Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.325
Filter
1.
Tissue Eng Regen Med ; 21(5): 723-735, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38834902

ABSTRACT

BACKGROUND: A drug-eluting stent (DES) is a highly beneficial medical device used to widen or unblock narrowed blood vessels. However, the drugs released by the implantation of DES may hinder the re-endothelialization process, increasing the risk of late thrombosis. We have developed a tacrolimus-eluting stent (TES) that as acts as a potent antiproliferative and immunosuppressive agent, enhancing endothelial regeneration. In addition, we assessed the safety and efficacy of TES through both in vitro and in vivo tests. METHODS: Tacrolimus and Poly(lactic-co-glycolic acid) (PLGA) were applied to the metal stent using electrospinning equipment. The surface morphology of the stent was examined before and after coating using a scanning electron microscope (SEM) and energy dispersive X-rays (EDX). The drug release test was conducted through high-performance liquid chromatography (HPLC). Cell proliferation and migration assays were performed using smooth muscle cells (SMC). The stent was then inserted into the porcine coronary artery and monitored for a duration of 4 weeks. RESULTS: SEM analysis confirmed that the coating surface was uniform. Furthermore, EDX analysis showed that the surface was coated with both polymer and drug components. The HPCL analysis of TCL at a wavelength of 215 nm revealed that the drug was continuously released over a period of 4 weeks. Smooth muscle cell migration was significantly decreased in the tacrolimus group (54.1% ± 11.90%) compared to the non-treated group (90.1% ± 4.86%). In animal experiments, the stenosis rate was significantly reduced in the TES group (29.6% ± 7.93%) compared to the bare metal stent group (41.3% ± 10.18%). Additionally, the fibrin score was found to be lower in the TES group compared to the group treated with a sirolimus-eluting stent (SES). CONCLUSION: Similar to SES, TES reduces neointimal proliferation in a porcine coronary artery model, specifically decreasing the fibrins score. Therefore, tacrolimus could be considered a promising drug for reducing restenosis and thrombosis.


Subject(s)
Cell Proliferation , Coronary Vessels , Drug-Eluting Stents , Tacrolimus , Animals , Tacrolimus/pharmacology , Coronary Vessels/drug effects , Swine , Cell Proliferation/drug effects , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/cytology , Cell Movement/drug effects
2.
Int J Biol Macromol ; 272(Pt 2): 132747, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821301

ABSTRACT

Degradable magnesium alloy stents are considered to be ideal candidates to replace the traditional non-degradable stents for the treatment of cardiovascular diseases. However, bare magnesium alloy stents usually degrade too fast and show poor hemocompatibility and cytocompatibility, which seriously affects their clinical use. In this study, surface modification based on the MgF2 layer, polydopamine (PDA) coating, fucoidan and CAG peptides was performed on the Mg-Zn-Y-Nd (ZE21B) magnesium alloy with the purpose of improving its corrosion resistance, hemocompatibility and cytocompatibility for vascular stent application. After modification, the ZE21B alloy showed better corrosion resistance. Moreover, the lower hemolysis rate, platelet adhesion and activation, and fibrinogen adsorption and denaturation proved the improved hemocompatibility of modified ZE21B alloy in in vitro blood experiments. Furthermore, the co-immobilization of fucoidan and CAG peptides significantly promoted the adhesion, proliferation, migration and NO release of endothelial cells (ECs) on the modified ZE21B alloy, and meanwhile the modification with fucoidan and CAG peptides inhibited the adhesion and proliferation of smooth muscle cells (SMCs) and suppressed the expression of proinflammatory factors in the macrophages (MAs). The surface modification obviously enhanced the corrosion resistance, hemocompatibility and cytocompatibility of ZE21B alloy, and provided an effective strategy for the development of degradable vascular stents.


Subject(s)
Alloys , Cell Adhesion , Magnesium , Materials Testing , Peptides , Polysaccharides , Alloys/chemistry , Alloys/pharmacology , Polysaccharides/chemistry , Polysaccharides/pharmacology , Humans , Peptides/chemistry , Peptides/pharmacology , Magnesium/chemistry , Cell Adhesion/drug effects , Animals , Cell Proliferation/drug effects , Hemolysis/drug effects , Corrosion , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Platelet Adhesiveness/drug effects , Mice , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Surface Properties , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Aquatic Organisms/chemistry , Indoles , Polymers
3.
Colloids Surf B Biointerfaces ; 240: 113988, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810467

