in vitro myocardial infarction cell model. The levels of inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and IL-6 were detected by enzyme-linked immunosorbent assay (ELISA). Levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were determined by commercial kits. Cell counting kit-8 (CCK-8) and flow cytometry were used to evaluate the cell viability and cell apoptosis. Results. The expression of BRE-AS1 in serum of patients with AMI is upregulated, which shows the clinical diagnostic value for AMI. In the I/R injury cell model, the knockout of BRE-AS1 can significantly alleviate the increase in TNF-α, IL-1ß, and IL-6 levels, inhibit the production of LDH and MDA, increase the activities of SOD and GSH-Px, promote the cell viability and suppress cell apoptosis. Conclusions. Abnormally elevated BRE-AS1 has a high diagnostic value for AMI as well as a prognostic value for major adverse cardiovascular events (MACEs). The elevation of BRE-AS1 promoted oxidative stress injury and cell apoptosis in vitro.


Subject(s)
Apoptosis , Inflammation Mediators , Myocardial Infarction , Myocytes, Cardiac , Oxidative Stress , RNA, Long Noncoding , RNA, Long Noncoding/blood , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Humans , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/blood , Myocardial Infarction/genetics , Myocardial Infarction/diagnosis , Male , Middle Aged , Female , Inflammation Mediators/metabolism , Inflammation Mediators/blood , Cell Line , Animals , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/blood , Myocardial Reperfusion Injury/diagnosis , Myocardial Reperfusion Injury/genetics , Rats , Cytokines/metabolism , Cytokines/blood , Signal Transduction , Case-Control Studies , Aged , Up-Regulation
10.
BMC Cardiovasc Disord ; 24(1): 272, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38783198

ABSTRACT

BACKGROUND: T-cell exhaustion (TEX), a condition characterized by impaired T-cell function, has been implicated in numerous pathological conditions, but its role in acute myocardial Infarction (AMI) remains largely unexplored. This research aims to identify and characterize all TEX-related genes for AMI diagnosis. METHODS: By integrating gene expression profiles, differential expression analysis, gene set enrichment analysis, protein-protein interaction networks, and machine learning algorithms, we were able to decipher the molecular mechanisms underlying TEX and its significant association with AMI. In addition, we investigated the diagnostic validity of the leading TEX-related genes and their interactions with immune cell profiles. Different types of candidate small molecule compounds were ultimately matched with TEX-featured genes in the "DrugBank" database to serve as potential therapeutic medications for future TEX-AMI basic research. RESULTS: We screened 1725 differentially expressed genes (DEGs) from 80 AMI samples and 71 control samples, identifying 39 differential TEX-related transcripts in total. Functional enrichment analysis identified potential biological functions and signaling pathways associated with the aforementioned genes. We constructed a TEX signature containing five hub genes with favorable prognostic performance using machine learning algorithms. In addition, the prognostic performance of the nomogram of these five hub genes was adequate (AUC between 0.815 and 0.995). Several dysregulated immune cells were also observed. Finally, six small molecule compounds which could be the future therapeutic for TEX in AMI were discovered. CONCLUSION: Five TEX diagnostic feature genes, CD48, CD247, FCER1G, TNFAIP3, and FCGRA, were screened in AMI. Combining these genes may aid in the early diagnosis and risk prediction of AMI, as well as the evaluation of immune cell infiltration and the discovery of new therapeutics.


Subject(s)
Computational Biology , Databases, Genetic , Gene Expression Profiling , Machine Learning , Myocardial Infarction , Predictive Value of Tests , Protein Interaction Maps , Transcriptome , Humans , Myocardial Infarction/genetics , Myocardial Infarction/immunology , Myocardial Infarction/diagnosis , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/drug effects , Case-Control Studies , Gene Regulatory Networks , Prognosis , Genetic Markers , T-Cell Exhaustion
11.
Mol Biol Rep ; 51(1): 604, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700644

