Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.902
Filter
1.
Sci Rep ; 14(1): 12653, 2024 06 02.
Article in English | MEDLINE | ID: mdl-38825590

ABSTRACT

Nonischaemic myocardial fibrosis is associated with cardiac dysfunction, malignant arrhythmias and sudden cardiac death. In the absence of a specific aetiology, its finding as late gadolinium enhancement (LGE) on cardiac magnetic resonance imaging is often attributed to preceding viral myocarditis. Athletes presenting with ventricular arrhythmias often have nonischaemic LGE. Previous studies have demonstrated an adverse effect of exercise on the course of acute viral myocarditis. In this study, we have investigated, for the first time, the impact of endurance training on longer-term outcomes such as myocardial fibrosis and arrhythmogenicity in a murine coxsackievirus B3 (CVB)-induced myocarditis model. Male C57BL/6J mice (n = 72) were randomly assigned to 8 weeks of forced treadmill running (EEX) or no exercise (SED). Myocarditis was induced 2 weeks later by a single intraperitoneal injection with CVB, versus vehicle in the controls (PBS). In a separate study, mice (n = 30) were subjected to pretraining for 13 weeks (preEEX), without continuation of exercise during myocarditis. Overall, continuation of exercise resulted in a milder clinical course of viral disease, with less weight loss and better preserved running capacity. CVB-EEX and preEEX-CVB mice tended to have a lower mortality rate. At sacrifice (i.e. 6 weeks after inoculation), the majority of virus was cleared from the heart. Histological assessment demonstrated prominent myocardial inflammatory infiltration and cardiomyocyte loss in both CVB groups. Inflammatory lesions in the CVB-EEX group contained higher numbers of pro-inflammatory cells (iNOS-reactive macrophages and CD8+ T lymphocytes) compared to these in CVB-SED. Treadmill running during myocarditis increased interstitial fibrosis [82.4% (CVB-EEX) vs. 56.3% (CVB-SED); P = 0.049]. Additionally, perivascular and/or interstitial fibrosis with extensive distribution was more likely to occur with exercise [64.7% and 64.7% (CVB-EEX) vs. 50% and 31.3% (CVB-SED); P = 0.048]. There was a numerical, but not significant, increase in the number of scars per cross-section (1.9 vs. 1.2; P = 0.195), with similar scar distribution and histological appearance in CVB-EEX and CVB-SED. In vivo electrophysiology studies did not induce sustained monomorphic ventricular tachycardia, only nonsustained (usually polymorphic) runs. Their cumulative beat count and duration paralleled the increased fibrosis between CVB-EEX and CVB-SED, but the difference was not significant (P = 0.084 for each). Interestingly, in mice that were subjected to pretraining only without continuation of exercise during myocarditis, no differences between pretrained and sedentary mice were observed at sacrifice (i.e. 6 weeks after inoculation and training cessation) with regard to myocardial inflammation, fibrosis, and ventricular arrhythmogenicity. In conclusion, endurance exercise during viral myocarditis modulates the inflammatory process with more pro-inflammatory cells and enhances perivascular and interstitial fibrosis development. The impact on ventricular arrhythmogenesis requires further exploration.


Subject(s)
Arrhythmias, Cardiac , Coxsackievirus Infections , Disease Models, Animal , Enterovirus B, Human , Fibrosis , Mice, Inbred C57BL , Myocarditis , Physical Conditioning, Animal , Animals , Myocarditis/virology , Myocarditis/pathology , Male , Mice , Arrhythmias, Cardiac/etiology , Coxsackievirus Infections/pathology , Coxsackievirus Infections/complications , Myocardium/pathology , Endurance Training
2.
Rev Bras Parasitol Vet ; 33(2): e018223, 2024.
Article in English | MEDLINE | ID: mdl-38836809

ABSTRACT

In endemic areas for canine visceral leishmaniasis (CVL), the occurrence of coinfection with other pathogens, such as Ehrlichia spp., has been associated with worsening of the clinical condition. The study aimed to evaluate the occurrence of histological changes in the myocardia of dogs naturally infected with Leishmania chagasi with or without coinfection with Ehrlichia spp.. We evaluated paraffin-embedded myocardial sections from 31 dogs, affected by either L. chagasi alone or coinfected with L. chagasi and Ehrlichia spp., to compare the extent and degree of cardiac damage. The blocks were divided into two groups. G1 (dogs infected only by L. chagasi) and G2 (dogs coinfected with L. chagasi and Ehrlichia spp.). The right atrium free wall, right ventricle free wall, left ventricle, and interventricular septum of all groups were evaluated. Cardiac alterations were observed in 41.93% (52/124) of the fragments evaluated and inflammatory infiltrate was the most common pattern found. The G2 group showed a higher incidence of myocarditis, with 61.53% (32/52), compared to the G1 group, in which 20 out of 72 cases (27.7%) exhibited histopathological changes (p <0.05). These findings confirmed that coinfection can potentiate cardiac damage in dogs.