ABSTRACT

Confronted with the profound threat of cardiovascular diseases to health, vascular tissue engineering presents potential beyond the limitations of autologous and allogeneic grafts, offering a promising solution. This study undertakes an initial exploration into the impact of a natural active protein, elastin, on vascular cell behavior, by incorporating with polycaprolactone to prepare fibrous tissue engineering scaffold. The results reveal that elastin serves to foster endothelial cell adhesion and proliferation, suppress smooth muscle cell proliferation, and induce macrophage polarization. Furthermore, the incorporation of elastin contributes to heightened scaffold strength, compliance, and elongation, concomitantly lowering the elastic modulus. Subsequently, a bilayer oriented polycaprolactone (PCL) scaffold infused with elastin is proposed. This design draws inspiration from the cellular arrangement of native blood vessels, leveraging oriented fibers to guide cell orientation. The resulting fiber scaffold exhibits commendable mechanical properties and cell infiltration capacity, imparting valuable insights for the rapid endothelialization of vascular scaffolds.


Subject(s)
Cell Adhesion , Cell Proliferation , Nanofibers , Polyesters , Tissue Engineering , Tissue Scaffolds , Tissue Scaffolds/chemistry , Nanofibers/chemistry , Polyesters/chemistry , Polyesters/pharmacology , Cell Proliferation/drug effects , Humans , Cell Adhesion/drug effects , Animals , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/cytology , Elastin/chemistry , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/cytology , Mice , Cells, Cultured , Endothelial Cells/drug effects , Endothelial Cells/cytology
4.
Biomaterials ; 309: 122600, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38718614

ABSTRACT

Engineering vascularized tissues remains a promising approach for treating ischemic cardiovascular diseases. The availability of 3D-bioprinted vascular grafts that induce therapeutic angiogenesis can help avoid necrosis and excision of ischemic tissues. Here, using a combination of living cells and biodegradable hydrogels, we fabricated 3D-printed biocompatible proangiogenic patches from endothelial cell-laden photo-crosslinked gelatin (EC-PCG) bioink and smooth muscle cell-encapsulated polyurethane (SMC-PU) bioink. Implantation of 3D-bioprinted proangiogenic patches in a mouse model showed that EC-PCG served as an angiogenic capillary bed, whereas patterned SMC-PU increased the density of microvessels. Moreover, the assembled patterns between EC-PCG and SMC-PU induced the geometrically guided generation of microvessels with blood perfusion. In a rodent model of hindlimb ischemia, the vascular patches rescued blood flow to distal tissues, prevented toe/foot necrosis, promoted muscle remodeling, and increased the capillary density, thereby improving the heat-escape behavior of ischemic animals. Thus, our 3D-printed vascular cell-laden bioinks constitute efficient and scalable biomaterials that facilitate the engineering of vascular patches capable of directing therapeutic angiogenesis for treating ischemic vascular diseases.


Subject(s)
Gelatin , Hydrogels , Ischemia , Neovascularization, Physiologic , Polyurethanes , Printing, Three-Dimensional , Animals , Gelatin/chemistry , Polyurethanes/chemistry , Hydrogels/chemistry , Ischemia/therapy , Neovascularization, Physiologic/drug effects , Mice , Humans , Myocytes, Smooth Muscle/cytology , Cross-Linking Reagents/chemistry , Human Umbilical Vein Endothelial Cells , Hindlimb/blood supply , Hindlimb/pathology , Male , Tissue Engineering/methods , Bioprinting/methods
5.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 321-327, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38686413

ABSTRACT

Previous studies have shown that growth arrest, dedifferentiation, and loss of original function occur in cells after multiple generations of culture, which are attributed to the lack of stress stimulation. To investigate the effects of multi-modal biomimetic stress (MMBS) on the biological function of human bladder smooth muscle cells (HBSMCs), a MMBS culture system was established to simulate the stress environment suffered by the bladder, and HBSMCs were loaded with different biomimetic stress for 24 h. Then, cell growth, proliferation and functional differentiation were detected. The results showed that MMBS promoted the growth and proliferation of HBSMCs, and 80 cm H 2O pressure with 4% stretch stress were the most effective in promoting the growth and proliferation of HBSMCs and the expression level of α-smooth muscle actin and smooth muscle protein 22-α. These results suggest that the MMBS culture system will be beneficial in regulating the growth and functional differentiation of HBSMCs in the construction of tissue engineered bladder.


