Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79.316
Filter
1.
J Clin Invest ; 134(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949027

ABSTRACT

Biological sex is an important modifier of physiology and influences pathobiology in many diseases. While heart disease is the number one cause of death worldwide in both men and women, sex differences exist at the organ and cellular scales, affecting clinical presentation, diagnosis, and treatment. In this Review, we highlight baseline sex differences in cardiac structure, function, and cellular signaling and discuss the contribution of sex hormones and chromosomes to these characteristics. The heart is a remarkably plastic organ and rapidly responds to physiological and pathological cues by modifying form and function. The nature and extent of cardiac remodeling in response to these stimuli are often dependent on biological sex. We discuss organ- and molecular-level sex differences in adaptive physiological remodeling and pathological cardiac remodeling from pressure and volume overload, ischemia, and genetic heart disease. Finally, we offer a perspective on key future directions for research into cardiac sex differences.


Subject(s)
Sex Characteristics , Ventricular Remodeling , Humans , Female , Male , Animals , Heart Diseases/pathology , Heart Diseases/metabolism , Heart Diseases/physiopathology , Heart Diseases/genetics , Gonadal Steroid Hormones/metabolism , Heart/physiopathology , Heart/physiology , Myocardium/pathology , Myocardium/metabolism
2.
Cell Metab ; 36(7): 1456-1481, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38959861

ABSTRACT

The heart is the most metabolically active organ in the human body, and cardiac metabolism has been studied for decades. However, the bulk of studies have focused on animal models. The objective of this review is to summarize specifically what is known about cardiac metabolism in humans. Techniques available to study human cardiac metabolism are first discussed, followed by a review of human cardiac metabolism in health and in heart failure. Mechanistic insights, where available, are reviewed, and the evidence for the contribution of metabolic insufficiency to heart failure, as well as past and current attempts at metabolism-based therapies, is also discussed.


Subject(s)
Heart Failure , Myocardium , Humans , Myocardium/metabolism , Heart Failure/metabolism , Animals , Heart , Energy Metabolism
3.
Nat Commun ; 15(1): 5565, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956062

ABSTRACT

Long-term treatment of myocardial infarction is challenging despite medical advances. Tissue engineering shows promise for MI repair, but implantation complexity and uncertain outcomes pose obstacles. microRNAs regulate genes involved in apoptosis, angiogenesis, and myocardial contraction, making them valuable for long-term repair. In this study, we find downregulated miR-199a-5p expression in MI. Intramyocardial injection of miR-199a-5p into the infarcted region of male rats revealed its dual protective effects on the heart. Specifically, miR-199a-5p targets AGTR1, diminishing early oxidative damage post-myocardial infarction, and MARK4, which influences long-term myocardial contractility and enhances cardiac function. To deliver miR-199a-5p efficiently and specifically to ischemic myocardial tissue, we use CSTSMLKAC peptide to construct P-MSN/miR199a-5p nanoparticles. Intravenous administration of these nanoparticles reduces myocardial injury and protects cardiac function. Our findings demonstrate the effectiveness of P-MSN/miR199a-5p nanoparticles in repairing MI through enhanced contraction and anti-apoptosis. miR199a-5p holds significant therapeutic potential for long-term repair of myocardial infarction.


Subject(s)
MicroRNAs , Myocardial Infarction , Nanoparticles , MicroRNAs/genetics , MicroRNAs/metabolism , MicroRNAs/administration & dosage , Animals , Myocardial Infarction/genetics , Male , Rats , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Rats, Sprague-Dawley , Apoptosis/drug effects , Myocardium/metabolism , Myocardium/pathology , Disease Models, Animal , Myocardial Contraction/drug effects , Administration, Intravenous , Myocardial Ischemia/genetics , Myocardial Ischemia/therapy , Myocardial Ischemia/metabolism
4.
Sci Rep ; 14(1): 15133, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956194

ABSTRACT

The goal of this study was to evaluate the intensity of autophagy and ubiquitin-dependent proteolysis processes occurring in myocardium of left ventricle (LV) in subsequent stages of pulmonary arterial hypertension (PAH) to determine mechanisms responsible for LV mass loss in a monocrotaline-induced PAH rat model. LV myocardium samples collected from 32 Wistar rats were analyzed in an early PAH group (n = 8), controls time-paired (n = 8), an end-stage PAH group (n = 8), and their controls (n = 8). Samples were subjected to histological analyses with immunofluorescence staining, autophagy assessment by western blotting, and evaluation of ubiquitin-dependent proteolysis in the LV by immunoprecipitation of ubiquitinated proteins. Echocardiographic, hemodynamic, and heart morphometric parameters were assessed regularly throughout the experiment. Considerable morphological and hemodynamic remodeling of the LV was observed over the course of PAH. The end-stage PAH was associated with significantly impaired LV systolic function and a decrease in LV mass. The LC3B-II expression in the LV was significantly higher in the end-stage PAH group compared to the early PAH group (p = 0.040). The measured LC3B-II/LC3B-I ratios in the end-stage PAH group were significantly elevated compared to the controls (p = 0.039). Immunofluorescence staining showed a significant increase in the abundance of LC3 puncta in the end-stage PAH group compared to the matched controls. There were no statistically significant differences in the levels of expression of all ubiquitinated proteins when comparing both PAH groups and matched controls. Autophagy may be considered as the mechanism behind the LV mass loss at the end stage of PAH.