Subject(s)
Dog Diseases , Ehrlichiosis , Leishmaniasis, Visceral , Animals , Dogs , Leishmaniasis, Visceral/veterinary , Leishmaniasis, Visceral/complications , Leishmaniasis, Visceral/diagnosis , Dog Diseases/parasitology , Dog Diseases/microbiology , Male , Ehrlichiosis/veterinary , Ehrlichiosis/complications , Ehrlichiosis/diagnosis , Coinfection/veterinary , Female , Myocarditis/veterinary , Myocarditis/microbiology , Myocarditis/parasitology , Ehrlichia/isolation & purification , Myocardium/pathology
3.
Physiol Meas ; 45(5)2024 May 21.
Article in English | MEDLINE | ID: mdl-38697206

ABSTRACT

Objective.Myocarditis poses a significant health risk, often precipitated by viral infections like coronavirus disease, and can lead to fatal cardiac complications. As a less invasive alternative to the standard diagnostic practice of endomyocardial biopsy, which is highly invasive and thus limited to severe cases, cardiac magnetic resonance (CMR) imaging offers a promising solution for detecting myocardial abnormalities.Approach.This study introduces a deep model called ELRL-MD that combines ensemble learning and reinforcement learning (RL) for effective myocarditis diagnosis from CMR images. The model begins with pre-training via the artificial bee colony (ABC) algorithm to enhance the starting point for learning. An array of convolutional neural networks (CNNs) then works in concert to extract and integrate features from CMR images for accurate diagnosis. Leveraging the Z-Alizadeh Sani myocarditis CMR dataset, the model employs RL to navigate the dataset's imbalance by conceptualizing diagnosis as a decision-making process.Main results.ELRL-DM demonstrates remarkable efficacy, surpassing other deep learning, conventional machine learning, and transfer learning models, achieving an F-measure of 88.2% and a geometric mean of 90.6%. Extensive experimentation helped pinpoint the optimal reward function settings and the perfect count of CNNs.Significance.The study addresses the primary technical challenge of inherent data imbalance in CMR imaging datasets and the risk of models converging on local optima due to suboptimal initial weight settings. Further analysis, leaving out ABC and RL components, confirmed their contributions to the model's overall performance, underscoring the effectiveness of addressing these critical technical challenges.


Subject(s)
Deep Learning , Magnetic Resonance Imaging , Myocarditis , Myocarditis/diagnostic imaging , Humans , Image Processing, Computer-Assisted/methods , Neural Networks, Computer
4.
Korean J Gastroenterol ; 83(5): 197-199, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38783621

ABSTRACT

5-Aminosalicylic acid (5-ASA) is recommended for managing ulcerative colitis. Common adverse effects associated with 5-ASA include gastrointestinal disorders, headaches, and skin rashes. Perimyocarditis induced by 5-ASA is a rare adverse effect, with only a limited number of cases reported. This paper presents a case of 5-ASA-induced perimyocarditis in a 29-year-old female who had been taking 5-ASA for three weeks. The patient was admitted to the emergency department with dyspnea, chest discomfort, and fever. She subsequently underwent laboratory investigations, including electrocardiography, transthoracic echocardiography, chest computed tomographic angiography, cardiac magnetic resonance imaging, and heart biopsy. Intravenous steroid was administered, and 5-ASA was discontinued. The patient's signs and symptoms improved significantly within a few days of discontinuing 5-ASA, leading to her subsequent discharge. This case highlights the importance of considering perimyocarditis in patients exhibiting cardiac symptoms during 5-ASA therapy, despite it being a rare adverse effect. Drug withdrawal in such cases may lead to rapid clinical improvement.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Colitis, Ulcerative , Echocardiography , Electrocardiography , Mesalamine , Myocarditis , Humans , Female , Mesalamine/therapeutic use , Mesalamine/adverse effects , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/diagnosis , Adult , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Myocarditis/diagnosis , Myocarditis/chemically induced , Myocarditis/drug therapy , Magnetic Resonance Imaging , Tomography, X-Ray Computed , Computed Tomography Angiography
5.
Georgian Med News ; (348): 6-9, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38807382

ABSTRACT

Acute myocarditis remains a diagnostic issue with a wide spectrum of clinical manifestations that could mimic ST-elevation myocardial infarction (STEMI). We present a case of a 26-year-old male with left-sided intense squeezing chest pain associated with elevated troponin, ST-segment elevations, and reduced ejection fraction. The patient was initially suspected of having a STEMI with non-obstructed coronary arteries (MINOCA). However, due to positive pair troponin tests, increased inflammatory markers there was suspected myocarditis and cardiac MRI confirmed this diagnosis. This case highlights the clinical significance of assessment of laboratory markers and cardiac MRI in diagnostics of myocarditis.