ABSTRACT

BACKGROUND: The healing process after a myocardial infarction (MI) in humans involves complex events that replace damaged tissue with a fibrotic scar. The affected cardiac tissue may lose its function permanently. In contrast, zebrafish display a remarkable capacity for scar-free heart regeneration. Previous studies have revealed that syndecan-4 (SDC4) regulates inflammatory response and fibroblast activity following cardiac injury in higher vertebrates. However, whether and how Sdc4 regulates heart regeneration in highly regenerative zebrafish remains unknown. METHODS AND RESULTS: This study showed that sdc4 expression was differentially regulated during zebrafish heart regeneration by transcriptional analysis. Specifically, sdc4 expression increased rapidly and transiently in the early regeneration phase upon ventricular cryoinjury. Moreover, the knockdown of sdc4 led to a significant reduction in extracellular matrix protein deposition, immune cell accumulation, and cell proliferation at the lesion site. The expression of tgfb1a and col1a1a, as well as the protein expression of Fibronectin, were all down-regulated under sdc4 knockdown. In addition, we verified that sdc4 expression was required for cardiac repair in zebrafish via in vivo electrocardiogram analysis. Loss of sdc4 expression caused an apparent pathological Q wave and ST elevation, which are signs of human MI patients. CONCLUSIONS: Our findings support that Sdc4 is required to mediate pleiotropic repair responses in the early stage of zebrafish heart regeneration.


Subject(s)
Heart , Regeneration , Syndecan-4 , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/metabolism , Syndecan-4/genetics , Syndecan-4/metabolism , Regeneration/genetics , Heart/physiology , Heart/physiopathology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Cell Proliferation/genetics , Myocardium/metabolism , Myocardium/pathology , Gene Knockdown Techniques
12.
J Am Heart Assoc ; 13(10): e032248, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38761068

ABSTRACT

BACKGROUND: Carriers of CYP2C19 loss-of-function alleles have increased adverse events after percutaneous coronary intervention, but limited data are available for older patients. We aimed to evaluate the prognostic impact of CYP2C19 genotypes on clinical outcomes in older patients after percutaneous coronary intervention. METHODS AND RESULTS: The study included 1201 older patients (aged ≥75 years) who underwent percutaneous coronary intervention and received clopidogrel-based dual antiplatelet therapy in South Korea. Patients were grouped on the basis of CYP2C19 genotypes. The primary outcome was 3-year major adverse cardiac events, defined as a composite of cardiac death, myocardial infarction, and stent thrombosis. Older patients were grouped into 3 groups: normal metabolizer (36.6%), intermediate metabolizer (48.1%), and poor metabolizer (15.2%). The occurrence of the primary outcome was significantly different among the groups (3.1, 7.0, and 6.2% in the normal metabolizer, intermediate metabolizer, and poor metabolizer groups, respectively; P=0.02). The incidence rate of all-cause death at 3 years was greater in the intermediate metabolizer and poor metabolizer groups (8.1% and 9.2%, respectively) compared with that in the normal metabolizer group (3.5%, P=0.03) without significant differences in major bleeding. In the multivariable analysis, the intermediate metabolizer and poor metabolizer groups were independent predictors of 3-year clinical outcomes. CONCLUSIONS: In older patients, the presence of any CYP2C19 loss-of-function allele was found to be predictive of a higher incidence of major adverse cardiac events within 3 years following percutaneous coronary intervention. This finding suggests a need for further investigation into an optimal antiplatelet strategy for older patients. REGISTRATION: URL: https://clinicaltrials.gov. Identifier: NCT04734028.


Subject(s)
Clopidogrel , Cytochrome P-450 CYP2C19 , Genotype , Percutaneous Coronary Intervention , Platelet Aggregation Inhibitors , Humans , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2C19/metabolism , Percutaneous Coronary Intervention/adverse effects , Male , Female , Aged , Platelet Aggregation Inhibitors/pharmacokinetics , Platelet Aggregation Inhibitors/therapeutic use , Platelet Aggregation Inhibitors/adverse effects , Republic of Korea/epidemiology , Clopidogrel/pharmacokinetics , Clopidogrel/therapeutic use , Clopidogrel/adverse effects , Aged, 80 and over , Prognosis , Treatment Outcome , Time Factors , Coronary Artery Disease/genetics , Coronary Artery Disease/surgery , Coronary Artery Disease/mortality , Coronary Artery Disease/therapy , Risk Factors , Dual Anti-Platelet Therapy/adverse effects , Risk Assessment , Age Factors , Myocardial Infarction/genetics , Myocardial Infarction/epidemiology , Pharmacogenomic Variants
13.
BMC Cardiovasc Disord ; 24(1): 287, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816768