Subject(s)
Autophagy , Heart Ventricles , Proteolysis , Pulmonary Arterial Hypertension , Rats, Wistar , Ubiquitin , Animals , Ubiquitin/metabolism , Heart Ventricles/metabolism , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Rats , Male , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Disease Models, Animal , Myocardium/metabolism , Myocardium/pathology , Echocardiography , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Ventricular Remodeling
6.
J Cell Mol Med ; 28(13): e18493, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38963241

ABSTRACT

Interleukin-5 (IL-5) has been reported to be involved in cardiovascular diseases, such as atherosclerosis and cardiac injury. This study aimed to investigate the effects of IL-5 on cardiac remodelling. Mice were infused with angiotensin II (Ang II), and the expression and source of cardiac IL-5 were analysed. The results showed that cardiac IL-5 expression was time- and dose-dependently decreased after Ang II infusion, and was mainly derived from cardiac macrophages. Additionally, IL-5-knockout (IL-5-/-) mice were used to observe the effects of IL-5 knockout on Ang II-induced cardiac remodelling. We found knockout of IL-5 significantly increased the expression of cardiac hypertrophy markers, elevated myocardial cell cross-sectional areas and worsened cardiac dysfunction in Ang II-infused mice. IL-5 deletion also promoted M2 macrophage differentiation and exacerbated cardiac fibrosis. Furthermore, the effects of IL-5 deletion on cardiac remodelling was detected after the STAT3 pathway was inhibited by S31-201. The effects of IL-5 on cardiac remodelling and M2 macrophage differentiation were reversed by S31-201. Finally, the effects of IL-5 on macrophage differentiation and macrophage-related cardiac hypertrophy and fibrosis were analysed in vitro. IL-5 knockout significantly increased the Ang II-induced mRNA expression of cardiac hypertrophy markers in myocardial cells that were co-cultured with macrophages, and this effect was reversed by S31-201. Similar trends in the mRNA levels of fibrosis markers were observed when cardiac fibroblasts and macrophages were co-cultured. In conclusions, IL-5 deficiency promote the differentiation of M2 macrophages by activating the STAT3 pathway, thereby exacerbating cardiac remodelling in Ang II-infused mice. IL-5 may be a potential target for the clinical prevention of cardiac remodelling.


Subject(s)
Angiotensin II , Cardiomegaly , Fibrosis , Interleukin-5 , Macrophages , Mice, Knockout , STAT3 Transcription Factor , Signal Transduction , Ventricular Remodeling , Animals , Angiotensin II/pharmacology , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Ventricular Remodeling/drug effects , Mice , Macrophages/metabolism , Macrophages/drug effects , Interleukin-5/metabolism , Interleukin-5/genetics , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cardiomegaly/genetics , Cardiomegaly/chemically induced , Male , Mice, Inbred C57BL , Cell Differentiation , Myocardium/metabolism , Myocardium/pathology
7.
Sci Rep ; 14(1): 15416, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965270

ABSTRACT

Zinc oxide nanoparticles (ZnO NPs) are one of the most abundantly used nanomaterials in cosmetics and topical products, and nowadays, they are explored in drug delivery and tissue engineering. Some recent data evidenced that they are responsible for cardiotoxic effects and systemic toxicity. The present study aimed to investigate the toxic effect of ZnO NPs (39 nm) on the heart of Wistar rats and to perform a dose-response relationship using three different dose levels (25, 50, 100 mg/kg bw) of ZnO NPs on the electrocardiogram (ECG) readings, the levels of biochemical function parameters of heart, and the oxidative stress and antioxidant biomarkers. Furthermore, zinc concentration level and histopathological examination of heart tissues were determined. ZnO NPs showed a dose-dependent effect, as the 100 mg/kg bw ZnO NPs treated group showed the most significant changes in ECGs parameters: R-R distance, P-R interval, R and T amplitudes, and increased levels of heart enzymes Creatine Kinase- MB (CK-MB) and Lactate dehydrogenase (LDH). On the other hand, elevated zinc concentration levels, oxidative stress biomarkers MDA and NO, and decreased GSH levels were found also in a dose-dependent manner, the results were supported by impairment in the histopathological structure of heart tissues. While the dose of 100 mg/kg bw of ZnO bulk group showed no significant effects on heart function. The present study concluded that ZnO NPs could induce cardiac dysfunctions and pathological lesions mainly in the high dose.