Subject(s)
Magnetic Resonance Imaging , Myocarditis , ST Elevation Myocardial Infarction , Humans , Myocarditis/diagnostic imaging , Myocarditis/diagnosis , Myocarditis/blood , Male , Adult , ST Elevation Myocardial Infarction/diagnosis , ST Elevation Myocardial Infarction/blood , ST Elevation Myocardial Infarction/diagnostic imaging , Diagnosis, Differential , Acute Disease , Electrocardiography , Chest Pain/etiology , Chest Pain/diagnosis , Troponin/blood
6.
Nat Commun ; 15(1): 3822, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802362

ABSTRACT

The risk-benefit profile of COVID-19 vaccination in children remains uncertain. A self-controlled case-series study was conducted using linked data of 5.1 million children in England to compare risks of hospitalisation from vaccine safety outcomes after COVID-19 vaccination and infection. In 5-11-year-olds, we found no increased risks of adverse events 1-42 days following vaccination with BNT162b2, mRNA-1273 or ChAdOX1. In 12-17-year-olds, we estimated 3 (95%CI 0-5) and 5 (95%CI 3-6) additional cases of myocarditis per million following a first and second dose with BNT162b2, respectively. An additional 12 (95%CI 0-23) hospitalisations with epilepsy and 4 (95%CI 0-6) with demyelinating disease (in females only, mainly optic neuritis) were estimated per million following a second dose with BNT162b2. SARS-CoV-2 infection was associated with increased risks of hospitalisation from seven outcomes including multisystem inflammatory syndrome and myocarditis, but these risks were largely absent in those vaccinated prior to infection. We report a favourable safety profile of COVID-19 vaccination in under-18s.


Subject(s)
BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , ChAdOx1 nCoV-19 , Hospitalization , SARS-CoV-2 , Vaccination , Humans , COVID-19/prevention & control , COVID-19/epidemiology , COVID-19/complications , Child , Female , England/epidemiology , Male , Child, Preschool , Adolescent , SARS-CoV-2/immunology , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/administration & dosage , Hospitalization/statistics & numerical data , Vaccination/adverse effects , Myocarditis/epidemiology , 2019-nCoV Vaccine mRNA-1273 , Systemic Inflammatory Response Syndrome/epidemiology , Optic Neuritis/epidemiology , Epilepsy/epidemiology
9.
Nat Commun ; 15(1): 4153, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755212

ABSTRACT

Viral myocarditis, an inflammatory disease of the heart, causes significant morbidity and mortality. Type I interferon (IFN)-mediated antiviral responses protect against myocarditis, but the mechanisms are poorly understood. We previously identified A Disintegrin And Metalloproteinase domain 9 (ADAM9) as an important factor in viral pathogenesis. ADAM9 is implicated in a range of human diseases, including inflammatory diseases; however, its role in viral infection is unknown. Here, we demonstrate that mice lacking ADAM9 are more susceptible to encephalomyocarditis virus (EMCV)-induced death and fail to mount a characteristic type I IFN response. This defect in type I IFN induction is specific to positive-sense, single-stranded RNA (+ ssRNA) viruses and involves melanoma differentiation-associated protein 5 (MDA5)-a key receptor for +ssRNA viruses. Mechanistically, ADAM9 binds to MDA5 and promotes its oligomerization and thereby downstream mitochondrial antiviral-signaling protein (MAVS) activation in response to EMCV RNA stimulation. Our findings identify a role for ADAM9 in the innate antiviral response, specifically MDA5-mediated IFN production, which protects against virus-induced cardiac damage, and provide a potential therapeutic target for treatment of viral myocarditis.