Subject(s)
Actins , Cell Differentiation , Cell Proliferation , Myocytes, Smooth Muscle , Stress, Mechanical , Tissue Engineering , Urinary Bladder , Urinary Bladder/cytology , Urinary Bladder/physiology , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/physiology , Humans , Tissue Engineering/methods , Actins/metabolism , Biomimetics , Muscle Proteins/metabolism , Cells, Cultured
6.
Int J Biol Macromol ; 269(Pt 1): 131849, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670202

ABSTRACT

Long-term patency and ability for revascularization remain challenges for small-caliber blood vessel grafts to treat cardiovascular diseases clinically. Here, a gelatin/heparin coated bio-inspired polyurethane composite fibers-based artificial blood vessel with continuous release of NO and biopeptides to regulate vascular tissue repair and maintain long-term patency is fabricated. A biodegradable polyurethane elastomer that can catalyze S-nitrosothiols in the blood to release NO is synthesized (NPU). Then, the NPU core-shell structured nanofiber grafts with requisite mechanical properties and biopeptide release for inflammation manipulation are fabricated by electrospinning and lyophilization. Finally, the surface of tubular NPU nanofiber grafts is coated with heparin/gelatin and crosslinked with glutaraldehyde to obtain small-caliber artificial blood vessels (ABVs) with the ability of vascular revascularization. We demonstrate that artificial blood vessel grafts promote the growth of endothelial cells but inhibit the growth of smooth muscle cells by the continuous release of NO; vascular grafts can regulate inflammatory balance for vascular tissue remodel without excessive collagen deposition through the release of biological peptides. Vascular grafts prevent thrombus and vascular stenosis to obtain long-term patency. Hence, our work paves a new way to develop small-caliber artificial blood vessel grafts that can maintain long-term patency in vivo and remodel vascular tissue successfully.


Subject(s)
Blood Vessel Prosthesis , Gelatin , Heparin , Polyurethanes , Polyurethanes/chemistry , Gelatin/chemistry , Heparin/chemistry , Heparin/pharmacology , Humans , Nanofibers/chemistry , Animals , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Nitric Oxide/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism
7.
Methods Mol Biol ; 2803: 49-58, 2024.
Article in English | MEDLINE | ID: mdl-38676884

ABSTRACT

Pulmonary arterial hypertension (PAH) is a severe vascular disease characterized by persistent precapillary pulmonary hypertension, leading to right heart failure and death. Despite intense research in the last decades, PAH remains an incurable disease with high morbidity and mortality. New directions and therapies to improve understanding and treatment of PAH are desperately needed. The pathological mechanisms leading to this fatal disorder remain mostly undetermined, although structural remodeling of the pulmonary vessels is known to be an early feature of PAH. Pulmonary vascular remodeling includes proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) and pulmonary artery endothelial cells (PAECs). The use of in vitro approaches is useful to delineate the mechanisms involved in the pathogenesis of PAH and to identify new therapeutic strategies for PAH. In this chapter, we describe protocols for culturing and assessing proliferation and migration of human PASMCs and PAECs.


Subject(s)
Cell Movement , Cell Proliferation , Endothelial Cells , Myocytes, Smooth Muscle , Pulmonary Artery , Humans , Pulmonary Artery/cytology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Cell Culture Techniques/methods , Cells, Cultured , Muscle, Smooth, Vascular/cytology
8.
Colloids Surf B Biointerfaces ; 238: 113908, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677153

ABSTRACT

In response to the critical demand for advancements in coronary artery stents, this study addresses the challenges associated with arterial recoil and restenosis post-angioplasty and the imperative to encourage rapid re-endothelialization for minimizing thrombosis risks. We employed an innovative approach inspired by mussel adhesion, incorporating placental anticoagulant protein (AnnexinV) on stent design. The introduction of a post-translationally modified catecholic amino acid L-3,4-dihydroxyphenylalanine (L-Dopa), mimicking mussel characteristics, allowed for effective surface modification of Stainless steel stents through genetic code engineering in AnnexinV (AnxDopa). The efficacy of AnxDopa was analyzed through microscale thermophoresis and flow cytometry, confirming AnxDopa's exceptional binding with phosphatidylserine and activated platelets. AnxDopa coated stainless steel demonstrates remarkable bio-, hemo-, and immuno-compatibility, preventing smooth muscle cell proliferation, platelet adhesion, and fibrin formation. It acts as an interface between the stent and biological fluid, which facilitates the anticoagulation and rapid endothelialization. Surface modification of SS verified through XPS analysis and contact angle measurement attests to the efficacy of AnxDopa mediated surface modification. The hydrophilic nature of the AnxDopa-coated surface enhanced the endothelialization through increased protein absorption. This approach represents a significant stride in developing coronary stents with improved biocompatibility and reduced restenosis risks, offering valuable contributions to scientific and clinical realms alike.