Subject(s)
Electrocardiography , Heart , Oxidative Stress , Rats, Wistar , Zinc Oxide , Animals , Zinc Oxide/toxicity , Zinc Oxide/chemistry , Male , Rats , Oxidative Stress/drug effects , Heart/drug effects , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Biomarkers/metabolism , Myocardium/metabolism , Myocardium/pathology , Antioxidants/metabolism , Antioxidants/pharmacology , Nanoparticles/toxicity
8.
Medicine (Baltimore) ; 103(27): e38817, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968493

ABSTRACT

A cross-sectional study to explore the correlation between cardiac and hepatic iron overload and its impact on the quality of life in children diagnosed with severe beta-thalassemia major (ß-TM). A cohort of 55 pediatric patients with ß-TM, diagnosed via genetic testing at the Affiliated Hospital of Guangdong Medical University from January 2015 to January 2022, was included in this study. The assessment of cardiac and hepatic iron overload was conducted using the magnetic resonance imaging T2* technique. The Chinese version of the Pediatric Quality of Life Inventory (PedsQL) 4.0. Pearson correlation analysis was utilized to assess the relationships between the cardiac and hepatic T2* values and between these T2* values and the total scores of PedsQL 4.0. Analysis showed no significant correlation between cardiac and hepatic T2* values. However, a significant relationship was observed between cardiac T2* values and PedsQL 4.0 total scores (r = 0.313, P < .05), indicating that cardiac, but not hepatic, iron overload is associated with the quality of life. This study highlights the absence of correlation between cardiac and hepatic iron overload levels and demonstrates a significant impact of cardiac iron overload on the quality of life in children with ß-TM. These findings suggest the need for a focused approach to cardiac health in managing ß-TM.


Subject(s)
Iron Overload , Liver , Magnetic Resonance Imaging , Quality of Life , beta-Thalassemia , Humans , beta-Thalassemia/psychology , beta-Thalassemia/complications , Cross-Sectional Studies , Iron Overload/diagnostic imaging , Male , Female , Child , Magnetic Resonance Imaging/methods , Liver/diagnostic imaging , Liver/metabolism , Child, Preschool , Adolescent , Myocardium/metabolism
9.
Development ; 151(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38984541

ABSTRACT

The cardiac extracellular matrix (cECM) is fundamental for organ morphogenesis and maturation, during which time it undergoes remodeling, yet little is known about whether mechanical forces generated by the heartbeat regulate this remodeling process. Using zebrafish as a model and focusing on stages when cardiac valves and trabeculae form, we found that altering cardiac contraction impairs cECM remodeling. Longitudinal volumetric quantifications in wild-type animals revealed region-specific dynamics: cECM volume decreases in the atrium but not in the ventricle or atrioventricular canal. Reducing cardiac contraction resulted in opposite effects on the ventricular and atrial ECM, whereas increasing the heart rate affected the ventricular ECM but had no effect on the atrial ECM, together indicating that mechanical forces regulate the cECM in a chamber-specific manner. Among the ECM remodelers highly expressed during cardiac morphogenesis, we found one that was upregulated in non-contractile hearts, namely tissue inhibitor of matrix metalloproteinase 2 (timp2). Loss- and gain-of-function analyses of timp2 revealed its crucial role in cECM remodeling. Altogether, our results indicate that mechanical forces control cECM remodeling in part through timp2 downregulation.


Subject(s)
Extracellular Matrix , Heart , Tissue Inhibitor of Metalloproteinase-2 , Zebrafish , Animals , Zebrafish/embryology , Zebrafish/metabolism , Extracellular Matrix/metabolism , Tissue Inhibitor of Metalloproteinase-2/metabolism , Tissue Inhibitor of Metalloproteinase-2/genetics , Heart/embryology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Myocardial Contraction/physiology , Myocardium/metabolism , Morphogenesis , Heart Atria/embryology , Heart Atria/metabolism , Biomechanical Phenomena , Gene Expression Regulation, Developmental , Heart Ventricles/metabolism , Heart Ventricles/embryology
10.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(6): 624-629, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38991962