Subject(s)
ADAM Proteins , Cardiovirus Infections , Encephalomyocarditis virus , Immunity, Innate , Interferon Type I , Interferon-Induced Helicase, IFIH1 , Membrane Proteins , Mice, Knockout , Myocarditis , Animals , Encephalomyocarditis virus/immunology , Interferon-Induced Helicase, IFIH1/metabolism , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/immunology , Interferon Type I/metabolism , Interferon Type I/immunology , Cardiovirus Infections/immunology , Cardiovirus Infections/virology , ADAM Proteins/metabolism , ADAM Proteins/genetics , ADAM Proteins/immunology , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/immunology , Myocarditis/immunology , Myocarditis/virology , Humans , Mice, Inbred C57BL , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Signal Transduction/immunology , Male , HEK293 Cells
10.
Sci Rep ; 14(1): 11124, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750107

ABSTRACT

Influenza is a significant public health and economic threat around the world. Epidemiological studies have demonstrated a close association between influenza pandemics and cardiovascular mortality. Moreover, it has been shown that there is a decrease in cardiovascular mortality in high-risk patients following vaccination with the influenza vaccine. Here, we have investigated the role of anti-viral STAT1 signaling in influenza-induced myocarditis. Wild-type mice (C57BL/6) were infected with either influenza A/PR/8/34 or control, and cellular response and gene expression analysis from the heart samples were assessed 7 days later. The expression of interferon response genes STAT1, STAT2, Mx1, OASL2, ISG15, chemokines CCL2, CCL3, CXCL9 and CXCL10, and the frequency of neutrophils (CD45+CD11b+Ly6G+) and CD4+ T cells (CD45+CD4+) were all significantly increased in influenza-infected mice when compared to vehicle controls. These data suggest that influenza infection induces interferons, inflammatory chemokines, and cellular recruitment during influenza infection. We further investigated the role of STAT1 in influenza-induced myocarditis. The frequency of neutrophils and the levels of lipocalin 2 were significantly increased in STAT1-/- mice when compared to WT controls. Finally, we investigated the role of Lcn2 in viral-induced myocarditis. We found that in the absence of Lcn2, there was preserved cardiac function in Lcn2-/- mice when compared to WT controls. These data suggest that the absence of Lcn2 is cardioprotective during viral-induced myocarditis.


Subject(s)
Lipocalin-2 , Mice, Inbred C57BL , Myocarditis , Orthomyxoviridae Infections , STAT1 Transcription Factor , Animals , Myocarditis/virology , Myocarditis/metabolism , Myocarditis/etiology , Lipocalin-2/metabolism , Lipocalin-2/genetics , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Mice , Orthomyxoviridae Infections/complications , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/metabolism , Neutrophils/metabolism , Neutrophils/immunology , Male , Mice, Knockout
11.
Cancer Med ; 13(10): e7233, 2024 May.
Article in English | MEDLINE | ID: mdl-38752474

ABSTRACT

BACKGROUND: Over the past decade, immune checkpoint inhibitors (ICIs) have significantly transformed cancer treatment. However, ICIs inevitably may cause a spectrum of immune-related adverse events, among which cardiovascular toxicity, particularly myocarditis, while infrequent, has garnered increasing attention due to its high fatality rate. METHODS: We conducted a multicenter retrospective study to characterize ICI-associated cardiovascular adverse events. Logistic regression was performed to explore the risk factors for the development of myocarditis and severe myocarditis. Receiver operating characteristic curves were conducted to assess the diagnostic abilities of cardiac biomarkers to distinguish different cardiovascular toxicities, and the performance and calibration were evaluated using Hosmer-Lemeshow test. RESULTS: Forty-four patients were identified, including thirty-five myocarditis, five heart failure, three arrhythmias, and one myocardial infarction. Compared with other patients, myocarditis patients had higher cardiac troponin-I (cTnI) levels (p < 0.001), higher creatine kinase levels (p = 0.003), higher creatine kinase isoenzyme-MB (CK-MB) levels (p = 0.013), and shorter time to the incidence of adverse cardiovascular events (p = 0.022) after ICI treatment. Twenty-one patients (60%) were classified as severe myocarditis, and they presented higher cardiac troponin I (cTnI) levels (p = 0.013), higher N-terminal pro-B-type natriuretic peptide levels (p = 0.031), higher creatine kinase levels (p = 0.018), higher CK-MB levels (p = 0.026), and higher neutrophil to lymphocyte ratio (NLR) levels (p = 0.016) compared to non-severe myocarditis patients after ICI treatment. Multivariate logistic regression showed that CK-MB (adjusted odds ratio [OR]: 1.775, 95% confidence interval [CI]: 1.055-2.984, p = 0.031) was the independent risk factor of the development of ICI-associated myocarditis, and cTnI (adjusted OR: 1.021, 95% CI: 1.002-1.039, p = 0.03) and NLR (adjusted OR: 1.890, 95% CI: 1.026-3.483, p = 0.041) were the independent risk factors of ICI-associated severe myocarditis. The receiver operating characteristic curve showed an area under curve of 0.785 (95% CI: 0.642 to 0.928, p = 0.013) for CK-MB, 0.765 (95% CI: 0.601 to 0.929, p = 0.013) for cTnI, and 0.773 for NLR (95% CI: 0.597 to 0.948, p = 0.016). CONCLUSIONS: Elevated CK-MB after ICI treatment is the independent risk factor for the incidence of ICI-associated myocarditis, and elevated cTnI and NLR after ICI treatment are the independent risk factors for the development of ICI-associated severe myocarditis. CK-MB, cTnI, and NLR demonstrated a promising predictive utility for the identification of ICI-associated myocarditis and severe myocarditis.