Subject(s)
Coated Materials, Biocompatible , Stents , Humans , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Coronary Vessels/drug effects , Platelet Adhesiveness/drug effects , Anticoagulants/pharmacology , Anticoagulants/chemistry , Surface Properties , Cell Proliferation/drug effects , Stainless Steel/chemistry , Blood Platelets/drug effects , Blood Platelets/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/cytology , Animals , Levodopa/chemistry , Levodopa/pharmacology
9.
Dev Cell ; 59(9): 1159-1174.e5, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38537630

ABSTRACT

Inside the finger-like intestinal projections called villi, strands of smooth muscle cells contract to propel absorbed dietary fats through the adjacent lymphatic capillary, the lacteal, sending fats into the systemic blood circulation for energy production. Despite this vital function, mechanisms of formation, assembly alongside lacteals, and maintenance of villus smooth muscle are unknown. By combining single-cell RNA sequencing and quantitative lineage tracing of the mouse intestine, we identified a local hierarchy of subepithelial fibroblast progenitors that differentiate into mature smooth muscle fibers via intermediate contractile myofibroblasts. This continuum persists as the major mechanism for villus musculature renewal throughout adult life. The NOTCH3-DLL4 signaling axis governs the assembly of smooth muscle fibers alongside their adjacent lacteals and is required for fat absorption. Our studies identify the ontogeny and maintenance of a poorly defined class of intestinal smooth muscle, with implications for accelerated repair and recovery of digestive function following injury.


Subject(s)
Cell Differentiation , Myofibroblasts , Animals , Myofibroblasts/metabolism , Myofibroblasts/cytology , Mice , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/cytology , Signal Transduction , Lymphatic Vessels/metabolism , Lymphatic Vessels/cytology , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Intestines/cytology , Muscle, Smooth/metabolism , Muscle, Smooth/cytology , Stem Cells/cytology , Stem Cells/metabolism , Receptor, Notch3/metabolism , Receptor, Notch3/genetics , Mice, Inbred C57BL
10.
Microsc Microanal ; 30(2): 342-358, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38525887

ABSTRACT

Deviation of blood flow from an optimal range is known to be associated with the initiation and progression of vascular pathologies. Important open questions remain about how the abnormal flow drives specific wall changes in pathologies such as cerebral aneurysms where the flow is highly heterogeneous and complex. This knowledge gap precludes the clinical use of readily available flow data to predict outcomes and improve treatment of these diseases. As both flow and the pathological wall changes are spatially heterogeneous, a crucial requirement for progress in this area is a methodology for acquiring and comapping local vascular wall biology data with local hemodynamic data. Here, we developed an imaging pipeline to address this pressing need. A protocol that employs scanning multiphoton microscopy was developed to obtain three-dimensional (3D) datasets for smooth muscle actin, collagen, and elastin in intact vascular specimens. A cluster analysis was introduced to objectively categorize the smooth muscle cells (SMC) across the vascular specimen based on SMC actin density. Finally, direct quantitative comparison of local flow and wall biology in 3D intact specimens was achieved by comapping both heterogeneous SMC data and wall thickness to patient-specific hemodynamic results.


Subject(s)
Extracellular Matrix , Hemodynamics , Microscopy, Fluorescence, Multiphoton , Microscopy, Fluorescence, Multiphoton/methods , Myocytes, Smooth Muscle/physiology , Myocytes, Smooth Muscle/cytology , Actins/metabolism , Animals , Collagen/metabolism , Humans , Elastin/metabolism , Elastin/analysis , Imaging, Three-Dimensional/methods , Arteries
11.
Adv Healthc Mater ; 13(15): e2400113, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38412500

ABSTRACT

Recently, nanotechnology-based drug delivery platforms in treating pulmonary arterial hypertension (PAH) have gradually emerged. However, large mechanical stress and shear stress in blood vessels greatly affect the retention of nanopreparative materials at lesion sites, severely limiting nanotechnology-based drug delivery. Herein, a stimuli-responsive nanocraft is rationally designed by actively anchoring E-selectin overexpressed on pulmonary arterial endothelial cells (PAECs), under hypoxic conditions, allowing effective accumulation and retention of the drug at the lesion site. Briefly, a nitrobenzene group is incorporated into the framework of a nanocarrier, and then it is simultaneously linked with chitosan. Additionally, the surface of the nanocarrier with sialic acid (SA) and encapsulated the clinically used drug ambrisentan (Am), which enables the anchoring of E-selectin and subsequent drug delivery is modifed. This system facilitates intercellular transport to pulmonary artery smooth muscle cells (PASMCs) when targeting PAECs and specifically responds to a reductive hypoxic microenvironment with elevated nitroreductase in PASMCs. Moreover, compared with free Am, nanoencapsulation and SA-PEG2000-NH2 prolong the blood circulation time, achieving better therapeutic outcomes in preventing vascular remodeling and reversing systolic dysfunction. The originality and contribution of this work reveal the promising value of this pulmonary arterial anchoring stimuli-responsive nanocraft as a novel therapeutic strategy for satisfactory PAH treatment.