ABSTRACT

OBJECTIVE: To explore the protective effect of methylene blue (MB) on myocardial injury in sepsis and its possible signaling pathway. METHODS: A total of 32 female Wistar rats were randomly divided into sham operation group, sepsis model group, MB prevention group, and MB treatment group, with 8 rats in each group. The MB prevention group was injected with 15 mg/kg MB in the peritoneal cavity 6 hours before modeling; the other 3 groups were injected with 4 mL/kg saline in the peritoneal cavity. The sepsis model was established by cecal ligation puncture (CLP); the sham operation group was only subjected to an exploratory incision without ligation or puncture of the caecum. The MB treatment group was injected with 15 mg/kg MB in the peritoneal cavity 0.5 hours after modeling; the other 3 groups were injected with 4 mL/kg saline in the peritoneal cavity. Peripheral blood and myocardial tissue were collected from each group at 6 hours and 12 hours after modeling. Histological changes in the myocardial tissue were observed under the microscope; the levels of serum cardiac troponin I (cTnI), MB isoenzyme of creatine kinase (CK-MB), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) were detected by enzyme-linked immunosorbent assay (ELISA); and the expressions of inducible nitric oxide synthase (iNOS), light chain 3 (LC3), and p62 in the myocardial tissue were detected by Western blotting. RESULTS: Under light microscopy, no obvious abnormalities were found in the myocardium of the sham operation group; the myocardium of the sepsis model group showed obvious inflammatory changes; the myocardium of the MB prevention group showed mild inflammatory changes at 6 hours after modeling, severe inflammatory changes at 12 hours but less severe than the sepsis model group; the myocardium of the MB treatment group showed more obvious inflammatory changes at 6 hours after modeling but less severe than the MB prevention group at 12 hours after modeling, and the inflammatory changes at 12 hours after modeling were alleviated but more severe than the 6 hours after modeling in MB prevention group. Compared with the sham operation group, the levels of cTnI, CK-MB, TNF-α and IL-6 in the MB prevention group at 6 hours and 12 hours after modeling were not significantly changed; compared with the sepsis model group, the cTnI, CK-MB, TNF-α and IL-6 levels in the MB treatment group at 6 hours and 12 hours after modeling were significantly lower [cTnI (ng/L): 175.03±12.26, 411.24±21.20 vs. 677.79±43.95 at 6 hours of modeling, 159.52±6.44, 412.46±32.94 vs. 687.61±55.09 at 12 hours of modeling; CK-MB (ng/L): 8.38±0.49, 16.87±1.41 vs. 24.87±1.74 at 6 hours of modeling, 7.94±0.30, 16.66±2.03 vs. 25.02±7.29 at 12 hours of modeling; TNF-α (ng/L): 26.98±3.31, 46.95±3.74 vs. 112.60±6.64 at 6 hours of modeling, 31.31±5.83, 90.97±5.14 vs. 149.30±4.67 at 12 hours of modeling; IL-6 (ng/L): 40.86±4.48, 128.90±3.14 vs. 248.90±12.76 at 6 hours of modeling, 80.13±7.94, 190.40±9.56 vs. 288.90±6.01 at 12 hours of modeling; all P < 0.05]. Western blotting showed that compared with the sham operation group, the protein expressions of iNOS, LC3, and p62 in the sepsis model group were significantly higher at 6 hours and 12 hours after modeling; compared with the sepsis model group, the protein expressions of iNOS, LC3, and p62 in the MB treatment group and MB prevention group were significantly lower at 6 hours and 12 hours after modeling (iNOS/GAPDH: 0.38±0.04, 0.60±0.04 vs. 0.77±0.04 at 6 hours of modeling; 0.38±0.02, 0.66±0.04 vs. 0.79±0.05 at 12 hours of modeling; LC3/GAPDH: 0.13±0.07, 0.42±0.07 vs. 1.05±0.16 at 6 hours of modeling; 0.08±0.02, 0.25±0.03 vs. 0.48±0.09 at 12 hours of modeling; p62/GAPDH: 0.17±0.05, 0.44±0.10 vs. 1.19±0.07 at 6 hours of modeling; 0.07±0.00, 0.28±0.08 vs. 0.69±0.02 at 12 hours of modeling; all P < 0.05). CONCLUSIONS: MB can reduce myocardial oxidative stress by inhibiting iNOS expression and mitochondrial autophagy in septic rats, thereby alleviating myocardial damage in sepsis, and has protective effect on myocardial damage in sepsis.