Subject(s)
Immune Checkpoint Inhibitors , Myocarditis , Humans , Male , Retrospective Studies , Female , Immune Checkpoint Inhibitors/adverse effects , Myocarditis/chemically induced , Myocarditis/epidemiology , Myocarditis/diagnosis , Middle Aged , Aged , Risk Factors , Biomarkers/blood , Neoplasms/drug therapy , Troponin I/blood , ROC Curve , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/epidemiology , Creatine Kinase, MB Form/blood , Natriuretic Peptide, Brain/blood , Heart Failure/chemically induced
13.
BMC Cardiovasc Disord ; 24(1): 282, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811883

ABSTRACT

Sudden cardiac death (SCD) is a major public health issue worldwide. In the young (< 40 years of age), genetic cardiomyopathies and viral myocarditis, sometimes in combination, are the most frequent, but underestimated, causes of SCD. Molecular autopsy is essential for prevention. Several studies have shown an association between genetic cardiomyopathies and viral myocarditis, which is probably underestimated due to insufficient post-mortem investigations. We report on four autopsy cases illustrating the pathogenesis of these combined pathologies. In two cases, a genetic hypertrophic cardiomyopathy was diagnosed in combination with Herpes Virus Type 6 (HHV6) and/or Parvovirus-B19 (PVB19) in the heart. In the third case, autopsy revealed a dilated cardiomyopathy and virological analyses revealed acute myocarditis caused by three viruses: PVB19, HHV6 and Epstein-Barr virus. Genetic analyses revealed a mutation in the gene coding for desmin. The fourth case illustrated a channelopathy and a PVB19/HHV6 coinfection. Our four cases illustrate the highly probable deleterious role of cardiotropic viruses in the occurrence of SCD in subjects with genetic cardiomyopathies. We discuss the pathogenetic link between viral myocarditis and genetic cardiomyopathy. Molecular autopsy is essential in prevention of these SCD, and a close collaboration between cardiologists, pathologists, microbiologists and geneticians is mandatory.


Subject(s)
Autopsy , Death, Sudden, Cardiac , Herpesvirus 6, Human , Myocarditis , Parvovirus B19, Human , Humans , Myocarditis/virology , Myocarditis/pathology , Myocarditis/genetics , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/pathology , Death, Sudden, Cardiac/prevention & control , Male , Adult , Female , Herpesvirus 6, Human/genetics , Herpesvirus 6, Human/isolation & purification , Parvovirus B19, Human/genetics , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/virology , Cardiomyopathy, Dilated/pathology , Roseolovirus Infections/complications , Roseolovirus Infections/virology , Roseolovirus Infections/diagnosis , Roseolovirus Infections/pathology , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/pathology , Parvoviridae Infections/complications , Young Adult , Genetic Predisposition to Disease , Fatal Outcome , Epstein-Barr Virus Infections/complications , Herpesvirus 4, Human/genetics , Coinfection , Cause of Death , Mutation , Middle Aged
14.
J Zhejiang Univ Sci B ; 25(5): 422-437, 2024 May 15.
Article in English, Chinese | MEDLINE | ID: mdl-38725341