Subject(s)
Hypertension, Pulmonary , Myocytes, Smooth Muscle , Pulmonary Artery , Animals , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/cytology , Pulmonary Artery/drug effects , Phenylpropionates/chemistry , Phenylpropionates/pharmacology , Chitosan/chemistry , Vasoconstriction/drug effects , E-Selectin/metabolism , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Nanoparticles/chemistry , Hypoxia/metabolism , Humans , Male , Drug Delivery Systems/methods , Rats , Rats, Sprague-Dawley , Mice , Pyridazines
12.
Small ; 20(23): e2307603, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38213024

ABSTRACT

Bacterial cellulose/oxidized bacterial cellulose nanofibrils (BC/oxBCNFs) macro-fibers are developed as a novel scaffold for vascular tissue engineering. Utilizing a low-speed rotary coagulation spinning technique and precise solvent control, macro-fibers with a unique heterogeneous structure with dense surface and porous core are created. Enhanced by a polydopamine (PDA) coating, these macro-fibers offer robust mechanical integrity, high biocompatibility, and excellent cell adhesion. When cultured with endothelial cells (ECs) and smooth muscle cells (SMCs), the macro-fibers support healthy cell proliferation and exhibit a unique spiral SMC alignment, demonstrating their vascular suitability. This innovative strategy opens new avenues for advances in tissue engineering.


Subject(s)
Cellulose , Nanofibers , Tissue Engineering , Tissue Scaffolds , Tissue Engineering/methods , Nanofibers/chemistry , Tissue Scaffolds/chemistry , Cellulose/chemistry , Humans , Myocytes, Smooth Muscle/cytology , Cell Proliferation/drug effects , Cell Adhesion , Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells , Indoles/chemistry , Polymers
13.
PeerJ ; 12: e16719, 2024.
Article in English | MEDLINE | ID: mdl-38259670

ABSTRACT

Objectives: After an episode of acute pulmonary embolism (APE), activated platelets have the ability to release various bioactive factors that can stimulate both proliferation and migration of pulmonary artery smooth muscle cells (PASMCs). SCUBE1 has been previously reported to engage in platelet-platelet interactions, potentially contributing to the activation of platelets in early onset thrombi. The purpose of this study was to examine the alterations in SCUBE1 expression in PASMCs after APE, as well as understand the mechanism behind these changes. Methods: The platelet-rich plasma samples of both APE patients and healthy individuals were collected. A hyperproliferative model of PASMCs was established by using platelet-derived growth factor (PDGF) as a stimulator and various assays were used to investigate how SCUBE1-mediated BMP7 can regulate PDGF-induced PASMC proliferation and migration. Results: Elevated level of SCUBE1 were observed in platelet-rich plasma from patients with APE and in PASMCs induced by PDGF. SCUBE1 interference ameliorated PDGF-driven cell proliferation and migration, and also downregulated PCNA expression. Additionally, mechanistic studies demonstrated that SCUBE1 could directly bind to bone morphogenetic protein 7 (BMP7) and enhance BMP7 expression, which completely abolished the impact of SCUBE1 silencing on proliferation and migration ability of PASMCs after PDGF treatment. Conclusion: In the PDGF-induced proliferation of PASMCs, the expression of SCUBE1 and BMP7 was upregulated. Silencing of SCUBE1 impeded PDGF-induced proliferation and migration of PASMCs by restraining BMP7.


Subject(s)
Bone Morphogenetic Protein 7 , Calcium-Binding Proteins , Pulmonary Embolism , Humans , Acute Disease , Bone Morphogenetic Protein 7/genetics , Calcium-Binding Proteins/genetics , Cell Proliferation , Myocytes, Smooth Muscle/cytology , Platelet-Derived Growth Factor/pharmacology , Pulmonary Artery
14.
J Cell Physiol ; 239(1): 124-134, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37942832