Subject(s)
Interleukin-6 , Methylene Blue , Myocardium , Rats, Wistar , Sepsis , Troponin I , Tumor Necrosis Factor-alpha , Animals , Sepsis/drug therapy , Sepsis/complications , Rats , Female , Interleukin-6/metabolism , Myocardium/metabolism , Myocardium/pathology , Tumor Necrosis Factor-alpha/metabolism , Troponin I/blood , Methylene Blue/pharmacology , Disease Models, Animal , Creatine Kinase, MB Form/blood , Nitric Oxide Synthase Type II/metabolism
11.
Mediators Inflamm ; 2024: 8237681, 2024.
Article in English | MEDLINE | ID: mdl-38974599

ABSTRACT

Electroacupuncture (EA) at the Neiguan acupoint (PC6) has shown significant cardioprotective effects. Sympathetic nerves play an important role in maintaining cardiac function after myocardial infarction (MI). Previous studies have found that EA treatment may improve cardiac function by modulating sympathetic remodeling after MI. However, the mechanism in how EA affects sympathetic remodeling and improves cardiac function remains unclear. The aim of this study is to investigate the cardioprotective mechanism of EA after myocardial ischemic injury by improving sympathetic remodeling and promoting macrophage M2 polarization. We established a mouse model of MI by occluding coronary arteries in male C57/BL6 mice. EA treatment was performed at the PC6 with current intensity (1 mA) and frequency (2/15 Hz). Cardiac function was evaluated using echocardiography. Heart rate variability in mice was assessed via standard electrocardiography. Myocardial fibrosis was evaluated by Sirius red staining. Levels of inflammatory factors were assessed using RT-qPCR. Sympathetic nerve remodeling was assessed through ELISA, western blotting, immunohistochemistry, and immunofluorescence staining. Macrophage polarization was evaluated using flow cytometry. Our results indicated that cardiac systolic function improved significantly after EA treatment, with an increase in fractional shortening and ejection fraction. Myocardial fibrosis was significantly mitigated in the EA group. The sympathetic nerve marker tyrosine hydroxylase and the nerve sprouting marker growth-associated Protein 43 were significantly reduced in the EA group, indicating that sympathetic remodeling was significantly reduced. EA treatment also promoted macrophage M2 polarization, reduced levels of inflammatory factors TNF-α, IL-1ß, and IL-6, and decreased macrophage-associated nerve growth factor in myocardial tissue. To sum up, our results suggest that EA at PC6 attenuates sympathetic remodeling after MI to promote macrophage M2 polarization and improve cardiac function.


Subject(s)
Electroacupuncture , Macrophages , Mice, Inbred C57BL , Myocardial Infarction , Animals , Male , Myocardial Infarction/therapy , Mice , Macrophages/metabolism , Sympathetic Nervous System , Echocardiography , Heart/physiopathology , Myocardium/metabolism , Myocardium/pathology
12.
Cells ; 13(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38994928

ABSTRACT

Activation of the CXCL12/CXCR4/ACKR3 axis is known to aid myocardial repair through ischemia-triggered hypoxia-inducible factor-1α (HIF-1α). To enhance the upregulation of HIF-1α, we administered roxadustat, a novel prolyl hydroxylase inhibitor (PHI) clinically approved by the European Medicines Agency 2021 for the treatment of renal anemia, with the purpose of improving LV function and attenuating ischemic cardiomyopathy. METHODS: We evaluated roxadustat's impact on HIF-1 stimulation, cardiac remodeling, and function after MI. Therefore, we analyzed nuclear HIF-1 expression, the mRNA and protein expression of key HIF-1 target genes (RT-PCR, Western blot), inflammatory cell infiltration (immunohistochemistry), and apoptosis (TUNEL staining) 7 days after MI. Additionally, we performed echocardiography in male and female C57BL/6 mice 28 days post-MI. RESULTS: We found a substantial increase in nuclear HIF-1, associated with an upregulation of HIF-1α target genes like CXCL12/CXCR4/ACKR3 at the mRNA and protein levels. Roxadustat increased the proportion of myocardial reparative M2 CD206+ cells, suggesting beneficial alterations in immune cell migration and a trend towards reduced apoptosis. Echocardiography showed that roxadustat treatment significantly preserved ejection fraction and attenuated subsequent ventricular dilatation, thereby reducing adverse remodeling. CONCLUSIONS: Our findings suggest that roxadustat is a promising clinically approved treatment option to preserve myocardial function by attenuating adverse remodeling.