ABSTRACT

Viral myocarditis (VMC) is one of the most common acquired heart diseases in children and teenagers. However, its pathogenesis is still unclear, and effective treatments are lacking. This study aimed to investigate the regulatory pathway by which exosomes alleviate ferroptosis in cardiomyocytes (CMCs) induced by coxsackievirus B3 (CVB3). CVB3 was utilized for inducing the VMC mouse model and cellular model. Cardiac echocardiography, left ventricular ejection fraction (LVEF), and left ventricular fractional shortening (LVFS) were implemented to assess the cardiac function. In CVB3-induced VMC mice, cardiac insufficiency was observed, as well as the altered levels of ferroptosis-related indicators (glutathione peroxidase 4 (GPX4), glutathione (GSH), and malondialdehyde (MDA)). However, exosomes derived from human umbilical cord mesenchymal stem cells (hucMSCs-exo) could restore the changes caused by CVB3 stimulation. Let-7a-5p was enriched in hucMSCs-exo, and the inhibitory effect of hucMSCs-exolet-7a-5p mimic on CVB3-induced ferroptosis was higher than that of hucMSCs-exomimic NC (NC: negative control). Mothers against decapentaplegic homolog 2 (SMAD2) increased in the VMC group, while the expression of zinc-finger protein 36 (ZFP36) decreased. Let-7a-5p was confirmed to interact with SMAD2 messenger RNA (mRNA), and the SMAD2 protein interacted directly with the ZFP36 protein. Silencing SMAD2 and overexpressing ZFP36 inhibited the expression of ferroptosis-related indicators. Meanwhile, the levels of GPX4, solute carrier family 7, member 11 (SLC7A11), and GSH were lower in the SMAD2 overexpression plasmid (oe-SMAD2)+let-7a-5p mimic group than in the oe-NC+let-7a-5p mimic group, while those of MDA, reactive oxygen species (ROS), and Fe2+ increased. In conclusion, these data showed that ferroptosis could be regulated by mediating SMAD2 expression. Exo-let-7a-5p derived from hucMSCs could mediate SMAD2 to promote the expression of ZFP36, which further inhibited the ferroptosis of CMCs to alleviate CVB3-induced VMC.


Subject(s)
Enterovirus B, Human , Exosomes , Ferroptosis , Mesenchymal Stem Cells , MicroRNAs , Myocytes, Cardiac , Signal Transduction , Smad2 Protein , Umbilical Cord , Mesenchymal Stem Cells/metabolism , Exosomes/metabolism , Animals , Humans , Mice , Smad2 Protein/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Enterovirus B, Human/physiology , Myocytes, Cardiac/metabolism , Umbilical Cord/cytology , Coxsackievirus Infections/metabolism , Male , Myocarditis/metabolism , Myocarditis/virology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
15.
J Cardiothorac Surg ; 19(1): 296, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778360

ABSTRACT

BACKGROUND: There is little literature on the use of temporary pacemakers in children with fulminant myocarditis. Therefore, we summarized the use of temporary cardiac pacemakers in children with fulminant myocarditis in our hospital. METHODS: The clinical data of children with fulminant myocarditis treated with temporary pacemakers in Wuhan Children's Hospital from January 2017 to May 2022 were retrospectively analyzed. RESULTS: A total of 6 children were enrolled in the study, including 4 boys and 2 girls, with a median age of 50 months and a median weight of 15 kg. The average time from admission to pacemaker placement was 2.75 ± 0.4 h. The electrocardiogram showed that all 6 children had third-degree atrioventricular block (III°AVB). The initial pacing voltage, the sensory sensitivity of the ventricle and the pacing frequency were set to 5-10 mV, 5 V and 100-120 bpm respectively. The sinus rhythm was recovered in 5 patients within 61 h (17-134) h, and the median time of using temporary pacemaker was 132 h (63-445) h. One of the children had persistent III°AVB after the temporary pacemaker. With parental consent, the child was fitted with a permanent pacemaker on the 12th day of his illness. CONCLUSIONS: When fulminant myocarditis leads to severe bradycardia or atrioventricular block in children, temporary pacemakers have the characteristics of high safety to improve the heart function.


Subject(s)
Atrioventricular Block , Myocarditis , Pacemaker, Artificial , Humans , Myocarditis/therapy , Myocarditis/physiopathology , Male , Female , Child, Preschool , Retrospective Studies , Child , Atrioventricular Block/therapy , Atrioventricular Block/physiopathology , Infant , Electrocardiography , Cardiac Pacing, Artificial/methods , Bradycardia/therapy , Bradycardia/physiopathology , Treatment Outcome
16.
G Ital Cardiol (Rome) ; 25(6): 410-423, 2024 Jun.
Article in Italian | MEDLINE | ID: mdl-38808937

ABSTRACT

Mortality for cardiogenic shock is still high despite optimal pharmacological therapy. Therefore, active mechanical circulatory support devices are increasingly used; venoarterial extracorporeal membrane oxygenation (VA-ECMO) enables full circulatory and respiratory support. However, recent data show that in patients with infarct-related shock unselected early use of VA-ECMO does not improve survival and is associated with major bleeding and peripheral ischemic complications. Nowadays, waiting for the results of definitive randomized controlled trials, the main indication for ECMO utilization is in selected patients with cardiac arrest, in those with shock for advanced heart failure refractory to conventional therapy, in those with fulminant myocarditis, in patients candidate for heart transplant or ventricular assistance, especially in presence of respiratory insufficiency and severe biventricular dysfunction. An important recommendation is its utilization in specialized, high-volume centers in the setting of hub and spoke hospitals.