ABSTRACT

Studies regarding age-related erectile dysfunction (ED) based on naturally aging models are limited by their high costs, especially for the acquisition of primary cells from the corpus cavernosum. Herein, d-galactose ( d-gal) was employed to accelerate cell senescence, and the underlying mechanism was explored. As predominant functional cells involved in the erectile response, corpus cavernosum smooth muscle cells (CCSMCs) were isolated from 2-month-old rats. Following this, d-gal was introduced to induce cell senescence, which was verified via ß-galactosidase staining. The effects of d-gal on CCSMCs were evaluated by terminal deoxynucleoitidyl transferase dUTP nick-end labeling (TUNEL), immunofluorescence staining, flow cytometry, western blot, and quantitative real-time polymerase chain reaction (qRT-PCR). Furthermore, RNA interference (RNAi) was carried out for rescue experiments. Subsequently, the influence of senescence on the corpus cavernosum was determined via scanning electron microscopy, qRT-PCR, immunohistochemistry, TUNEL, and Masson stainings. The results revealed that the accelerated senescence of CCSMCs was promoted by d-gal. Simultaneously, smooth muscle alpha-actin (alpha-SMA) expression was inhibited, while that of osteopontin (OPN) and Krüppel-like factor 4 (KLF4), as well as fibrotic and apoptotic levels, were elevated. After knocking down KLF4 expression in d-gal-induced CCSMCs by RNAi, the expression level of cellular alpha-SMA increased. Contrastingly, the OPN expression, apoptotic and fibrotic levels declined. In addition, cellular senescence acquired partial remission. Accordingly, in the aged corpus cavernosum, the fibrotic and apoptotic rates were increased, followed by downregulation in the expression of alpha-SMA and the concurrent upregulation in the expression of OPN and KLF4. Overall, our results signaled that d-gal-induced accelerated senescence of CCSMCs could trigger fibrosis, apoptosis and phenotypic switch to the synthetic state, potentially attributed to the upregulation of KLF4 expression, which may be a multipotential therapeutic target of age-related ED.


Subject(s)
Erectile Dysfunction , Galactose , Myocytes, Smooth Muscle , Animals , Male , Rats , Erectile Dysfunction/metabolism , Erectile Dysfunction/therapy , Galactose/pharmacology , Galactose/metabolism , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Penis , Phenotype , Rats, Sprague-Dawley , Actins
15.
Cell Biol Int ; 47(9): 1573-1588, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37303238

ABSTRACT

Intimal thickening caused by the excessive multiplication of vascular smooth muscle cells (VSMCs) is the pathological process central to cardiovascular diseases, including restenosis. In response to vascular injury, VSMCs would undergo phenotypic switching from a fully differentiated, low proliferative rate phenotype to a more pro-proliferative, promigratory, and incompletely-differentiated state. The lack of a full understanding of the molecular pathways coupling the vascular injury stimuli to VSMCs phenotype switching largely limits the development of medical therapies for treating intima hyperplasia-related diseases. The role of signal transducers and activators of transcription 6 (STAT6) in modulating the proliferation and differentiation of various cell types, especially macrophage, has been well investigated, but little is known about its pathophysiological role and target genes in restenosis after vascular injury. In the present work, Stat6-/- mice were observed to exhibit less severe intimal hyperplasia compared with Stat6+/+ mice after carotid injury. The expression of STAT6 was upregulated in VSMCs located in the injured vascular walls. STAT6 deletion leads to decreased proliferation and migration of VSMCs while STAT6 overexpression enhances the proliferation and migration of VSMCs companies with reduced expression of VSMCs marker genes and organized stress fibers. The effect of STAT6 in mouse VSMCs was conserved in human aortic SMCs. RNA-deep-sequencing and experiments verification revealed LncRNA C7orf69/LOC100996318-miR-370-3p/FOXO1-ER stress signaling as the downstream network mediating the pro-dedifferentiation effect of STAT6 in VSMCs. These findings broaden our understanding of vascular pathological molecules and throw a beam of light on the therapy of a variety of proliferative vascular diseases.


Subject(s)
Myocytes, Smooth Muscle , Neointima , STAT6 Transcription Factor , Animals , Mice , STAT6 Transcription Factor/metabolism , Myocytes, Smooth Muscle/cytology , Muscle, Smooth, Vascular/cytology , Neointima/pathology , Vascular System Injuries/metabolism , Vascular System Injuries/pathology , Mice, Knockout , Humans , Mice, Inbred BALB C , Male , Female , Middle Aged , Aged , Cells, Cultured , Aorta/cytology , Cell Dedifferentiation
16.
Nucleic Acids Res ; 51(9): 4284-4301, 2023 05 22.
Article in English | MEDLINE | ID: mdl-36864760