Subject(s)
Glycine , Hypoxia-Inducible Factor 1, alpha Subunit , Isoquinolines , Mice, Inbred C57BL , Myocardial Infarction , Ventricular Remodeling , Animals , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology , Myocardial Infarction/metabolism , Mice , Ventricular Remodeling/drug effects , Glycine/analogs & derivatives , Glycine/pharmacology , Glycine/therapeutic use , Male , Female , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Isoquinolines/pharmacology , Isoquinolines/therapeutic use , Apoptosis/drug effects , Chemokine CXCL12/metabolism , Chemokine CXCL12/genetics , Myocardium/pathology , Myocardium/metabolism
14.
Pancreas ; 53(7): e588-e594, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38986079

ABSTRACT

OBJECTIVE: It was targeted to assess the efficacy of certolizumab on pancreas and target organs via biochemical parameters and histopathologic scores in experimental acute pancreatitis (AP). MATERIALS AND METHODS: Forty male Sprague Dawley rats were divided into the following 5 equal groups: group 1 (sham group), group 2 (AP group), group 3 (AP + low-dose certolizumab group), group 4 (AP + high-dose certolizumab group), and group 5 (placebo group). Rats in all groups were sacrificed 24 hours after the last injection and amylase, tumor necrosis factor α, transforming growth factor ß, interleukin 1ß, malondialdehyde, superoxide dismutase, and glutathione peroxidase levels were studied in blood samples. Histopathological investigation of both the pancreas and target organs (lungs, liver, heart, kidneys) was performed by a pathologist blind to the groups. In silico analysis were also accomplished. RESULTS: The biochemical results in the certolizumab treatment groups were identified to be significantly favorable compared to the AP group (P < 0.001). The difference between the high-dose group (group 4) and low-dose treatment group (group 3) was found to be significant in terms of biochemical parameters and histopathological scores (P < 0.001). In terms of the effect of certolizumab treatment on the target organs (especially on lung tissue), the differences between the low-dose treatment group (group 3) and high-dose treatment group (group 4) with the AP group (group 2) were significant. CONCLUSIONS: Certolizumab has favorable protective effects on pancreas and target organs in AP. It may be a beneficial agent for AP treatment and may prevent target organ damage.


Subject(s)
Amylases , Lung , Pancreas , Pancreatitis , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha , Animals , Male , Pancreatitis/prevention & control , Pancreatitis/chemically induced , Pancreatitis/pathology , Pancreatitis/drug therapy , Pancreas/drug effects , Pancreas/pathology , Pancreas/metabolism , Amylases/blood , Acute Disease , Lung/drug effects , Lung/pathology , Lung/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/blood , Certolizumab Pegol/pharmacology , Malondialdehyde/metabolism , Liver/drug effects , Liver/pathology , Liver/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Interleukin-1beta/blood , Interleukin-1beta/metabolism , Superoxide Dismutase/metabolism , Glutathione Peroxidase/metabolism , Myocardium/pathology , Myocardium/metabolism , Transforming Growth Factor beta/metabolism , Rats , Disease Models, Animal , Oxidative Stress/drug effects
15.
FASEB J ; 38(14): e23818, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38989572

ABSTRACT

The association between cardiac fibrosis and galectin-3 was evaluated in patients with acute myocardial infarction (MI). The role of galectin-3 and its association with endoplasmic reticulum (ER) stress activation in the progression of cardiovascular fibrosis was also evaluated in obese-infarcted rats. The inhibitor of galectin-3 activity, modified citrus pectin (MCP; 100 mg/kg/day), and the inhibitor of the ER stress activation, 4-phenylbutyric acid (4-PBA; 500 mg/kg/day), were administered for 4 weeks after MI in obese rats. Overweight-obese patients who suffered a first MI showed higher circulating galectin-3 levels, higher extracellular volume, and LV infarcted size, as well as lower E/e'ratio and LVEF compared with normal-weight patients. A correlation was observed between galectin-3 levels and extracellular volume. Obese-infarcted animals presented cardiac hypertrophy and reduction in LVEF, and E/A ratio as compared with control animals. They also showed an increase in galectin-3 gene expression, as well as cardiac fibrosis and reduced autophagic flux. These alterations were associated with ER stress activation characterized by enhanced cardiac levels of binding immunoglobulin protein, which were correlated with those of galectin-3. Both MCP and 4-PBA not only reduced cardiac fibrosis, oxidative stress, galectin-3 levels, and ER stress activation, but also prevented cardiac functional alterations and ameliorated autophagic flux. These results show the relevant role of galectin-3 in the development of diffuse fibrosis associated with MI in the context of obesity in both the animal model and patients. Galectin-3 in tandem with ER stress activation could modulate different downstream mechanisms, including inflammation, oxidative stress, and autophagy.