ABSTRACT

BACKGROUND: The activation of G protein-coupled receptors (GPCR) signaling by external stimuli has been implicated in inducing cardiac stress and stress responses. GPR22 is an orphan GPCR expressed in brains and hearts, while its expression level is associated with cardiovascular damage in diabetes. Previous studies have suggested a protective role of GPR22 in mechanical cardiac stress, as loss of its expression increases susceptibility to heart failure post-ventricular pressure overload. However, the involvement and underlying signaling of GPR22 in cardiac stress response to ischemic stress remains unexplored. METHODS: In this study, we used cultured cells and a transgenic mouse model with cardiomyocyte-specific GPR22 overexpression to investigate the impact of ischemic stress on GPR22 expression and to elucidate its role in myocardial ischemic injury. Acute myocardial infarction (AMI) was induced by left coronary artery ligation in eight-week-old male GPR22 transgenic mice, followed by histopathological and biochemical examination four weeks post-AMI induction. RESULTS: GPR22 expression in H9C2 and RL-14 cells, two cardiomyocyte cell lines, was decreased by cobalt chloride (CoCl2) treatment. Similarly, reduced expression of myocardial GPR22 was observed in mice with AMI. Histopathological examinations revealed a protective effect of GPR22 overexpression in attenuating myocardial infarction in mice with AMI. Furthermore, myocardial levels of Bcl-2 and activation of PI3K-Akt signaling were downregulated by ischemic stress and upregulated by GPR22 overexpression. Conversely, the expression levels of caspase-3 and phosphorylated ERK1/2 in the infarcted myocardium were downregulated with GPR22 overexpression. CONCLUSION: Myocardial ischemic stress downregulates cardiac expression of GPR22, whereas overexpression of GPR22 in cardiomyocytes upregulates Akt signaling, downregulates ERK activation, and mitigates ischemia-induced myocardial injury.


Subject(s)
Disease Models, Animal , Mice, Transgenic , Myocardial Infarction , Myocytes, Cardiac , Proto-Oncogene Proteins c-akt , Receptors, G-Protein-Coupled , Signal Transduction , Animals , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Male , Proto-Oncogene Proteins c-akt/metabolism , Apoptosis , Cell Line , Mice, Inbred C57BL , Rats , Up-Regulation , Phosphorylation , Mice , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Caspase 3/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 1
14.
Sci Rep ; 14(1): 12212, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806571

ABSTRACT

A positive family history is a major independent risk factor for atherosclerosis, and genetic variation is an important aspect of cardiovascular disease research. We identified a heterozygous missense variant p.L245P in the MMP10 gene in two families with premature myocardial infarction using whole-exome sequencing. The aim of this study was to investigate the consequences of this variant using in-silico and functional in-vitro assays. Molecular dynamics simulations were used to analyze protein interactions, calculate free binding energy, and measure the volume of the substrate-binding cleft of MMP10-TIMP1 models. The p.L245P variant showed an altered protein surface, different intra- and intermolecular interactions of MMP10-TIMP1, a lower total free binding energy between MMP10-TIMP1, and a volume-minimized substrate-binding cleft of MMP10 compared to the wild-type. For the functional assays, human THP-1 cells were transfected with plasmids containing MMP10 cDNA carrying the p.L245P and wild-type variant and differentiated into macrophages. Macrophage adhesion and migration assays were then conducted, and pro-inflammatory chemokine levels were evaluated. The p.L245P variant led to macrophages that were more adherent, less migratory, and secreted higher levels of the pro-inflammatory chemokines CXCL1 and CXCL8 than wild-type macrophages. Thus, the p.L245P variant in MMP10 may influence the pathogenesis of atherosclerosis in families with premature myocardial infarction by altering protein - protein interactions, macrophage adhesion and migration, and expression of pro-inflammatory chemokines, which may increase plaque rupture. These results could contribute to the development of selective MMP10 inhibitors and reduce the risk of atherosclerosis in families with a history of premature myocardial infarction.