ABSTRACT

The transcription factor BTB and CNC homology 1(BACH1) has been linked to coronary artery disease risk by human genome-wide association studies, but little is known about the role of BACH1 in vascular smooth muscle cell (VSMC) phenotype switching and neointima formation following vascular injury. Therefore, this study aims to explore the role of BACH1 in vascular remodeling and its underlying mechanisms. BACH1 was highly expressed in human atherosclerotic plaques and has high transcriptional factor activity in VSMCs of human atherosclerotic arteries. VSMC-specific loss of Bach1 in mice inhibited the transformation of VSMC from contractile to synthetic phenotype and VSMC proliferation and attenuated the neointimal hyperplasia induced by wire injury. Mechanistically, BACH1 suppressed chromatin accessibility at the promoters of VSMC marker genes via recruiting histone methyltransferase G9a and cofactor YAP and maintaining the H3K9me2 state, thereby repressing VSMC marker genes expression in human aortic smooth muscle cells (HASMCs). BACH1-induced repression of VSMC marker genes was abolished by the silencing of G9a or YAP. Thus, these findings demonstrate a crucial regulatory role of BACH1 in VSMC phenotypic transition and vascular homeostasis and shed light on potential future protective vascular disease intervention via manipulation of BACH1.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Chromatin , Muscle, Smooth, Vascular , Neointima , Phenotype , Animals , Humans , Mice , Basic-Leucine Zipper Transcription Factors/deficiency , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Chromatin/genetics , Chromatin/metabolism , Homeostasis , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Neointima/genetics , Neointima/metabolism , Neointima/pathology , Neointima/prevention & control , Plaque, Atherosclerotic
17.
J Biol Chem ; 299(4): 104594, 2023 04.
Article in English | MEDLINE | ID: mdl-36898577

ABSTRACT

Cluster of differentiation 47 (CD47) plays an important role in the pathophysiology of various diseases including atherosclerosis but its role in neointimal hyperplasia which contributes to restenosis has not been studied. Using molecular approaches in combination with a mouse vascular endothelial denudation model, we studied the role of CD47 in injury-induced neointimal hyperplasia. We determined that thrombin-induced CD47 expression both in human aortic smooth muscle cells (HASMCs) and mouse aortic smooth muscle cells. In exploring the mechanisms, we found that the protease-activated receptor 1-Gα protein q/11 (Gαq/11)-phospholipase Cß3-nuclear factor of activated T cells c1 signaling axis regulates thrombin-induced CD47 expression in HASMCs. Depletion of CD47 levels using its siRNA or interference of its function by its blocking antibody (bAb) blunted thrombin-induced migration and proliferation of HASMCs and mouse aortic smooth muscle cells. In addition, we found that thrombin-induced HASMC migration requires CD47 interaction with integrin ß3. On the other hand, thrombin-induced HASMC proliferation was dependent on CD47's role in nuclear export and degradation of cyclin-dependent kinase-interacting protein 1. In addition, suppression of CD47 function by its bAb rescued HASMC efferocytosis from inhibition by thrombin. We also found that vascular injury induces CD47 expression in intimal SMCs and that inhibition of CD47 function by its bAb, while alleviating injury-induced inhibition of SMC efferocytosis, attenuated SMC migration, and proliferation resulting in reduced neointima formation. Thus, these findings reveal a pathological role for CD47 in neointimal hyperplasia.


Subject(s)
CD47 Antigen , Coronary Restenosis , Myocytes, Smooth Muscle , Animals , Humans , Mice , CD47 Antigen/antagonists & inhibitors , CD47 Antigen/genetics , Cell Movement , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Hyperplasia/metabolism , Hyperplasia/physiopathology , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Neointima/metabolism , Neointima/physiopathology , Thrombin/metabolism , Vascular System Injuries/physiopathology , Gene Expression Regulation/genetics , Coronary Restenosis/physiopathology
18.
Int J Mol Sci ; 23(19)2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36233060

ABSTRACT

Idiopathic pulmonary arterial hypertension (IPAH) is a disease with complex etiology. Currently, IPAH treatment is limited, and patients' prognosis is poor. This study aimed to explore new therapeutic targets in IPAH through bioinformatics. Two data sets (GSE113439 and GSE130391) meeting the requirements were obtained from the Gene Expression Omnibus (GEO) database. Then, differentially expressed genes (DEGs) were identified and analyzed by NetworkAnalyst platform. By enriching Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG), we examined the function of DEGs. A protein-protein interaction (PPI) network was constructed to identify central genes using the CytoNCA plug-in. Finally, four central genes, ASPM, CENPE, NCAPG, and TOP2A, were screened out. We selected NCAPG for protein-level verification. We established an animal model of PAH and found that the expression of NCAPG was significantly increased in the lung tissue of PAH rats. In vitro experiments showed that the expression of NCAPG was significantly increased in proliferative pulmonary arterial smooth muscle cells (PASMCs). When NCAPG of PASMCs was knocked down, the cell proliferation was inhibited, which suggested that NCAPG was related to the proliferation of PASMCs. Therefore, these results may provide new therapeutic targets for IPAH.