Subject(s)
Endoplasmic Reticulum Stress , Galectin 3 , Obesity , Animals , Galectin 3/metabolism , Obesity/metabolism , Obesity/complications , Male , Rats , Humans , Pectins/pharmacology , Middle Aged , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/complications , Female , Fibrosis , Rats, Wistar , Myocardial Ischemia/metabolism , Myocardial Ischemia/pathology , Phenylbutyrates/pharmacology , Autophagy , Myocardium/metabolism , Myocardium/pathology , Galectins/metabolism , Aged , Blood Proteins/metabolism
16.
Int J Mol Sci ; 25(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39000372

ABSTRACT

Circadian disruption increases the development of cardiovascular disease and diabetes. We found that circadian disruption causes glucose intolerance, cardiac fibrosis and adipocyte tissue dysfunction in male sand rats, Psammomys obesus. Whether these effects occur in female P. obesus is unknown. Male and female P. obesus were fed a high energy diet and exposed to a neutral (12 light:12 dark, control) or short (5 light:19 dark, circadian disruption) photoperiod for 20 weeks. Circadian disruption impaired glucose tolerance in males but not females. It also increased cardiac perivascular fibrosis and cardiac expression of inflammatory marker Ccl2 in males, with no effect in females. Females had reduced proapoptotic Bax mRNA and cardiac Myh7:Myh6 hypertrophy ratio. Cardiac protection in females occurred despite reductions in the clock gene Per2. Circadian disruption increased adipocyte hypertrophy in both males and females. This was concomitant with a reduction in adipocyte differentiation markers Pparg and Cebpa in males and females, respectively. Circadian disruption increased visceral adipose expression of inflammatory mediators Ccl2, Tgfb1 and Cd68 and reduced browning marker Ucp1 in males. However, these changes were not observed in females. Collectively, our study show that sex differentially influences the effects of circadian disruption on glucose tolerance, cardiac function and adipose tissue dysfunction.


Subject(s)
Adipocytes , Fibrosis , Gerbillinae , Glucose Intolerance , Animals , Female , Adipocytes/metabolism , Adipocytes/pathology , Male , Glucose Intolerance/metabolism , Myocardium/metabolism , Myocardium/pathology , Circadian Rhythm
17.
Int J Mol Sci ; 25(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39000409

ABSTRACT

Cardiac fibrosis is a severe outcome of Chagas disease (CD), caused by the protozoan Trypanosoma cruzi. Clinical evidence revealed a correlation between fibrosis levels with impaired cardiac performance in CD patients. Therefore, we sought to analyze the effect of inhibitors of TGF-ß (pirfenidone), p38-MAPK (losmapimod) and c-Jun (SP600125) on the modulation of collagen deposition in cardiac fibroblasts (CF) and in vivo models of T. cruzi chronic infection. Sirius Red/Fast Green dye was used to quantify both collagen expression and total protein amount, assessing cytotoxicity. The compounds were also used to treat C57/Bl6 mice chronically infected with T. cruzi, Brazil strain. We identified an anti-fibrotic effect in vitro for pirfenidone (TGF-ß inhibitor, IC50 114.3 µM), losmapimod (p38 inhibitor, IC50 17.6 µM) and SP600125 (c-Jun inhibitor, IC50 3.9 µM). This effect was independent of CF proliferation since these compounds do not affect T. cruzi-induced host cell multiplication as measured by BrdU incorporation. Assays of chronic infection of mice with T. cruzi have shown a reduction in heart collagen by pirfenidone. These results propose a novel approach to fibrosis therapy in CD, with the prospect of repurposing pirfenidone to prevent the onset of ECM accumulation in the hearts of the patients.


Subject(s)
Chagas Cardiomyopathy , Fibrosis , Mice, Inbred C57BL , Pyridones , Animals , Pyridones/pharmacology , Pyridones/therapeutic use , Chagas Cardiomyopathy/drug therapy , Chagas Cardiomyopathy/parasitology , Chagas Cardiomyopathy/metabolism , Chagas Cardiomyopathy/pathology , Mice , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/parasitology , Myocardium/pathology , Myocardium/metabolism , Collagen/metabolism , Trypanosoma cruzi/drug effects , Humans , Chronic Disease , Transforming Growth Factor beta/metabolism , Disease Models, Animal , p38 Mitogen-Activated Protein Kinases/metabolism , Male , Anthracenes
18.
Bull Exp Biol Med ; 177(1): 115-123, 2024 May.
Article in English | MEDLINE | ID: mdl-38963596

ABSTRACT

The cardiac perivascular niche is a cellular microenvironment of a blood vessel. The principles of niche regulation are still poorly understood. We studied the effect of TGFß1 on cells forming the cardiac perivascular niche using 3D cell culture (cardiospheres). Cardiospheres contained progenitor (c-Kit), endothelial (CD31), and mural (αSMA) cells, basement membrane proteins (laminin) and extracellular matrix proteins (collagen I, fibronectin). TGFß1 treatment decreased the length of CD31+ microvasculature, VE cadherin protein level, and proportion of NG2+ cells, and increased proportion of αSMA+ cells and transgelin/SM22α protein level. We supposed that this effect is related to the stabilizing function of TGFß1 on vascular cells: decreased endothelial cell proliferation, as shown for HUVEC, and activation of mural cell differentiation.