Subject(s)
Extracorporeal Membrane Oxygenation , Shock, Cardiogenic , Humans , Extracorporeal Membrane Oxygenation/methods , Shock, Cardiogenic/therapy , Evidence-Based Medicine , Heart Failure/therapy , Myocarditis/therapy , Heart Arrest/therapy
17.
Viruses ; 16(5)2024 04 25.
Article in English | MEDLINE | ID: mdl-38793559

ABSTRACT

Coxsackievirus B3 (CVB3) is a positive single-strand RNA genome virus which belongs to the enterovirus genus in the picornavirus family, like poliovirus. It is one of the most prevalent pathogens that cause myocarditis and pancreatitis in humans. However, a suitable therapeutic medication and vaccination have yet to be discovered. Caboxamycin, a benzoxazole antibiotic isolated from the culture broth of the marine strain Streptomyces sp., SC0774, showed an antiviral effect in CVB3-infected HeLa cells and a CVB3-induced myocarditis mouse model. Caboxamycin substantially decreased CVB3 VP1 production and cleavage of translation factor eIF4G1 from CVB3 infection. Virus-positive and -negative strand RNA was dramatically reduced by caboxamycin treatment. In addition, the cleavage of the pro-apoptotic molecules BAD, BAX, and caspase3 was significantly inhibited by caboxamycin treatment. In animal experiments, the survival rate of mice was improved following caboxamycin treatment. Moreover, caboxamycin treatment significantly decreased myocardial damage and inflammatory cell infiltration. Our study showed that caboxamycin dramatically suppressed cardiac inflammation and mouse death. This result suggests that caboxamycin may be suitable as a potential antiviral drug for CVB3.


Subject(s)
Antiviral Agents , Coxsackievirus Infections , Disease Models, Animal , Enterovirus B, Human , Myocarditis , Animals , Myocarditis/drug therapy , Myocarditis/virology , Mice , Coxsackievirus Infections/drug therapy , Coxsackievirus Infections/virology , Humans , Enterovirus B, Human/drug effects , HeLa Cells , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Male , Mice, Inbred BALB C , Inflammation/drug therapy , Inflammation/virology , Virus Replication/drug effects
18.
J Cancer Res Clin Oncol ; 150(5): 277, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801421

ABSTRACT

PURPOSE: Immune checkpoint inhibitors-related myocarditis (ICI-M) is one of the immune-related adverse events (irAEs), which is rare and highly lethal. This study aimed to establish nomograms based on ratio biomarkers to predict the severity and prognosis of ICI-M. METHODS: We retrospectively examined patients with advanced cancers who were also diagnosed with ICI-M at the Fourth Hospital of Hebei Medical University. The patients of ICI-M were divided into mild and severe groups and a 40-day following up was carried out. The major adverse cardiovascular events(MACEs) were regarded as the endpoint. Nomogram-based models were established and validated. RESULTS: Seventy-seven patients were involved, including 31 severe cases(40.3%). Lactate dehydrogenase-to-albumin ratio(LAR) combined with the change rate from baseline to onset of LAR( ▵ LAR) which performed best to diagnose the severe ICI-M was identified to establish the nomogram-based model. The bootstrap-corrected concordance index [0.752 95% confidence interval (CI): 0.635 - 0.866] and calibration plot with good degree of fitting confirmed this diagnostic model. Neutrophil-to-high-density lipoprotein cholesterol ratio(NHR) and LAR were also screened into the nomogram-based model for 40-day MACEs after ICI-M, which performed well by validating for concordance index(0.779 95% CI: 0.677 - 0.865)and calibration plots after being bootstrap-corrected. Moreover, a  ≥ 101% increase in LAR significantly separated patients in MACE-free survival. CONCLUSION: Ratio indexes at onset and their change rates from baseline showed good diagnostic value for the severity of ICI-M and prognostic value for subsequent MACEs, particularly LAR, NHR and their change rates. The nomogram-based models of ratio indexes could provide a potential choice for early detection and monitor of the severe ICI-M and subsequent MACEs.