Subject(s)
Matrix Metalloproteinase 10 , Mutation, Missense , Myocardial Infarction , Humans , Myocardial Infarction/genetics , Matrix Metalloproteinase 10/genetics , Matrix Metalloproteinase 10/metabolism , Male , Female , Pedigree , Adult , Molecular Dynamics Simulation , Macrophages/metabolism , THP-1 Cells , Middle Aged , Exome Sequencing , Cell Movement/genetics , Genetic Predisposition to Disease , Cell Adhesion/genetics , Tissue Inhibitor of Metalloproteinase-1
15.
J Mol Cell Cardiol ; 191: 76-87, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718920

ABSTRACT

The reactivated adult epicardium produces epicardium-derived cells (EPDCs) via epithelial-mesenchymal transition (EMT) to benefit the recovery of the heart after myocardial infarction (MI). SMARCA4 is the core catalytic subunit of the chromatin re-modeling complex, which has the potential to target some reactivated epicardial genes in MI. However, the effects of epicardial SMARCA4 on MI remain uncertain. This study found that SMARCA4 was activated over time in epicardial cells following MI, and some of activated cells belonged to downstream differentiation types of EPDCs. This study used tamoxifen to induce lineage tracing and SMARCA4 deletion from epicardial cells in Wt1-CreER;Smarca4fl/fl;Rosa26-RFP adult mice. Epicardial SMARCA4 deletion reduces the number of epicardial cells in adult mice, which was related to changes in the activation, proliferation, and apoptosis of epicardial cells. Epicardial SMARCA4 deletion reduced collagen deposition and angiogenesis in the infarcted area, exacerbated cardiac injury in MI. The exacerbation of cardiac injury was related to the inhibition of generation and differentiation of EPDCs. The alterations in EPDCs were associated with inhibited transition between E-CAD and N-CAD during the epicardial EMT, coupled with the down-regulation of WT1, SNAIL1, and PDGF signaling. In conclusion, this study suggests that Epicardial SMARCA4 plays a critical role in cardiac injury caused by MI, and its regulatory mechanism is related to epicardial EMT. Epicardial SMARCA4 holds potential as a novel molecular target for treating MI.


Subject(s)
DNA Helicases , Epithelial-Mesenchymal Transition , Gene Deletion , Myocardial Infarction , Pericardium , Transcription Factors , Animals , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Epithelial-Mesenchymal Transition/genetics , Pericardium/pathology , Pericardium/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , DNA Helicases/genetics , DNA Helicases/metabolism , Mice , Cell Differentiation , Apoptosis/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/deficiency , Cell Proliferation , Disease Models, Animal
16.
Aging (Albany NY) ; 16(9): 8361-8377, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38713173

ABSTRACT

BACKGROUND: Globally, Acute Myocardial Infarction (AMI) is a common cause of heart failure (HF), which has been a leading cause of mortality resulting from non-communicable diseases. On the other hand, increasing evidence suggests that the role of energy production within the mitochondria strongly links to the development and progression of heart diseases, while Cuproptosis, a newly identified cell death mechanism, has not yet been comprehensively analyzed from the aspect of cardiovascular medicine. MATERIALS AND METHODS: 8 transcriptome profiles curated from the GEO database were integrated, from which a diagnostic model based on the Stacking algorithm was established. The efficacy of the model was evaluated in a multifaced manner (i.e., by Precision-Recall curve, Receiver Operative Characteristic curve, etc.). We also sequenced our animal models at the bulk RNA level and conducted qPCR and immunohistochemical staining, with which we further validated the expression of the key contributor gene to the model. Finally, we explored the immune implications of the key contributor gene. RESULTS: A merged machine learning model containing 4 Cuproptosis-related genes (i.e., PDHB, CDKN2A, GLS, and SLC31A1) for robust AMI diagnosis was developed, in which SLC31A1 served as the key contributor. Through in vivo modeling, we validated the aberrant overexpression of SLC31A1 in AMI. Besides, further transcriptome analysis revealed that its high expression was correlated with significant potential immunological implications in the infiltration of many immune cell types, especially monocyte. CONCLUSIONS: We constructed an AMI diagnostic model based on Cuproptosis-related genes and validated the key contributor gene in animal modeling. We also analyzed the effects on the immune system for its overexpression in AMI.