Subject(s)
Cell Differentiation , Cell Proliferation , Transforming Growth Factor beta1 , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism , Cell Differentiation/drug effects , Humans , Cell Proliferation/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Animals , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Cadherins/metabolism , Laminin/metabolism , Laminin/pharmacology , Muscle Proteins/metabolism , Cells, Cultured , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Endothelial Cells/cytology , Fibronectins/metabolism , Fibronectins/pharmacology , Antigens, CD/metabolism , Myocardium/metabolism , Myocardium/cytology , Stem Cell Niche/drug effects , Stem Cell Niche/physiology , Collagen Type I/metabolism , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Spheroids, Cellular/cytology , Cell Culture Techniques, Three Dimensional/methods
19.
FASEB J ; 38(14): e23826, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39046373

ABSTRACT

Cigarette smoking behaviors are harmful and cause one out of ten deaths due to cardiovascular disease. As population sizes grow and number of cigarette smokers increases, it is vital that we understand the mechanisms leading to heart failure in cigarette smokers. We have reported that metabolic regulation of a histone deacetylase, SIRT1, modulates cardiovascular and mitochondrial function under stress. Given this conclusion, we hypothesized that chronic cigarette smoking led to cardiovascular dysfunction via a reduction SIRT1. Mice were randomly organized into smoking or nonsmoking groups, and the smoking group received cigarette smoke exposure for 16 weeks. Following 16-week exposure, diastolic function of the heart was impaired in the smoking group as compared to sham, indicated by a significant increase in E/e'. The electrical function of the heart was also impaired in the smoking group compared to the sham group, indicated by increased PR interval and decreased QTc interval. This diastolic dysfunction was not accompanied by increased fibrosis in mouse hearts, although samples from human chronic smokers indicated increased fibrosis compared to their nonsmoker counterparts. As well as diastolic dysfunction, mitochondria from the 16-week smoking group showed significantly impaired function, evidenced by significant decreases in all parameters measured by the mitochondrial stress test. We further found biochemical evidence of a significantly decreased level of SIRT1 in left ventricles of both mouse and human smoking groups compared to nonsmoking counterparts. Data from this study indicate that decreased SIRT1 levels by cigarette smoking are associated with diastolic dysfunction caused by compromised mitochondrial integrity.


Subject(s)
Cigarette Smoking , Mice, Inbred C57BL , Mitochondria, Heart , Sirtuin 1 , Animals , Mice , Sirtuin 1/metabolism , Cigarette Smoking/adverse effects , Male , Humans , Mitochondria, Heart/metabolism , Female , Middle Aged , Diastole , Myocardium/metabolism , Myocardium/pathology
20.
PLoS One ; 19(7): e0302772, 2024.
Article in English | MEDLINE | ID: mdl-39042659

ABSTRACT

Noncoding RNAs play a part in many chronic diseases and interact with each other to regulate gene expression. MicroRNA-9-5p (miR9) has been thought to be a potential inhibitor of diabetic cardiomyopathy. Here we examined the role of miR9 in regulating cardiac fibrosis in the context of diabetic cardiomyopathy. We further expanded our studies through investigation of a regulatory circularRNA, circRNA_012164, on the action of miR9. We showed at both the in vivo and in vitro level that glucose induced downregulation of miR9 and upregulation of circRNA_012164 resulted in the subsequent upregulation of downstream fibrotic genes. Further, knockdown of circRNA_012164 shows protective effects in cardiac endothelial cells and reverses increased transcription of genes associated with fibrosis and fibroblast proliferation through a regulatory axis with miR9. This study presents a novel regulatory axis involving noncoding RNA that is evidently important in the development of cardiac fibrosis in diabetic cardiomyopathy.


Subject(s)
Diabetic Cardiomyopathies , Fibrosis , MicroRNAs , RNA, Circular , MicroRNAs/genetics , MicroRNAs/metabolism , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/pathology , Animals , RNA, Circular/genetics , RNA, Circular/metabolism , Mice , Male , Myocardium/metabolism , Myocardium/pathology , RNA/genetics , RNA/metabolism , Glucose/metabolism , Gene Expression Regulation , Cell Proliferation/genetics , Endothelial Cells/metabolism , Endothelial Cells/pathology , Rats , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...