Subject(s)
Cell Cycle Proteins , Myocytes, Smooth Muscle , Pulmonary Arterial Hypertension , Animals , Cell Cycle Proteins/genetics , Cell Proliferation , Computational Biology , Familial Primary Pulmonary Hypertension/metabolism , Humans , Myocytes, Smooth Muscle/cytology , Nerve Tissue Proteins/metabolism , Pulmonary Arterial Hypertension/genetics , Pulmonary Artery/cytology , Rats
19.
J Am Heart Assoc ; 11(16): e024581, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35929448

ABSTRACT

Background Arteriovenous fistula (AVF) maturation failure is a main limitation of vascular access. Maturation is determined by the intricate balance between outward remodeling and intimal hyperplasia, whereby endothelial cell dysfunction, platelet aggregation, and vascular smooth muscle cell (VSMC) proliferation play a crucial role. von Willebrand Factor (vWF) is an endothelial cell-derived protein involved in platelet aggregation and VSMC proliferation. We investigated AVF vascular remodeling in vWF-deficient mice and vWF expression in failed and matured human AVFs. Methods and Results Jugular-carotid AVFs were created in wild-type and vWF-/- mice. AVF flow was determined longitudinally using ultrasonography, whereupon AVFs were harvested 14 days after surgery. VSMCs were isolated from vena cavae to study the effect of vWF on VSMC proliferation. Patient-matched samples of the basilic vein were obtained before brachio-basilic AVF construction and during superficialization or salvage procedure 6 weeks after AVF creation. vWF deficiency reduced VSMC proliferation and macrophage infiltration in the intimal hyperplasia. vWF-/- mice showed reduced outward remodeling (1.5-fold, P=0.002) and intimal hyperplasia (10.2-fold, P<0.0001). AVF flow in wild-type mice was incremental over 2 weeks, whereas flow in vWF-/- mice did not increase, resulting in a two-fold lower flow at 14 days compared with wild-type mice (P=0.016). Outward remodeling in matured patient AVFs coincided with increased local vWF expression in the media of the venous outflow tract. Absence of vWF in the intimal layer correlated with an increase in the intima-media ratio. Conclusions vWF enhances AVF maturation because its positive effect on outward remodeling outweighs its stimulating effect on intimal hyperplasia.


Subject(s)
Arteriovenous Fistula , Arteriovenous Shunt, Surgical , Myocytes, Smooth Muscle , von Willebrand Factor , Animals , Arteriovenous Shunt, Surgical/methods , Cell Proliferation , Humans , Hyperplasia , Mice , Mice, Knockout , Myocytes, Smooth Muscle/cytology , von Willebrand Factor/metabolism
20.
Exp Lung Res ; 48(7-8): 199-212, 2022.
Article in English | MEDLINE | ID: mdl-35943053

ABSTRACT

Objective: Bromodomain-containing protein 7 (BRD7) is a key component of the switch/sucrose non-fermentable complex that participates in chromatin remodeling and transcriptional regulation. Although the emerging role of BRD7 in the pathophysiology of various diseases has been observed, its role in asthma remains unknown. Here, we assessed the function of BRD7 as a mediator of airway remodeling in asthma using an in vitro model. Methods: Airway smooth muscle cells (ASMCs) were challenged with tumor necrosis factor-α (TNF-α) to establish an in vitro airway remodeling model. Protein levels were examined using western blotting. Cell proliferation was measured using the cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays. Cell migration was assessed using a transwell migration assay. Results: Exposure to TNF-α dramatically decreased BRD7 levels in ASMCs. BRD7 remarkably decreased TNF-α-induced proliferation and migration of ASMCs. In contrast, ASMCs with BRD7 deficiency were more sensitive to TNF-α-induced pro-proliferative and pro-migratory effects. Mechanistically, BRD7 could repress the expression of Notch1 and block the Notch pathway in TNF-α-challenged cells. Notably, reactivation of Notch signaling substantially reversed the BRD7 overexpression-mediated effects, whereas restraining Notch signaling abolished BRD7-depletion-mediated effects on TNF-α-challenged cells. Conclusions: BRD7 inhibits the proliferation and migration of ASMCs elicited by TNF-α by downregulating the Notch pathway. This study indicates that BRD7 may exert a suppressive effect on airway remodeling during asthma.


Subject(s)
Airway Remodeling , Asthma , Chromosomal Proteins, Non-Histone , Myocytes, Smooth Muscle , Asthma/metabolism , Cell Movement , Cell Proliferation , Cells, Cultured , Chromosomal Proteins, Non-Histone/metabolism , Humans , Myocytes, Smooth Muscle/cytology , Receptors, Notch/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...