Subject(s)
Immune Checkpoint Inhibitors , Myocarditis , Neoplasms , Nomograms , Humans , Retrospective Studies , Immune Checkpoint Inhibitors/adverse effects , Male , Female , Myocarditis/chemically induced , Myocarditis/diagnosis , Myocarditis/blood , Middle Aged , Prognosis , Neoplasms/drug therapy , Neoplasms/blood , Aged , Severity of Illness Index , Adult
19.
Front Immunol ; 15: 1380697, 2024.
Article in English | MEDLINE | ID: mdl-38715608

ABSTRACT

The Corona Virus Disease (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has quickly spread worldwide and resulted in significant morbidity and mortality. Although most infections are mild, some patients can also develop severe and fatal myocarditis. In eukaryotic RNAs, 5-methylcytosine (m5C) is a common kind of post-transcriptional modification, which is involved in regulating various biological processes (such as RNA export, translation, and stability maintenance). With the rapid development of m5C modification detection technology, studies related to viral m5C modification are ever-increasing. These studies have revealed that m5C modification plays an important role in various stages of viral replication, including transcription and translation. According to recent studies, m5C methylation modification can regulate SARS-CoV-2 infection by modulating innate immune signaling pathways. However, the specific role of m5C modification in SARS-CoV-2-induced myocarditis remains unclear. Therefore, this review aims to provide insights into the molecular mechanisms of m5C methylation in SARS-CoV-2 infection. Moreover, the regulatory role of NSUN2 in viral infection and host innate immune response was also highlighted. This review may provide new directions for developing therapeutic strategies for SARS-CoV-2-associated myocarditis.


Subject(s)
COVID-19 , Myocarditis , SARS-CoV-2 , Myocarditis/virology , Myocarditis/immunology , Myocarditis/therapy , Myocarditis/genetics , Humans , COVID-19/immunology , COVID-19/genetics , COVID-19/therapy , SARS-CoV-2/physiology , Methylation , 5-Methylcytosine/metabolism , Immunity, Innate , COVID-19 Drug Treatment , Animals , RNA, Viral/genetics , RNA, Viral/metabolism , RNA Processing, Post-Transcriptional
20.
Sci Rep ; 14(1): 10289, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38704437

ABSTRACT

Myocarditis is considered a fatal form of foot-and-mouth disease (FMD) in suckling calves. In the present study, a total of 17 calves under 4 months of age and suspected clinically for FMD were examined for clinical lesions, respiratory rate, heart rate, and heart rhythm. Lesion samples, saliva, nasal swabs, and whole blood were collected from suspected calves and subjected to Sandwich ELISA and reverse transcription multiplex polymerase chain reaction (RT-mPCR) for detection and serotyping of FMD virus (FMDV). The samples were found to be positive for FMDV serotype "O". Myocarditis was suspected in 6 calves based on tachypnoea, tachycardia, and gallop rhythm. Serum aspartate aminotransferase (AST), creatinine kinase myocardial band (CK-MB) and lactate dehydrogenase (LDH), and cardiac troponins (cTnI) were measured. Mean serum AST, cTn-I and LDH were significantly higher (P < 0.001) in < 2 months old FMD-infected calves showing clinical signs suggestive of myocarditis (264.833 ± 4.16; 11.650 ± 0.34 and 1213.33 ± 29.06) than those without myocarditis (< 2 months old: 110.00 ± 0.00, 0.06 ± 0.00, 1050.00 ± 0.00; > 2 months < 4 months: 83.00 ± 3.00, 0.05 ± 0.02, 1159.00 ± 27.63) and healthy control groups (< 2 months old: 67.50 ± 3.10, 0.047 ± 0.01, 1120.00 ± 31.62; > 2 months < 4 months: 72.83 ± 2.09, 0.47 ± 0.00, 1160.00 ± 18.44). However, mean serum CK-MB did not differ significantly amongst the groups. Four calves under 2 months old died and a necropsy revealed the presence of a pathognomic gross lesion of the myocardial form of FMD known as "tigroid heart". Histopathology confirmed myocarditis. This study also reports the relevance of clinical and histopathological findings and biochemical markers in diagnosing FMD-related myocarditis in suckling calves.


Subject(s)
Foot-and-Mouth Disease , Myocarditis , Animals , Cattle , Myocarditis/veterinary , Myocarditis/virology , Myocarditis/pathology , Foot-and-Mouth Disease/virology , Foot-and-Mouth Disease/pathology , Cattle Diseases/virology , Cattle Diseases/blood , Cattle Diseases/pathology , Foot-and-Mouth Disease Virus/pathogenicity , Foot-and-Mouth Disease Virus/isolation & purification , Animals, Suckling , Age Factors , Aspartate Aminotransferases/blood , Male , L-Lactate Dehydrogenase/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...