Subject(s)
Biomarkers , Computational Biology , Myocardial Infarction , Myocardial Infarction/genetics , Myocardial Infarction/diagnosis , Myocardial Infarction/metabolism , Animals , Biomarkers/metabolism , Humans , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Transcriptome , Disease Models, Animal , Machine Learning , Mice , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Male , Gene Expression Profiling
17.
BMC Cardiovasc Disord ; 24(1): 236, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705985

ABSTRACT

BACKGROUND: This study was designed to investigate the mechanism by which miR-30a-5p mediates cardiomyocyte apoptosis after acute myocardial infarction (AMI) induced by hypoxia/reoxygenation (H/R). METHODS: Differentially expressed miRNAs were analyzed by RNA high-throughput sequencing in acute myocardial infarction (ST-elevation myocardial infarction) patients versus healthy individuals (controls). The H/R model was used to assess the regulatory mechanism of miRNAs in AMI. Lentivirus-associated vectors were used to overexpress or knock down miR-30a-5p in cellular models. The pathological mechanisms of miR-30a-5p regulating the development of acute myocardial infarction were serially explored by qPCR, bioinformatics, target gene prediction, dual luciferase, enzyme-linked immunosorbent assays (ELISAs) and Western blotting. RESULTS: The results showed that the expression of miR-30a-5p was significantly increased in AMI patients and H9C2 cells. Hypoxia decreased cardiomyocyte survival over time, and reoxygenation further reduced cell survival. Bax and Phosphatase and tensin homolog (PTEN)were suppressed, while Bcl-2 was upregulated. Additionally, miR-30a-5p specifically targeted the PTEN gene. According to the GO and KEGG analyses, miR-30a-5p may participate in apoptosis by interacting with PTEN. The miR-30a-5p mimic decreased the expression of apoptosis-related proteins and the levels of the proinflammatory markers IL-1ß, IL-6, and TNF-α by activating the PTEN/PI3K/Akt signaling pathway. Conversely, anti-miR-30a-5p treatment attenuated these effects. Additionally, silencing PTEN and anti-miR-30a-5p had opposite effects on H/R-induced cell apoptosis. CONCLUSIONS: miR-30a-5p plays a crucial role in cardiomyocyte apoptosis after hypoxia-induced acute myocardial infarction. Our findings provide translational evidence that miR-30a-5p is a novel potential therapeutic target for AMI.


Subject(s)
Apoptosis , Cell Hypoxia , MicroRNAs , Myocytes, Cardiac , PTEN Phosphohydrolase , Signal Transduction , Animals , Female , Humans , Male , Middle Aged , Rats , Case-Control Studies , Cell Line , Gene Expression Regulation , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/enzymology , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/enzymology , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics
18.
Int J Med Sci ; 21(7): 1353-1365, 2024.
Article in English | MEDLINE | ID: mdl-38818463

ABSTRACT

This study aims to explore the molecular mechanisms and associated pathways of myocardial infarction (MI). We employed a variety of analytical methods, including Mendelian Randomization (MR) analysis, transcriptome microarray data analysis, gene function and pathway enrichment analysis, untargeted metabolomic mass spectrometry analysis, and gene-metabolite interaction network analysis. The MR analysis results revealed a significant impact of mitochondrial DNA copy number on MI and coronary artery bypass grafting. Transcriptome analysis unveiled numerous differentially expressed genes associated with myocardial ischemia, with enrichment observed in cardiac function and energy metabolism pathways. Metabolomic analysis indicated a significant downregulation of mitochondrial regulation pathways in ischemic myocardium. T500 metabolite quantification analysis identified 90 differential metabolites between MI and Sham groups, emphasizing changes in metabolites associated with energy metabolism. Gene-metabolite interaction network analysis revealed the significant roles of key regulatory molecules such as HIF1A, adenosine, TBK1, ATP, NRAS, and EIF2AK3, in the pathogenesis of myocardial ischemia. In summary, this study provides important insights into the molecular mechanisms of MI and highlights interactions at multiple molecular levels, contributing to the establishment of new theoretical foundations for the diagnosis and treatment of MI.


Subject(s)
Adenosine , Myocardial Infarction , Myocardial Infarction/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Humans , Adenosine/metabolism , Energy Metabolism/genetics , Gene Regulatory Networks , Gene Expression Profiling , Mendelian Randomization Analysis , DNA, Mitochondrial/genetics , Mitochondria/metabolism , Metabolomics/methods , Transcriptome
19.
Front Endocrinol (Lausanne) ; 15: 1376464, 2024.
Article in English | MEDLINE | ID: mdl-38765955

ABSTRACT

Background: In recent years, several studies have explored the effect of metformin on myocardial infarction (MI), but whether metformin has an improvement effect in patients with MI is controversial. This study was aimed to investigate the causal relationship between metformin and MI using Mendelian randomization (MR) analysis. Methods: The genome-wide significant (P<5×10-8) single-nucleotide polymorphisms (SNPs) in patients with metformin and patients with MI were screened from the Open genome-wide association study (GWAS) project as instrumental variables (IVs). The study outcomes mainly included MI, old MI, acute MI, acute transmural MI of inferior wall, and acute transmural MI of anterior wall. The inverse variance weighted (IVW) method was applied to assess the main causal effect, and weighted median, simple mode, weighted mode methods, and MR-Egger regression were auxiliary applied for supplementary proof. The causal relationship between metformin and MI was assessed using odds ratios (OR) and 95% confidence intervals (95% CI). A leave-one-out method was used to explore the effect of individual SNPs on the results of IVW analyses, and a funnel plot was used to analyze the potential bias of the study results, thus ensuring the robustness of the results. Results: In total, 16, 84, 39, 26, and 34 SNPs were selected as IVs to assess the genetic association between metformin and outcomes of MI, old MI, acute MI, acute transmural MI of inferior wall, and acute transmural MI of anterior wall, respectively. Treatment with metformin does not affect the risk of acute transmural MI of anterior wall at the genetic level (P>0.05; OR for inverse variance weighted was 1.010). In the cases of MI, old MI, acute MI, and acute transmural MI of inferior wall, metformin may even be a risk factor for patients (P<0.05; ORs for inverse variance weighted were 1.078, 1.026, 1.022 and 1.018 respectively). There was no horizontal pleiotropy or heterogeneity among IVs. The results were stable when removing the SNPs one by one. Conclusion: Metformin is not protective against the risk of myocardial infarction in patients and may even be a risk factor for MI, old MI, acute MI, and acute transmural MI of inferior wall.


Subject(s)
Genome-Wide Association Study , Hypoglycemic Agents , Mendelian Randomization Analysis , Metformin , Myocardial Infarction , Polymorphism, Single Nucleotide , Metformin/therapeutic use , Humans , Myocardial Infarction/genetics , Hypoglycemic Agents/therapeutic use , Causality
20.
BMC Med Genomics ; 17(1): 134, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764052

ABSTRACT

BACKGROUND: Acute myocardial infarction (AMI) and diabetic nephropathy (DN) are common clinical co-morbidities, but they are challenging to manage and have poor prognoses. There is no research on the bioinformatics mechanisms of comorbidity, and this study aims to investigate such mechanisms. METHODS: We downloaded the AMI data (GSE66360) and DN datasets (GSE30528 and GSE30529) from the Gene Expression Omnibus (GEO) platform. The GSE66360 dataset was divided into two parts: the training set and the validation set, and GSE30529 was used as the training set and GSE30528 as the validation set. After identifying the common differentially expressed genes (DEGs) in AMI and DN in the training set, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses and protein-protein interaction (PPI) network construction were performed. A sub-network graph was constructed by MCODE, and 15 hub genes were screened by the Cytohubba plugin. The screened hub genes were validated, and the 15 screened hub genes were subjected to GO, KEGG, Gene MANIA analysis, and transcription factor (TF) prediction. Finally, we performed TF differential analysis, enrichment analysis, and TF and gene regulatory network construction. RESULTS: A total of 46 genes (43 up-regulated and 3 down-regulated) were identified for subsequent analysis. GO functional analysis emphasized the presence of genes mainly in the vesicle membrane and secretory granule membrane involved in antigen processing and presentation, lipopeptide binding, NAD + nucleosidase activity, and Toll-like receptor binding. The KEGG pathways analyzed were mainly in the phagosome, neutrophil extracellular trap formation, natural killer cell-mediated cytotoxicity, apoptosis, Fc gamma R-mediated phagocytosis, and Toll-like receptor signaling pathways. Eight co-expressed hub genes were identified and validated, namely TLR2, FCER1G, CD163, CTSS, CLEC4A, IGSF6, NCF2, and MS4A6A. Three transcription factors were identified and validated in AMI, namely NFKB1, HIF1A, and SPI1. CONCLUSIONS: Our study reveals the common pathogenesis of AMI and DN. These common pathways and hub genes may provide new ideas for further mechanistic studies.


Subject(s)
Diabetic Nephropathies , Myocardial Infarction , Transcription Factors , Myocardial Infarction/genetics , Humans , Diabetic Nephropathies/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Protein Interaction Maps , Computational Biology/methods , Gene Expression Profiling , Gene Regulatory Networks , Gene Ontology , Gene Expression Regulation , Databases, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...